Title: MECHANISMS OF BLEEDING REDUCTION INDUCED BY APROTININ DURING CARDIOPULMONARY BYPASS : A CONTROLLED STUDY

Authors: COMMIN PL MD, LU H MD, SORIA C PhD, CAEN JP MD PhD, PIWNICA A MD, ECHTER E MD. Affiliation: Anes. Dept., Lariboisiere University Hospital, Paris, France.

Effectiveness of Aprotinin (Trasylol) on bleeding during cardiopulmonary bypass(CPB) has been well established. Mechanisms of action were investigated in a double blind study performed on 20 patients who underwent aorto coronary bypass and were randomly included in Placebo(P) or in Aprotinin(A) group. Patients characteristics: age (A: 60.4±8.1, P: 62.8±4.64 years), number of grafts (A: 2.6±.5, P: 2.6±.5) and preoperative Left Ventricular Ejection Fraction (A: 50 ± 8.3 %, P: 48 ± 5 %), no aspirin during 8

days prior to the operation.

Aprotinin Protocol: loading dose of 280 mg prior to incision, 280 mg into the membrane oxygenator prime, and a continuous infusion of 50 mg/h from anesthesia induction until ICU arrival. Heparinemia during CPB was kept over 4Units/ml. Blood loss from mediastinal drainage was recorded for each patient. Blood was sampled before anesthesia(1), 30 min after start of CPB(2), 5 min after aortic clamp release(3) and after heparin neutralization(4). Samples were studied to determine: 1° specific fibrin degradation products as D Dimers complex (DDE),

2° Platelet function by Ristocetin Agglutination, 3° tissue Plasminogen Activators (tPA),

4° BThromboglobulin (BTG) and platelets number. RESULTS: ANOVA mean 1-4,

	1	2	3	4	ANOVA		
DDE (ng/ml)A	102	57	81	461	(. 001		
P	280	338*	710**	1944**	`		
RA A	100	103	100	92	₹ 001		
(%control) P	100	78*	61**	52**	•		
PLATELETS A	250	125	133	111	ns		
(1000/mm3) P		122	143	135			
tPA (ng/ml)A	8.3	6.7	10.6	18.4	ns		
-	6.8	10.6	11.8	18.4			
BTG (ng/m1)A	117	117	180	290	ns		
P	98	106	182	283			
	100	73	69	73	ns		
(%control) P		69.5	62	68.8			
p<0.05 *, p<0.005 **							

NEGATIVE CORRELATIONS

DDE2 vs RA(4) p<0.001,vs RA(3) p<0.008

DRAINAGE VOLUME MEAN SEM WILCOXON
(ml) A 277 ±46 p≤ 0.04
P 629 ±189

Those findings suggest that Aprotinin acts by plasmin inhibition with a resulting protective effect on platelet GPTb receptors break down on the platelet membrane. Moreover A inhibits tPA effects on the hemostatic clots of the wound closure REFERENCES: Bidstrup BP et al, J Thorac. Cardiovasc. Surg., 1989, Vol97, 364.

A1206

TITLE: IS THE THROMBOELASTOGRAPH A CLINICALLY USEFUL PREDICTOR OF BLOOD LOSS AFTER BYPASS?

AUTHORS: DF VAN RIPER MD, JC HORROW MD, D OSBORNE BS AFFILIATION: Department of Anesthesiology, Hahnemann University, Philadelphia, PA 19102

The thromboelastograph (TEG) may assist recognition and management of coagulopathies after cardiopulmonary bypass (CPB). I Fig.1 displays TEG measurements: R and K reflect coagulation time; α is speed of clot formation; MA is maximum clot strength; A_{60} is clot strength 60 min later; whole blood clot lysis index (WBCLI= A_{60} /MA) measures clot breakdown. WBCLI<0.8 indicates fibrinolysis. This study determined whether TEG measurements correlated with fibrin split products $\geq 10 \mu g/ml$ (+FSP) and predicted blood loss after CPB.

Methods: After institutional approval and informed consent, patients undergoing cardiac surgery donated blood prior to skin incision (FSP1, TEG1), after protamine (TEG2), and again 2 hrs after sternal closure (FSP3, TEG3). Mass of blood drained via mediastinal tubes over 12 hrs determined blood loss. Correlation coefficients compared TEG data with blood loss. WBCLI cut-offs of 0.8 and 0.05 divided patients into groups. ("Tear-drop" TEG patterns occur at WBCLI<0.05.) Chi-sq statistic compared frequency data; unpaired t-test compared grouped continuous variables.

Results: No patient had +FSP prior to skin incision, but 16/88 had WBCLI<0.8 and 1/88 WBCLI=0. WBCLI after protamine (TEG2) predicted blood loss (table). After operation (TEG3), WBCLI correlated with neither +FSP nor blood loss (table). WBCLI (fig.2), R, K, and α did not correlate with blood loss; MA (r=.34) and A₆₀ (r=.25) correlated poorly. +FSP after surgery did not affect R, K, α , A₆₀, or WBCLI, and minimally affected MA (65 ν . 61 P<.04).

TABLE:	WBCLI≥0.8	<0.8	≥0.05	< 0.05
TEG2 Bld loss	384±188(SD)	525±321*	386±182	808±428#
TEG3 +FSP3	15/70	8/19 j	23/88	0/1
TEG3 Bld loss	400±220	463±221	413±222	412
	*N=16/86, P	=0.023	#N=5/86,	P=0.0001

<u>Discussion</u>: TEG3 parameters predict neither presence of FSP nor post-op bleeding. Post-op TEG appears to provide no useful information. TEG2 did predict blood loss, confirming that fibrinolysis occurs and corrects with time. However, >1 hr is needed to measure WBCLI. By this time, fibrinolysis has subsided. TEG2 information is too tardy for therapeutic decisions.

References:

- 1. SPIESS BD, ET AL.: J CLIN MONIT 3:25-30, 1987.
- 2. KANG YG, ET AL.: ANESTHESIOLOGY 66:766-773, 1987.