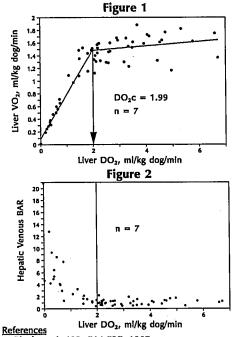
TITLE:


HEPATIC O_2 REGULATION DURING

ENDOTOXEMIA

AUTHORS: R. Schlichtig, M.D., H.A. Klions, M.D. Dept. Anesthesiology and Critical Care Medicine, University of Pittsburgh,

Pittsburgh, PA 15261

Most tissues display O₂ regulatory behavior such that O₂ consumption (VO₂) is independent of O₂ delivery (DO₂) until a critical value of DO₂ (DO₂c) is reached. Below DO₂c, VO₂ becomes O₂ supply dependent. However it is not clear whether O₂ supply dependency represents exhaustion of O₂ regulatory mechanisms, or simply O₂ conformity (i.e. arrest of non-essential metabolism) in individual organs. We measured liver DO₂ and VO₂ using hepatic arterial and portal venous electromagnetic flow probes and O₂ content differences, and estimated liver NADH/NAD as hepatic venous B-hydroxybutyrate to acetoacetate ratio (BAR) (1) in seven pentobarbital-anesthetized mongrel dogs following bolus infusion of E. coli lipopolysaccharide, 5 mg/kg. We assessed hepatic O₂ regulation by progressive hemorrhage in 50 to 100 ml increments, and estimated liver DO₂c by applying dual line regression (2) to pooled data (figure 1). BAR was relatively constant during O₂ supply independency but rose progressively during O₂ supply dependency (figure 2). These data are in agreement with observations in control animals (3). We conclude that liver O₂ supply dependency in endotoxin-treated dogs, as well as in control dogs, represents exhaustion of O₂ regulatory mechanisms, rather than O₂ conformity.

1. Biochem. J. 103; 514-527, 1967
2. J. Appl. Physiol. 64: 2074-2082; 1988
3. Am. Rev. Respir. Dis. (abstract); 1990 (in press)

A1189

TITLE:

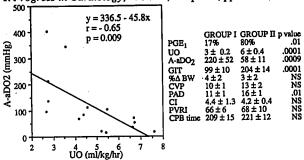
EFFECTS OF FLUID BALANCE AND PROSTAGLANDIN E₁ (PGE₁) ON

PROSTAGLANDIN E₁ (PGE₁) ON REIMPLANTATION PULMONARY EDEMA (RPE) IN HEART-LUNG TRANSPLANT

RECIPIENTS (HLTR)

AUTHORS:

M Norgaard, M.D., BP McGlinch, B.S., ND Dikel, M.D., JA Estrin, M.D., Ph.D.


AFFILIATION: Anes. Dept., University of Minnesota

Minneapolis, Minnesota 55455

To determine the effects of perioperative fluid management on the RPE¹ of HLTR, we examined fluid balance [percent change from pre-operative body weight, (%Δ BW)], gas exchange, [pHa, PaO₂ (mmHg), PaCO₂ (mmHg), HCO₃-(mEq/L), A-aDO₂ (mmHg)], urine output [(UO), (ml/kg/hr)], hemodynamics [CI (l/min/m²), PVRI (dyne·sec/cm⁵·m²), CVP (mmHg), PAD (mmHg)] and chest x-rays at 24 hours post-implantation (24-HPI) in two groups of HLTR. Two HLTR with graft dysfunction (A-aDO₂ ≥ 390 at 24 hrs) due to pulmonary contusion or protamine-induced pulmonary edema were not included. Group I [n = 6, male/female ratio (M/F) = 2, 34 ± 1 yrs (mean ± SEM), 67 ± 6 kg, primary pulmonary hypertension (PPH) 66%, Eisenmenger complex (EMC) 17%, other 17%] received grafts from locally procured donors [graft ischemia time (GIT) = 99 ± 10 min], while group II (n = 10, M/F = 2, 30 ± 3 yrs, 53 ± 8 kg, PPH 40%, EMC 30%, other 30%) received grafts from distantly procured donors (GIT = 204 ± 14 min) during hypothermic cardiopulmonary bypass [(CPB), (28°C, Hct 25%)]. Donors had PaO₂ ≥ 100 mmHg at FiO₂ ≤ .4 with PIP ≤ 30 cmH₂O at V_T 10-12 ml/kg and were preserved at 4°C with Collins solution. Whereas 80% of group II was treated with PGE₁ (.05 ± .01 μg/kg/min) post-CPB, only 17% of group I received PGE₁ (p =

.01, chi-squared). Diuresis was forced in group II but not group I. At 24-HPI, 16 HLTR, 5 extubated (FiO₂ = .35 \pm .04) and 11 intubated (FiO₂ = .39 \pm .04, IMV 8 \pm 2 bpm, V_T 769 \pm 42 ml, PEEP 5 \pm 1 cmH₂O) from groups I and II had hemodynamics, gas exchange, UO and % BW as shown (Table). RPE was present in all but one HLTR; the radiologic severity of RPE was not different between groups. The A-aDO₂ in group II (58 \pm 11 mmHg) was significantly lower than in group I (220 \pm 52 mmHg) at 24-HPI (p = .0009, unpaired Student's t-test) despite a longer GIT (p = .0001) and higher PAD (p = .01). While UO at 24-HPI, higher in group II (p = .0001), was a good predictor of A-aDO₂ [(r = -.65, y = 336.5 - 45.8x, p = .009) (Fig.)]; GIT, CPB time and % BW were not. These data demonstrate that RPE, a frequent finding in HLTR 24-HPI, and the concomitant abnormalities of gas exchange may be favorably influenced by a forced diuresis and PGE₁ therapy during and up to 24-HPI in spite of a longer GIT.

1. Progress in Cardiology, Vol. 16, Chapter 3, pp. 51-80, 1988.

