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The Effects of Extracellular Magnesium on Myoplasmic [Ca®"] in
Malignant Hyperthermia Susceptible Swine

J. R. Lopez, M.D., Ph.D.,* V. Sanchez, B.S.,t I. Lopez, B.S.,t J. F. Ryan, M.D.,
M. Mendoza, B.S.,t F. A. Sreter, M.D., Ph.D.,§ P. D. Allen, M.D., Ph.D.%}

It is now well established that the pathophysiology of the malig-
nant hyperthermia (MH) syndrome is related to a malfunction of
intracellular calcium homeostasis. Magnesium plays important roles
in the basic contractile properties of muscle, and many of its actions
are antagonistic to those of calcium. The aim of this study was to
determine the effectiveness of magnesium sulphate to prevent the
MH episode in susceptible animals and correlate this with its effects
on the intracellular free calcium ([Ca®'])). The experiments were
carried out using six control (Yorkshire) and ten MH-susceptible
crossbred swine (Poland China X Pietrain). After determination of
resting concentrations of [Ca**], and [Mg**};, each animal was given
cither two iv bolus doses of 50 mg/kg or one iv bolus of 100 mg/kg
of MgS0,. The resting [Ca®*]; and [Mg?']; were determined by means
of ion-selective microelectrodes. The resting [Ca®*]; in normal muscle
fibers was 0.11 £ 0.01 uM (mean + SEM), whereas in the MH muscles
the resting [Ca®*]; was 0.36 % 0.01 uM. In neither group was the
resting [Ca®*]; modified by MgSO,. This cumulative dose of MgSO,
(100 mg/kg) was not able to prevent the induction of an MH episode
by 2% halothane. Although MgSO, did not directly decrease [Ca**];,
it did attenuate the increase in [Ca®'); associated with the syndrome
from 7.29 + 0.43 uM in untreated animals to 0.84 + 0.03 uM in
MgSO, pretreated swine. In addition, the limb rigidity that accom-
panies this increase in calcium was prevented by MgSO, pretreat-
ment, Baseline measurements of [Mg**]; were not different in contro}
and MH-susceptible muscles. Administration of MgSO; (100 mg/
kg) increased [Mg?*]; 1.8-fold (P < 0.001). These results indicate that
MgSO, by itself was ineffective both in decreasing resting [Ca®*],
and in preventing the changes associated with the MH episode.
However, MgSO, was able to quantitatively reduce the increase in
[Ca®*];, prevent the limb rigidity, and reduce the increment in body
temperature usually associated with the clinical syndrome. (Key
words: Malignant hyperthermia: calcium ions; skeletal muscle.
Measurement technique: ion-selective microelectrode.)

MALIGNANT HYPERTHERMIA (MH) is a myopathic syn-
drome triggered when susceptible patients or animals are
exposed to volatile anesthetics and/or muscle relaxants
that depolarize the post-synaptic membrane.' It is now
well established that the pathophysiology of MH syndrome
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is related to a malfunction of the intracellular calcium
homeostasis."** An abnormally high resting free intra-
cellular calcium concentration, ([Ca?*];) has been found
in susceptible swine® and patients.? In addition, there is
a considerable increase in [Ca®*}; that occurs during an
MH episode.®

It is known that Mg?" in skeletal muscle binds to con-
tractile proteins and may thus affect tension develop-
ment.® Furthermore, there is evidence that Mg?* may
influence the Ca®* release from the sarcoplasmic reticu-
lum and may also affect the activity of the ATP-dependent
calcium transport mechanism across the sarcoplasmic re-
ticulum membrane.”*

Several possible approaches to prevent or to treat MH
syndrome have previously been suggested."*!° Magne-
sium sulphate has been tried for treatment of MH episode
in swine.!®!! The rationale for its use as a therapeutic
agent in MH episode has been based on its ability to com-
pete with calcium in many of its actions.” Hall et al.'
reported that magnesium sulphate in near-toxic doses was
successful in preventing MH in susceptible swine. Flew-
ellen and Nelson'! have reported that MgSO, was able
to attenuate but not prevent the MH episode in pretreated
MH-susceptible swine.

The aim of this study was to explore the effect of
MgS8O, on changes in the intracellular free calcium and
magnesium concentrations in MH-susceptible swine and
correlate the possible modifications on [Ca?*]; induced by
changes in [Mg®*};.

Materials and Methods

The experiments were carried out in six control York-
shire swine and in ten MH-susceptible crossbred swine
{Poland China X Pietrain) on two occasions 3 weeks apart
in random order for measurements of [Ca**};and [Mg**};.
Each animal was placed into only one treatment group
and served as its own untreated control. Six control York-
shire swine and six MH-susceptible crossbred swine (Po-
land China X Pietrain) were used for measurements of
serum [Mg?*]. The protocols used in the present study
were approved by the institutional committee for the pro-
tection of animals at both institutions. The average
weights of the control animals at the time of the study
was 31.6 = 1.8 kg and the MH group was 33.1 £ 3.1 kg.
Susceptibility to MH was confirmed by a challenge with
halothane as previously described.'? Tachycardia (heart
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rate > 130 beats per min) limb rigidity, and an increase
in the body temperature were taken as indications of sus-
ceptibility to MH.,

Anesthesia was induced with intravenous (iv) sodium
thiopental (10-15 mg/kg) and maintained with fentanyl
(iv) (0.025 mg/kg) and a mixture of NyO/O; (66:34%).
Spontaneous movements were prevented with pancuro-
nium iv (0.15 mg/kg) to perform the electrophysiologic
measurements. Additional iv doses of 0.025 mg/kg of
fentanyl and 0.06 mg/kg of pancuronium were given ev-
ery 15-30 min as needed. In vitro experiments were per-
formed on intact muscle bundles, which demonstrated
that sodium thiopental, fentanyl, and pancuronium in
concentrations similar to those expected in vivo confirm
that these drugs did not alter [Ca®*]; in control or MH-
susceptible muscle fibers. Three control or five MH swine
were pretreated with 100 mg/kg of MgSO, iv in two
divided doses of 50 mg/kg, whereas a similar group re-
ceived a single dose of 100 mg/kg (three control and five
MH) immediately before exposure to halothane. The
MgSO, bolus was administered over 45 s to 1 min. The
administration of the second dose of MgSO,4 was per-
formed not later than 10 min after the first dose. We did
not use higher concentrations of MgSO, (200 mg/kg)
because of difficulty with cardiovascular side effects in
pilot studies. Dantrolene 1 or 2 mg/kg was used to reverse
the MH episode.'® Fluids and all drugs used were admin-
istered vie an ear vein catheter. Rectal temperature was
monitored continuously using YSI temperature probe.
The experimental protocol followed in this study is shown
in figure 1 where letters indicate the stages of the exper-
iments during which the in vivo measurements of [Ca®*);
or [Mg?*]; were carried out.

ION-SELECTIVE MICROELECTRODES

Glass microelectrodes with a tip outer diameter of 0.4
pm or less were pulled from glass capillaries with filaments
(WPI-1B150F-6). Before pulling the capillaries were
cleaned with HCl and distilled water and dried overnight
at room temperature. The pulled microelectrodes were
heated to 250° C and then silanized by exposure to tri-
n-butylchlorosilane vapor for 30 min. The microelec-
trodes tips were filled with the neutral ligand by appli-
cation of a small drop of the resin at the back of the elec-
trodes.

Thiopental
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CAZ*-SELECTIVE MICROELECTRODES

Silanized tip microelectrodes were first back filled with
the liquid sensor based on the neutral synthetic ion ligand
ETH 1001 (Fluka)'* and then the remaining part of the
barrel was similarly back filled with pCa7 solution.'®

Although all microelectrodes were prepared in a similar
manner, the performance of the ion-selective microelec-
trodes can show significant variations; therefore, every
electrode was calibrated individually before and after five
measurements in a series of solutions of different pCa
(pCa3—-pCa9) which had similar composition to those used
by Tsien and Rink with the addition of MgCl; 1.5 mMm,
and Na 8 mM."® The microelectrode properties remained
fairly constant, and recalibration was thus not necessary
after each impalement.

The Ca®* microelectrode potential was measured by
means of a high input impedance electrometer differential
amplifier (FD 223 WP Instruments, Inc., New Haven,
Connecticut). The potential measured in the calibration
solutions was plotted against pCa, and only those micro-
electrodes that showed a linear response between pCa3
and pCa7 (30.5 mV per decade [Ca®*] at 37° C) were
used (fig. 2A). Data were discarded if the calibration curve
before and after the experiment did not meet these cri-
teria. We tested the performance of these ion-selective
microelectrodes in vitro to ensure that their output was
not interfered with by any of the drugs used or by changes
in free [Mg?®*] (0-4 mMm).

MG2*-SELECTIVE MICROELECTRODES

The microelectrode tips were back filled with the neu-
tral ligand ETH 1117 (Fluka).'” The shank and shoulder
of the microelectrodes were filled with 10 mm MgCl,.
The effect of Ca®* in the range between pCa7 and pCa3
and pH between 6.1 and 7.1 on the response of the Mg**
microelectrodes was negligible, results that agree with
those previously reported by Hess et al.'® The response
of the Mg?*-selective microelectrode shows a significant
interference from K* and to a lesser extent from Na* at
the concentration in which both cations have been found
in skeletal muscle. Therefore, they were calibrated in so-
lutions containing known free Mg®* and concentrations
of [Na*); and [K*); that were measured directly in a pre-
vious study using a the same preparation and experimental
conditions."®

Atropine

Pancuronium Magnesium

Magnesium

Haolothane Dantrolene

A B,

Fentanyl

Bp c D

Neostigmine

FIG. 1. The experimental protocol followed. Letters indicate the stages when determinations of [Ca®*]; or [Mg?*}; were performed.
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The Mg?*-selective microelectrode potential was mea-
sured in a identical manner as described for the Ca®* mi-
croelectrode. In pure MgCl; the response followed the
Nernst predictions, but when the cation composition of
the calibration solution mimicked the intracellular cation
composition, the response of the Mg?*-selective micro-
electrode was reduced from 30.5 mV to 18-26 mV from
1 to 10 mM Mg?* (fig. 2B). The response of the Mg?*-
selective microelectrodes in these calibrating solutions in-
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FIG. 2. A. Calibration curve of a Ca%*-selective microelectrode, with

. a tip external diameter approximately 0.4 um obtained during the

exposure of the microelectrode tip to solutions of different pCa. The

two curves represent measurements before (O) and after (®) calcium

determinations. B. Calibration curve of a Mg**-selective microelectrode

in the presence of different concentrations of MgCl alone (O) and in
combination with Na* (8 mM), K* 110 mM, and Ca®* 10 uM (®).
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dicates that they can adequately measure free [Mg®*] from
0.5 to 10 mM, which covers the physiologic range.

RECORDING PROCEDURE

After induction of anesthesia a 5-cm incision was made
over the peroneus longus muscle of the right hind leg.
After the muscle was identified its surface was freed of
connective tissue, and then the superficial muscle fibers
were exposed and kept covered with warm mammalian
Ringer’s solution (37° C).

The 3 M KCl and the Ca?*- or Mg**-selective micro-
electrodes were placed into the pool of Ringer’s solution
made around the incision and then set to zero with respect
to a Ag/AgCl pellet also inserted into the pool. A muscle
fiber was impaled with conventional 3 M KCl microelec-
trode (8—-10 M tip resistance) to measure the resting
membrane potential (V,,), and an adjacent fiber was im-
paled with the calcium- or magnesium-selective micro-
electrodes to measure the calcium potential VCag or
magnesium potential VMgg, which represents the poten-
tial recorded by the calcium or magnesium microelectrode
and corresponds to the sum of the resting membrane po-
tential and the Ca®* or Mg®* specific potential. After both
microelectrodes reached a stable value, V,, was subtracted
from VCag or VMgg using a high impedence electrometer
to obtain VCa or VMg, which are both equivalent to the
intracellular free [Ca®*] or [Mg®*]. The determinations
of [Ca®*] or [Mg®*] were carried out between 5 and 20
min after the bolus of MgSO, was injected because in this
interval the [Mg**] in plasma reached a near steady state.
Flexibly mounted microelectrodes were used to achieve
a more stable intracellular recording. Signals were dis-
played on digital voltmeters (Simpson M-465) and re-
corded on a two-channel recorder (Linear M 005).

CRITERIA FOR COLLECTING EXPERIMENTAL DATA

Five impalements with both ion-selective electrodes
were performed in different fibers for the resting control
measurements. Two to three measurements were done
after the administration of Mg?*. After the administration
of halothane in susceptible animals it was possible to make
only 1-2 measurements because the clinical condition of
the animal made it impossible to delay dantrolene admin-
istration for more measurements. Two to three measure-
ments were attempted after the administration of dan-
trolene. However, data were discarded if: 1) the micro-
electrode calibration curve performed before and after
each experiment differed by no more than 4 mV (8%);
2) the membrane potential of the muscle fibers was less
than —80 mV; or 3) membrane potential shift by more
than 4 mV during the Ca?* or Mg?* measurements.

20z ludy 61 uo 3sanb Aq ypd°91.000-000.0066 1-Z¥S0000/9L69E9/601/L/€L/}Pd-01on1e/ABO|0ISOUISBUE/WOD JIEUYDIDA|IS ZESE//:d}}Y WOI) papeojumoq



112

DETERMINATION OF TOTAL [MG] IN PLASMA

The total Mg concentration was determined in prelim-
inary studies using atomic absortion (Varian Pechtron
320). Samples of blood were taken every 2 min for 50
min after either a single or double bolus of MgSO, was
injected.

Studies were carried out both at the Boston Biomedical
Research Institute, Muscle Department, Boston, Massa-
chusetts and at Centro de Biofisica y Bioquimica, Instituto
Venezolano de Investigaciones Cientificas, Caracas, Ven-
ezuela, using littermates and their progeny.

Results are presented as mean + SEM. Student’s ¢ test
for paired and unpaired data was used for comparison
between two groups. Significance was accepted at the P
< 0.05 level.

Results

MEASUREMENTS OF RESTING [CA2+]1

Although there was no significant difference in the
resting membrane potential between these two groups,
the resting myoplasmic free calcium concentration was
3.2 times greater in MH-susceptible muscle fiber than in
controls (table 1). The mean intracellular free [Ca®*]; in
controls was 0.11 = 0.01 uM (range 0.09-0.13 uM n = 12)
while it was 0.36 + 0.01 uM (range 0.29-0.42 uM n = 10)
in the MH-susceptible swine (P < 0.001).

TABLE 1. Effects of MgSO,, Halothane, and Dantrolene

on V,, and [Ca®*);
Resting Membrane
Potential [Ca™);
(-mV) (um) N

Control -85+ 0.8 |0.11 £0.01]12
MHS —-83+0.9 [0.36+0.01|10
Control after MgSO, treatment —85+0.6 |0.12+0.01|16
MHS after MgSO, treatment ~83+£1.0 |0.34+0.0112
MHS nonpretreated with MgSO,

exposed to halothane —85%1.1 |7.29+0.43(10
MHS pretreated with MgSO,

exposed to halothane —82+1.0 |0.84%0.03| 7
MHS nonpretreated with MgSO,

and treated with dantrolene

(1 mg/kg) during an MH

episode -85+1.0 |1.62+0.36(10
MHS nonpretreated with MgSO,

and treated with dantrolene

(2 mg/kg) during an MH

episode —-85+09 (0.15+0.01]12
MHS pretreated with MgSO,

and treated with dantrolene

(1 mg/kg) during an MH

episode —84+1.0 |0.12%0.01[10

Values are mean + SEM; n = number of measurements. The MgSO,
dose was 100 mg/kg in all cases.
MHS = malignant hyperthermia susceptible.
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PLASMA [MG] IN CONTROL AND
SUSCEPTIBLE ANIMALS

The resting total [Mg] in plasma from MH susceptible
swine was 0.76 *+ 0.06 mM (n = 10). After the injection
of a bolus of 50 mg/kg MgSO, the plasma [Mg] reached
a peak value of 1.38 = 0.03 mM (n = 10) at about 10
min. Between 5 and 20 min the [Mg] declined exponen-
tially to 1.14 + 0.01 mM (n = 10). The injection of 100
mg/kg induced an increment in plasma [Mg] reaching a
new value of 1.68 £ 0.05 mM (n = 10). This was not
significantly different than when a second dose of 50 mg
was given 15 min after the first, 1.76 = 0.042 (n = 10).
This [Mg] also declined exponentially to 1.43 % 0.03 mMm
(n = 10) between 5 and 20 min. Identical results were
observed in the control animals: resting, 0.75 + 0.03 mM;
50 mg/kg MgSOy, 1.37 + 0.05; and 100 mg/kg MgSOy,,
1.69 + 0.07.

[MG2*]; IN CONTROL AND SUSCEPTIBLE
MH MUSCLE FIBERS

Figure 3 shows simultaneous measurements of resting
membrane potential and intracellular free magnesium
concentration from a control (A) and from an MH-sus-
ceptible muscle fiber (B) 15 min after the MgSO, bolus
was injected. The mean resting intracellular free [Mg®*]
in the normals was 1.66 + 0.15 mM (range 1.05-2.40, n
=12)and 1.50 * 0.24 mM (range 0.98-2.31,n = 13)in
MH susceptibles. The administration of 50 mg/kg MgSO,
did not induce detectable changes in [Mg®*]; in either
group despite the fact that we could detect change in
plasma [Mg] by 49%. However, when 100 mg/kg (total
dose) was administered, a significant increment in [Mg?*};
in both groups of muscle fibers could be observed (table
2). Figure 3C shows a typical experiment in which the
resting [Mg?*]; was measured in MH muscle fibers after
the administration of 50 mg/kg of MgSO,, and figure
3D shows the results after the second dose of 50 mg/kg
(total dose 100 mg/kg). The mean resting [Mg?*];in MH
muscle fibers was 1.77 = 0.18 mM (range 0.86-2.44, n
= 18) after the administration of 50 mg/kg MgSO, and
2.86 £ 0.46 mM (range 1.84-3.25 mM, n = 10) after a
total dose of 100 mg/kg MgSO, (P < 0.001). Similar
results were obtained in muscle fibers from control swine
when they were pretreated with 50 or 100 mg/kg (table
2). Neither exposure to halothane nor the clinical effects
of the MH syndrome had any effect on [Mg**];.

EFFECTS OF MAGNESIUM ON RESTING [CA?*),
BEFORE AND DURING THE MH EPISODE

Figure 4 shows the effect of MgSO4 on the resting
membrane potential and myoplasmic free calcium con-
centration in a MH muscle fiber. It can be observed that
the administration of MgSO, (100 mg/kg) did not induce
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any detectable change in the resting membrane potential
or myoplasmic free calcium concentration. The mean
resting [Ca**); after MgSO, administration was 0.12
+ 0.01 uM (range 0.08-0.14 uM, n = 16) in control muscle
fibers and 0.34 + 0.01 puM (range 0.26-0.40 uM, n = 12)
in MH-susceptible fibers. These were not different from
the mean [Ca?*); values found before MgSO4 administra-
tion in these same swine (table 1).

TABLE 2. Effects of MgSO, on V,,, [Mg*'];
in Control, and MHS Swine

Resting Membrane
Potential Mg}
(—mV) {mm) n
Control —86 + 0.8 1.66 % 0.15 12
MHS —84 + 1.0 1.50 = 0.24 13
Control after MgSO,
50 mg/kg —84+ 0.8 1.59 3 0.30 12
MHS after MgSO,
50 mg/kg -83+ 1.0 1.77 £ 0.18 18
Control after MgSO,
100 mg/kg —85 + 0.9 2.68 + 0.56 16
MHS after MgSO,
100 mg/kg —86 + 1.0 2.86 £ 0.46 10

Values are mean + SEM; n = number of measurements.

The inhalation of halothane (2%) after reversal of the
pancuronium effect with neostigmine in MH-susceptible
animals, whether or not they were MgSO,-pretreated,
triggered the clinical episode, which was associated with
an increase in [Ca®*]; without a change in resting Vp,.

The mean resting [Ca®*]; during MH episode in those
swine pretreated with MgSO4 was 0.84 % 0.03 uM (range
0.70-0.96 uM, n = 7) (table 1; fig. 4C). It is important to
note that we did not observe limb rigidity during the MH
episode as well as the marked increase in body tempera-
ture (only 0.5-1° C), which are usually a prominent char-
acteristic of the MH syndrome in these swine. Mg®* did
not reduce the tachycardia associated with the clinical
syndrome. The lack of limb rigidity might be related to
the fact that the [Ca®**]; did not reach the mechanical
threshold (1 uM). The administration of 1 mg/kg dan-
trolene resolved the clinical manifestation and the increase
in [Ca®*]; (table 1; fig. 4D) and decreased the mean [Ca®*};
to 0.12 + 0.11 pM (range 0.08-0.13 uM, n = 10). The
dose of dantrolene required to reverse the MH episode
was less in those animals pretreated with MgSOj4 than in
those without pretreatment (1 vs. 2.0 mg/kg).

Figure 5 illustrates an experiment showing the simul-
taneous measurements of resting membrane potential and
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2.3 uM, n = 10) and after 2 mg/kg was 0.15 + 0.01 um
(range 0.11-0.19 uM, n = 12) (table 1).

Discussion

In the present study we found that MgSO, with its
associated increase in [Mg**]; neither altered resting
[Ca®*); nor prevented the increase in [Ca**); associated
with the MH syndrome. However, it was able to attenuate
the increment in [Ca®*}; when the syndrome was triggered
and prevented the limb rigidity usually observed during
the MH episode. These results are in agreement with a
previous report of a reduction in the clinical manifesta-
tions of the MH syndrome with MgSO, pretreatment.'®!!

The fact that [Ca®*]; did not reach the mechanical
threshold (1 uM) during the MH episode in MgSO,-pre-
treated animals may explain the lack of the limb rigidity
during the episode itself. This attenuation in the incre-
ment of [Ca'“]; and, therefore, the lack of limb rigidity
and marked increase in body temperature may be related
to a Mg?* effect on Ca** release and reuptake in skeletal
muscle by the sarcoplasmic reticulum (SR).?*-?2 The fact
that the [Mg?*]; changes from 1.69 mM to 2.15 mM after
MgSO, treatment in the MH-susceptible muscle fibers
suggests that the modification of MH episode and the
lower increment of [Ca®*]; are associated with the increase
in intracellular Mg?*. For example, the rapid Ca®* release
from the SR induced by halothane?* and by calcium?® is
inhibited by Mg®*. Both of these Mg?* effects on the SR
might explain why the increase in [Ca®*}; after halothane
exposure in MgSO-pretreated swine was only 12% of the
increase seen in similar swine that did not receive MgSO,.
Another possible explanation of the Mg?* effects is that
this divalent cation is changed the threshold for mechan-
ical activation. These effects have been related to changes
in surface potential.??® Divalent cations are assumed to
affect the surface potential either by binding to the fixed
charges or by increasing the electric field within the
membrane.?”?® However, we believe that the observed
effect induced by Mg?" was not related with its action on
membrane surface potential because the increment in
Mg?* plasma concentration was small (from 0.76 before
to 1.43 mM after 100 mg MgSQy) to account for the effect
on changes for potential observed previously in which
changes from 1.5 to 5 mM were necessary to detect
changes in 3-4 mV in the contraction threshold.?”

The efficacy of dantrolene therapy for the MH episode
in swine has been abundantly demonstrated.?*-*! These
results confirm our previous finding that the therapeutic
effectiveness of dantrolene during an MH episode is as-
sociated with the ability of this muscle relaxant to decrease
the [Ca®"];.% The dantrolene dose required to completely
resolve the MH crisis and reduce [Ca**]; was less in swine
pretreated with MgSO, than in those that were not pre-
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treated. This fact might be related to the combined effects
of both drugs on the calcium release and uptake by
the SR.

The salutary effect of dantrolene and the ineffective-
ness of magnesium in completely resolving the clinical
MH syndrome and the reduction of [Ca®*]; might be re-
lated to differences in their mode of action on the SR.
Dantrolene is a direct muscle relaxant that has no effect
on neuromuscular transmission or on the electrical activity
or the inward spread of activation in skeletal muscle.?*%?
Dantrolene inhibits Ca®* release associated with muscle
activation as well as steady state Ca®* efflux from SR (pas-
sive Ca®* release).>*~%® In addition, it blocks the conduc-
tance of calcium channels in purified SR membranes
studied with patch-clamp.® Therefore, dantrolene should
be able to modify resting [Ca**];, and we have shown that
this does happen.'® Magnesium, however, has been shown
to increase SR Ca®* uptake and inhibit active release of
SR calcium without any effect on the steady state efflux
of Ca®" from SR.2°-2**? Because magnesium does not
modify the passive release of calcium from the SR, it can-
not change the resting [Ca®*];, but it can modify the
amount of calcium released from the SR during the MH
episode and therefore attenuate the limb rigidity that is
characteristic of the syndrome,

Magnesium plays an important role in influencing a
large number of muscle functions, such as tension devel-
opment and excitation—contraction coupling as well as
being a cofactor of numerous intracellular enzymes.*"*?
The mean [Mg?*]; measured in control fibers was not dif-
ferent than in MH-susceptible fibers. The mean value for
[Mg?*]; obtained in the present work is qualitatively in
agreement with previous determinations'®**-*® in which
it was found that [Mg?**}; is in the low millimolar range.

Although Ca?*-induced Ca?* release is not probably
the primary mechanism by which contraction is initiated
in skeletal muscle,*’"*® Endo*® suggested that this mech-
anism is the causative functional lesion in MH-susceptible
muscle. It has been demonstrated that the phenomenon
of Ca®*-induced release of Ca®" is seen in skinned skeletal
muscle fiber preparations but only at low Mg** concen-
trations (<0.3 mm).**-52 The resting [Mg**); in the MH
muscle fiber of 1.66 mM was higher than that required
to inhibit Ca?*-induced release of Ca®* in their skinned
fiber preparations, and increasing this to 2.66 mM after
MgSO, pretreatment did not prevent the onset of the
MH syndrome. Because of the magnitude of the [Mg2+];
measured here, these data essentially preclude the pos-
sibility for a role for Ca?*-induced release of Ca®" in the
pathophysiology of MH.

In the present study we have confirmed our previous
findings that the resting [Ca**]; in muscle fibers from con-
trol swine is in the order of 0.10 uM, a value that is in
good agreement with those reported by others who in-
vestigated other excitable cells.'*'® We again confirm our
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previous finding that [Ca®*]; is higher in MH-susceptible
than in control swine.?® In addition, we confirm that there
is an increase in [Ca®*'}; during the MH episode that is
not associated with any detectable change in resting
membrane potential.’ These findings suggest that the cal-
cium release process during an MH episode is not mem-
brane potential-dependent; therefore, depolarization is
not necessary in the development of an MH episode.

The data on resting [Ca®*]; in MH susceptible muscle
are in disagreement with the recent report by Iaizzo et
al.,>* who did not find significant differences in [Ca%*];
between control and MH muscle fibers using Fura-2.
These authors also suggested that our higher [Ca®*}; in
MH subjects is related to the invasive nature of the
method. Ion-selective microelectrodes allow continuous
direct measurements of [Ca®*); in muscle cells during
resting steady state conditions. The linear response of the
Ca** microelectrodes in the measured range of pCa3-
pCa7 demonstrates no limitation of calcium measurement
based on the microelectrode’s response. That plasma
membrane damage is responsible for the increased resting
[Ca?*]; seen in MH-susceptible muscle can be ruled out
from the results obtained in humans**® and MH-suscep-
tible swine®®*7 in vitro, in which both microelectrodes were
placed in the same muscle fiber. Cell damage, if any, would
have been reflected by a sustained depolarization. In those
studies we obtained quantitatively similar results to the
data reported here and found no evidence of membrane
damage. Our measurements in controls agree with all
previous estimates, and there is no reason for a systematic
error only in MH-susceptible fibers. This discrepancy is
probably due to difficulties involved in accurately esti-
mating [Ca**]; using Fura-2 as a calcium indicator. Up to
60-65% of Fura-2 in the cell can be bound and is not
free to interact with calcium, and the presence of a large
fraction of bound Fura-2 raises considerable uncertainty
about the calibration of the dye signals in terms of absolute
levels of [Ca®");.5®%° Fura-2 is a high affinity calcium buffer
and can, itself, directly lower absolute and measured
[CaZ*);.58:60

We have found similar results to those that were re-
ported by Iaizzo et al.?* using the photoprotein aequorin.®!
In isolated muscle fibers heavily microinjected with ae-
quorin, we could not detect differences between the rest-
ing light signal recorded from control and MHS muscle.®!
As with the Fura-2 experiments done by laizzo et al.,*
we believe that problems relating to the lack of sufficient
sensitivity for measuring resting [Ca®*}; prevented the de-
tection of the difference.®2

We believe that our measurements of [Ca®*]; and
[Mg?*]; are indeed representative of the concentrations
of these two cations present in the intracellular medium
on the basis of the following: 1) the absence of evidence
suggesting Ca** or Mg?* gradients in the intracellular
space under resting conditions, and 2) the small dispersion
around our mean value despite the fact that such mea-
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surements were carried out at different points along the
muscle fiber length or in different fibers.

In conclusion, magnesium sulphate does not modify
the resting free myoplasmic calcium concentration, and
it fails to prevent the MH episode in MH-susceptible swine.
However, it modifies the clinical manifestation of MH
and the increment in [Ca?*); associated with the syndrome.

The authors wish to thank Dr. J. Garcia for his assistance; Dr. S.
Taylor and Dr. C. Caputo for their helpful criticisms; and Alyce Russo
and Dhuwya Otero for their secretarial assistance and illustrations.
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