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FOR MANY YEARS, researchers and clinicians have been
concerned about the potential impact of anesthetic agents
on human immune system function. This interest stems
from a variety of theoretical and clinical observations
centering around both the high rate of infections seen in
postoperative patients'® and the demonstrated bone mar-
row depression after prolonged anesthetic exposure.®*®
Concern regarding the impact of anesthetic agents on
immune system function has been heightened as a reflec-
tion of modern understanding of functional capabilities
of the human immune system, including the cancer pro-
tective function of the immune system.?%9° At the same
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time, the recent emergence of the acquired immune de-
ficiency syndrome (AIDS) has stimulated researchers to
determine the potential adverse effects of anesthetic
agents on patients with pre-existing immunodeficiencies.
The purpose of this review paper is to summarize previous
clinical observations regarding the immunosuppressive ef-
fects of anesthetic agents, to correlate this information
with the preclinical research data base that has accumu-
lated, and to abstract the net impact of these understand-
ings on clinical anesthetic administration in the future.
This review will be specifically limited to human studies,
using anesthetics at clinically relevant concentrations; it
will not review allergic reactions to anesthetic agents (IgE-
mediated and anaphylactoid responses). In order for the
details of this review to be placed in their proper per-
spective, this article will begin with an overview of normal
human immune system function, as currently understood.

Overview of Human Immune System Function

The primary purpose of the human immune system is
to distinguish “‘self”” from “‘nonself”” and to clear ‘“‘non-
self”” antigens from the body. “Nonself”” antigens can
range from bacteria, viruses, and fungi to cancer cellsand
transplanted organs. The precise mechanisms of immune
recognition and elimination of antigens are still incom-
pletely understood and are the subject of intense ongoing
investigation. There are two known major components
of immune system function: nonspecific and specific.
Nonspecific immunity is a first line defense against ‘‘non-
self”” invaders. No prior exposure to the antigen target
is required for the host to activate nonspecific immune
system components; thus, a wide range of targets can be
neutralized in a nonspecific fashion. Specific immunity,
in contrast, refers to immune system components that seek
out specific targets. The cells that confer specific immunity
are only capable of interacting with a limited subset of
closely related “‘nonself” invader molecules (antigens),
and prior exposure is required for optimal function. Both
specific and nonspecificimmunity are composed of cellular
and noncellular (humoral) components.

The specific and nonspecific components of the human
immune system can be organized into five basic categories
(fig. 1): 1) antigen processing (mediated by lymphoid tissue
mononuclear phagocytes [cells that are referred to as
monocytes when found circulating in the bloodstream]);
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FiG. 1. Five functional components of the immune response: antigen
processing, specific humoral immunity, specific cell-mediated immunity,
nonspecific humoral immunity, and nonspecific cell-mediated immu-
nity.

2) immunoglobulin (Ig), the specific component of hu-
moral immunity (a product of B-lymphocytes); 3) com-
plement (C'), the nonspecific component of humoral im-
munity (produced by mononuclear phagocytes); 4) T-
lymphocytes, the specific component of cell-mediated
immunity; and 5) the nonspecific components of cell-me-
diated immunity (natural killer [NK] lymphocytes, mono-
nuclear phagocytes, and polymorphonuclear neutro-
phils [PMN]).

To understand the role and importance of the various
subcomponents of the human immune system, it may be
helpful to visualize these elements in a schematic repre-
sentation. Figure 2 represents the specific and nonspecific
elements of immunity that were displayed in figure 1,
including a classification of the functions of the partici-
pating leukocyte subsets. Figure 3 lists some of the signals
mediating interactions between immune system effector
cells. These signals are termed biological response mod-
ifiers (BRM). BRM are polypeptides released by one leu-
kocyte subset that can modulate the function of other
subset cells in the local vicinity. The literature currently
describes almost 100 BRM,* and the number continues
to grow. Due to the rapid expansion of this research arena,
the nomenclature used to describe BRM is confusing; col-
ony stimulating factors (CSF), interferons (IFN) and in-
terleukins (IL) are all distinct types of BRM. Only a few
of the most important types will be described in this re-
view.
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ANTIGEN PROCESSING

Initiation of the immune response occurs at the level
of the mononuclear phagocyte and is referred to as “an-
tigen processing.” The mononuclear phagocyte first in-
gests “‘nonself”’ antigen and chemically modifies it intra-
cellularly. This modified antigen is then re-expressed on
the plasma membrane of the mononuclear phagocyte. It
is this membrane bound “‘nonself” antigen that becomes
the primary stimulus for B-lymphocyte and T-lymphocyte
activation.

Early in the immune system activation, the mononu-
clear phagocyte also releases a series of CSF. CSF are
BRM that stimulate the bone marrow stem cells to pro-
duce additional leukocytes, amplifying the immune re-
sponse. Mononuclear phagocytes secrete other BRM, in-
cluding: interleukin 1 (IL-1) that activates the T-lympho-
cytes; interleukin 6 (IL-6) that enhances B-cell
proliferation; & interferon, an antiviral protein that boosts
NK lymphocyte killing; tumor necrosis factor (TNF), a
protein directly capable of lysing tumors; and the C' com-
ponents, which lyse cell membranes when activated.
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FIG. 2. Participating leukocyte subsets in the overall immune re-
sponse: mononuclear phagacytes; B, T, NK phagocytes; and polymor-
phonuclear granulocytes (PMN).

¥20Z YoIe €} uo 3sanb Aq 4pd $2000-000€0066 | -27S0000/7909€9/2¥S/€/2 L/Pd-ajonie/ABojoisauisaue/wioo JieydIaA|Is Zese//:dpy woly papeojumoq



544

CELL TYPE BIOLOGICAL RESPONSE

STEVENSON ET AL.

Anesthesiology
V 72, No 8, Mar 1990

PRINCIPAL ACTIVITIES:

SOURCE:

MODIFIER SELECTED:

{Interleukin 2; T-Cell

g Promotes

Growth Factor)}

(Interleukin 3; Multi-CSF)

of B, T+ NK

lymphocytes; promotes proliferation and
killing function of T + NK
lymphocytes

- Promotes differentiation of platelets,

{Interleukin 4; B-Cell o

mcmoc;les and red blood cell;

Stimulating Factor)
> |L-5 (Interteukin 5; T-Cell > P

hacyte and cytotoxic

Bly
T lymphocyte activation

ﬁeplaclng Factor)}

ymphocyte differentiation
+immunoglobulin secretion

(Gr y yte
CSF  Colony Stimulating Factor)
a IFN-y (Gamma Interferon)

.
A TNF-u {Lymphotoxin)
directly

directly

Activat

g
production

—e (N hibits viral replication;
nhibits growth of certain tumor
cells; activates T lymphocytes
et~ Can kill certain types of tumor cells

vio + y FIG. 3. Principle activities of biological re-
sponse modifiers (BRM), including their leu-
kocyte subset sources.

Activates NK tymphocytes
e Can kil certain types of tumor cells

Y

@ «os9> NKCF (Natural Killer Cell Factor)
puaans®
eetvesscad {FN-n  {Alpha Interferon)

{Interleukin 1; Lymphocyte
Activating Factor)

NK lymphocytes

e Promotes early phases of the 8+ T

ymp Y

P

" <9 TNF-g8 (Tumor Necrosis Factor) - Can directly kill certain types of tumor cells
.. eesd» IL-6  (B,-Interferon) ——pe- Promotes B lymphocyte differentiation
.'"- ***I» G-CSF (Granutocyte Colony e Stimulates granulocyte differentiation

Stimulating Factor}

e, o,

" "M \.cSR {Monocyte Colony s

."n,. Stimulating Factor)
.,
Ao c o

P ) -

SPECIFIC CELL-MEDIATED IMMUNITY

T-lymphocytes function as clones (groups of identical
and equally reactive cells) that have the ability to respond
to a very limited number of closely related *‘nonself”” an-
tigens. This specificity is conferred to the T-lymphocyte
clones by the antigen-specific receptors found on their
cell surfaces. In response to mononuclear phagocyte sig-
nals, the appropriate T-lymphocyte clone becomes acti-
vated and releases a BRM, interleukin 2 (IL-2); this mol-
ecule is autostimulatory and amplifies the number of
T-lymphocytes in the activated clone. Four major T-lym-
phocyte subsets are produced in response to activation:
1) helper T-lymphocytes; 2) suppressor T-lymphocytes;
3) antigen-specific killer T-lymphocytes; and 4) memory
T-lymphocytes. The helper T-lymphocytes release a va-
riety of BRM that are capable of increasing the activity
of various immune system components. One of these is
interleukin 4 (IL-4), one of the two signals required for
B-lymphocyte proliferation. A second signal, interleukin
5 (IL-5), is required to promote the differentiation of ex-
panded B-lymphocyte clones. A third helper T-lympho-
cyte BRM, v interferon, is capable of enhancing the cy-
totoxic function of killer T-lymphocytes and mononuclear
phagocytes. Suppressor T-lymphocytes assist in decreasing
the activity of certain human immune responses. For ex-

yiep ]
aclivates monocyte cytotoxic activity

form kills target
cells diractly

ample, secretion of soluble suppressors of Ig release (SF-
Ig) causes plasma cells to decrease synthesis and release
of immunoglobulins. The third T-lymphocyte subset, the
antigen specific killer T-lymphocytes, bears receptors that
allow the cells to identify and kill specific “nonself” in-
vader tumor cells. One mechanism for tumor cell killing
by killer T-lymphocytes is the release of a soluble factor
known as lymphotoxin (LT), which is capable of lysing
tumor cells directly. The final T-lymphocyte subset, the
memory T-lymphocytes, are cells that do not directly par-
ticipate in the primary immune response; these cells re-
main dormant but are easily activated for rapid initiation
of secondary T-lymphocyte responses when required.

SPECIFIC HUMORAL IMMUNITY

B-lymphocytes are responsible for the specific com-
ponent of humoral immunity. B-lymphocyte responses are
initiated when the appropriate B-lymphocyte clone rec-
ognizes antigen on the membrane surface of a mononu-
clear phagocyte. The binding of B-lymphocyte surface
immunoglobulin with this antigen, coupled with the re-
ceipt of the IL-4 signal from the helper T-lymphocyte,
stimulates the proliferation of the B-lymphocyte clone.
Following proliferation, B-lymphocytes require a second
signal from the helper T-lymphocyte (IL-5), plus IL-6
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from mononuclear phagocytes, in order to differentiate
into memory cells and plasma cells. Memory B-lympho-
cytes lie dormant in the immune system but promote rapid
initiation of secondary humoral immune responses when
needed. Plasma cells are immunoglobulin-secreting ele-
ments (the result of B-cell activation) and can be inhibited
when SF-Ig is secreted by suppressor T-lymphocytes.

NONSPECIFIC HUMORAL IMMUNITY

Complement (C') is the nonspecific component of hu-
moral immunity; the complement (C') cascade of proteins
are secreted into the serum by mononuclear phagocytes.
Immunoglobulin-coated invader targets are not capable
of being destroyed simply by the binding of immuno-
globulin to their surfaces. One mechanism of eliminating
immunoglobulin-coated targets is by complement acti-
vation. Binding of immunoglobulin G or M (IgG or IgM)
to a “nonself” invader cell activates complement com-
ponents which then assemble into a “membrane attack
complex.” This activated complement can be thought of
as a “trocar’’ that is capable of disrupting cell membranes.
Activated complement is intended to lyse cell membranes
of “nonself” invader cells, but it also may be harmful to
normal cells in the area.

NONSPECIFIC CELL-MEDIATED IMMUNITY

There are three nonspecific components of cell-me-
diated immunity:*' 1) NK lymphocytes; 2) mononuclear
phagocytes; and 3) PMN. NK lymphocytes are of primary
importance in the elimination of tumor cell targets, which
may be mediated in part by release of a BRM known as
natural killer cell factor (NKCF). The tumor-killing ca-
pabilities of NK lymphocytes appear to be augmented by
their exposure to « interferon, a BRM released by mono-
nuclear phagocytes.

A second component of nonspecific cell-mediated im-
munity is the mononuclear phagocyte. The mononuclear
phagocyte has even broader killing capabilities than does
the NK lymphocyte; its function can be dramatically in-
creased following exposure to the BRM, v interferon.
Mononuclear phagocytes mediate part of their killing by
the secretion of another BRM, tumor necrosis factor
(TNF). The final component of nonspecific cell-mediated
immunity is the PMN that is a short-lived granulocyte
that has a killing capability similar to that of mononuclear
phagocytes. PMN have a life span of approximately 6 h
in the peripheral circulation and, compared with mono-
nuclear phagocytes, release few BRM.

Review of Previous Data Regarding Effects of
Anesthetic Agents on Immune System Function

Multiple in vivo and in vitro observations have been
made regarding the effects of anesthetic agents on human
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immune system function. At first glance, the in vivo studies
would appear to be more relevant, because they should
represent events that actually occur in the human immune
system. Unfortunately, clinical testing in this area has been
confronted with serious methodological problems that
have not been overcome to date; the primary difficulty
involves separating the effects of the multiple intraoper-
ative factors that impact on immune system function from
the direct effects of anesthetic agents themselves.

Many normal functions of the immune system are de-
pressed after exposure to the combination of anesthesia
and surgery. The contributory role of anesthetic agents
to the immune impairment is poorly understood, however,
because there are few good studies of prolonged anesthetic
exposure in the absence of surgery. It would appear that
many of the immune changes seen in surgical patients are
primarily the result of the surgical trauma (cautery, tissue,
and organ manipulation) and endocrine responses (in-
creased ACTH, catecholamines, and corticosteroids), as
well as ancillary drug effects, rather than the result of
anesthetic exposure itself.!857,61.105-107

Most studies of immunocompetence in vive have been
done by laboratory testing of a sample of peripheral blood.
These assays are a poor reflection of the ongoing im-
munologic activity at the tissue level because peripheral
blood principally serves as a conduit allowing transfer and
concentration of specific immune system cells at the sites
of effector cell function.? Thus, all in vive data based on
peripheral blood sampling alone must be viewed with sus-
picion.

Because of uncontrollable variables influencing the data
from most in vivo studies, many investigators have at-
tempted to assay the potential immunomodulatory effects
of anesthetic agents in the more controlled environment
of in vitro research. A variety of methodologic and theo-
retical impediments also plague this area of inquiry.*®
Problems include: 1) the questionable relevance of in vitro
testing results applied to in vivo clinical events; 2) the
practice of studying leukocytes obtained from the pe-
ripheral blood of poorly screened donors (cells that may
have limited correlation to actual immune system effector
events); 3) the difficulty of purifying leukocyte subset cells
without altering their native function;? and 4) the diffi-
culty of preserving leukocyte subsets in culture for the
prolonged periods necessary to perform many of the re-
quired laboratory assays. When comparing the most re-
cent in vitro data on the immune effects of anesthetic
agents with earlier studies, several areas of disagreement
can be related to the dramatic advances in immunologic
in vitro technology in the past decade. Until recently, pro-
cedures that purify subset cells other than PMN were not
available. New laboratory techniques allow the isolation
and purification of large numbers of the circulating and
immune system reservoir human blood monocytes and
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lymphocytes of normal volunteers and patients. This
“bulk collection” of immune system components from
well-characterized normal volunteers and patients is felt
to produce a leukocyte research substrate that is more
reflective of overall human immune system reactivity.%
In addition, separation techniques have been developed
that allow the purification of monocytes, B-lymphocytes,
T-lymphocytes, and NK lymphocytes with negligible im-
pact on their baseline function.’®%* Recently developed
cell culture methods have also aided the in vitro assessment
of immune system function.”® Among these innovations
is the development of a serum-free media that allows the
cultured cells to be exposed to physiologic, tightly con-
trolled, chemically defined media conditions that are re-
producible from experiment to experiment. The cultured
cells are not exposed to endotoxin or other potential con-
taminants usually found in standard media sources, in-
cluding fetal calf serum. In addition, the development
of nonadherent labware provides for the suspension of
cultured mononuclear leukocytes in a milieu very similar
to that found in the body (in marked distinction to
the standard polystyrene labware often used in earlier
studies).%

A further exciting development in immunology has
been the continuing elucidation of the role of BRM in
immunoregulation (fig. 3). Sophisticated assays for mea-
suring these BRM have allowed more accurate assessment
of the microenvironment of immune system leukocyte
subsets. Progress in this area is critical to the evaluation
of the impact of anesthetic agents at the tissue level.

In the past, PMN were widely studied in both the clin-
ical and in vitro setting. The extensive study of PMN was
not due solely to the importance of the cell to immune
system function, but rather to the relative ease of the
study of this cell type. Even a superficial examination of
the immunoregulatory process indicates that other cells,
such as mononuclear phagocytes, are at least equally (and
probably more) important to overall immune function.®!
Detailed research regarding these other leukocyte subsets
in their purified form was not possible until recently when
the above-cited cell separation and culture techniques
were perfected.

Cultured human monocytes can now be exposed to
inhalational agents under tightly controlled in vitro con-
ditions analogous to those occurring clinically. Such a sys-
tem was reported by Welch in 1981; granulocytes were
exposed to halothane in a chamber for periods up to 60
min.'%® However, most important leukocyte subsets can-
not be studied within such a short time frame. Monocytes,
for example, must be maintained in culture for at least
48 h in order to adequately monitor many of their most
significant immunologic functions.! When manipulating
immune system cells, each step of their care (including
isolation, purification, activation, exposure to anesthetic
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agents, and subsequent functional monitoring) must be
performed under conditions that are as physiologic as
possible. Only with the meticulous use of modern tech-
niques will experimental results be reproducible and use-
ful (after extrapolation) to the clinical setting. Our group
has described one such in vitro system using highly purified
leukocytes, calibrated Drager vaporizers, precision flow-
meters, monitoring of anesthetic agent concentrations
within the exposure chambers, constant temperature
control, and serum-free media.®®
In addition, there have been several prior reviews of
the impact of anesthetic agents on immune system func-
tion.'#57:81:105.106 These reviews often detail conflicting
results from various research groups. As a result of such
contradictory data, useful conclusions have been difficult
to obtain. In addition to documenting the results of these
prior studies, the authors of this review article evaluated
the study designs employed by the prior investigators. As
each study was reviewed, several study design elements
were critiqued:

1) Were in vitro immune system components isolated
from well-characterized normal volunteers? Were
well-standardized patient groups selected for the in
vivo studies?

Did leukocyte separation and manipulation tech-

niques leave cells in their native state? Were purified

leukocyte subsets used? Were negative selection
techniques employed?

3) Were clinical-grade, serum-free suspension in vitro
culture techniques used?

4) Were clinically relevant anesthetic delivery systems
used during in vitro studies?

5) Did the in vivo study design allow for a distinction
between effects of anesthetic agents alone versus ef-
fects of other intraoperative events (such as surgical
trauma, blood transfusions, etc.)?

6) Did the in vivo study design allow for a distinction
between alteration of leukocyte cellular function
from effects of leukocyte immunoregulatory signals
versus changes related to leukocyte trafficking
(preferential compartmentalization in one or more
immune system reservoirs)?

2

~

Many study designs were not optimal; often the primary
impediment to reproducible results was the lack of so-
phisticated immune system research technology. An
overall assessment of those in vivo and in vitro studies per-
formed to date follows and is summarized (fig. 4).

ANTIGEN PROCESSING STUDIES

Study in this area of immune system function has been
almost totally neglected, primarily because of the technical
difficulties arising when separating and culturing mono-
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FIG. 4. Effects of anesthetic agents (primarily halothane) on in vitro
function of immune components. The in vivo summary reflects the
combined effects of both anesthetic agents and surgery on postoperative
immune function,

cytes, but also because of the tedious nature of antigen-
processing immunological research.

In Vitro. There have been no reported in vitro experi-
ments testing the effect of anesthetic agents on the pro-
cessing of “‘nonself” antigens by the monocyte.

In Vivo. There are no in vivo data that specifically test
the effects of anesthetic agents on antigen processing.
There has been evidence of impairment of the delayed
cutaneous hypersensitivity response after major surgical
procedures,**# which could be the consequence of either
a defect in antigen processing by the mononuclear phago-
cyte or an abnormality involving T-lymphocyte function
itself.,

SPECIFIC CELL-MEDIATED STUDIES:
THE T-LYMPHOCYTE

In Vitro. There are comparatively few in vitro data fo-
cusing specifically on T-lymphocyte function. The effect
of anesthetics on mitogen-stimulated cell proliferation is
unclear. While several studies show a decrease in T-lym-
phocyte response to mitogens,>"%% others show no
change from control values.®**®° The only reported study
of BRM release by T-cells® showed a decrease in v in-
terferon following halothane exposure. Another study
showed decreased migration of anesthetic agent-exposed
lymphocytes toward chemical attractants.”® To date, there
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have been no cytotoxicity studies performed using puri-
fied T-lymphocytes in vitro.

In Vive. In contrast to the paucity of in vitro research,
the in vivo T-lymphocyte arena has been extensively
investigated. It has been repeatedly shown that
the combination of anesthetics and surgical trauma
decrease absolute numbers of circulating T-lym-
phocytes?0374247.63,54.71,74.76, 8497101110 514 decrease
T-lymphocyte proliferation in response to mito-
gens, 17:24:30,36.38,42,48.46,53,65,70.78,76.79.8097.110. Gy otoxicity
was measured in only one study'®® and found to be im-
paired. One study of BRM release reported that v inter-
feron production was significantly depressed postopera-
tively when general anesthetic agents were used. No effect
was seen when epidural anesthesia was used.*® One study®
exposed volunteers to prolonged halothane or enflurane
without a surgical procedure being performed. No sig-
nificant effect was seen in the number of T-lymphocytes
found or in their function. In chronically exposed oper-
ating room personnel®*®®! no measurable impairment of
T-lymphocyte immune function could be detected. One
study found no immune impairment resulted if only minor
surgery was performed, but did occur in association with
the trauma of major surgery.*® It is unclear if a differential
between patient groups in time exposure to anesthetic
agents was a factor in the results of this study. Although
not yet conclusively proven, postoperative T-lymphocyte
immune impairment appears to be more correlated with
the degree of surgical trauma than to the anesthetics used
intraoperatively.

Several studies indicate that the postoperative T-lym-
phocyte impairment associated with major surgery is me-
diated by factors that are at least partially blocked by re-
gional anesthesia.®®387110%110 One group® related the
observed immunosuppressive effect to increased cortisol
levels. One significant T-lymphocyte-mediated immune
function that does not appear to be affected by regional
blockade is delayed cutaneous hypersensitivity to antigens.
Patients undergoing major surgical procedures show a
postoperative impairment of delayed cutaneous hyper-
sensitivity that is not blocked by the use of a regional
anesthetic tf:chnique,z"4 which may be the result of some
specific T-lymphocyte function as yet not tested or may
be due to an impairment of antigen processing.

SPECIFIC HUMORAL STUDIES: THE B-LYMPHOCYTE

In Vitro. In vitro data regarding B-lymphocyte activation
are not evident in the research literature. Using a recently
described in vitro exposure system,®® our group assessed
the proliferative capacity of human B-lymphocytes in re-
sponse to mitogen stimulation after halothane exposure
(4% halothane for 8 h). We found no significant differ-
ences from control cultures in proliferative ability.
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In Vivo. In vivo studies using a variety of anesthetic
agents indicate that the combination of anesthesia and
surgery decreases the number of B-lymphocytes and
decreases their proliferative response to mitogens, 234246
4758,54,70.8410L110 The effect on serum Ig levels is less cer-
tain; it is variously reported to be decreased,'*2*51:67.72
increased,*’ or not affected.?*#%84 Most of these studies
made no attempt to distinguish between the effects of
anesthetic agents themselves versus those of surgical
trauma and endocrine responses. Similarly, no studies
have been performed to determine whether changes
(when noted) in Ig levels were due to alterations of protein
synthesis or Ig trafficking events. One study? found that
the observed Ig level depression was not present until
surgical trauma had been initiated; similarly, another
study*® found no adverse effects after minor surgery, but
did observe Ig level depression following major surgical
cases. Other studies show a lack of demonstrable immune
system impairment following chronic anesthetic agent ex-
posure of operating room personnel.®®! These in vivo
studies imply that specific humoral immunity impairment
is more related to the degree of surgical trauma than to
the specific anesthetic agent employed. It appears that
the surgical process itself or associated perioperative con-
ditions is the dominant factor responsible for most post-
operative specific humoral immunity impairment.

The mechanism of this immune impairment following
surgical trauma has not been defined. Two studies!?!!10
found Ig level impairment when surgery was carried out
with general anesthetic techniques, but not when regional
techniques (spinal, epidural) were used. This immune sys-
tem “sparing effect” of regional anesthetic techniques may
be related to an inhibition of the neuro-endocrine axis,
although there is some evidence that Ig levels are not
related to patient blood glucose or cortisol levels.”?

NONSPECIFIC HUMORAL STUDIES; COMPLEMENT

In Vitro. There are no available in vitro data on effects
of anesthetics on complement component synthesis or on
the activity of complement components following in vitro
exposure to anesthetic agents.

In Vivo. There is evidence that there is a 10-20% de-
crease of acute-phase plasma proteins in the immediate
postoperative period.”” The combination of anesthesia
and surgery is associated with a decrease in complement
levels, which may represent complement pathway acti-
vation, since a rise in Cs split products has been docu-
mented.?!

NONSPECIFIC CELL-MEDIATED STUDIES:
NK LYMPHOCYTE, MONOCYTE, AND PMN

NK Lymphocyte—In Vitro. Little research has been per-
formed regarding NK lymphocyte activity following in
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vitro anesthetic exposure; the data that do exist are con-
flicting. Two studies®*® showed no impairment of NK
lymphocyte function after anesthetic exposure, but a
third''? observed a significant decrease in the ability of
these cells to kill tumor targets.

NK Lymphocyte—In Vivo. The NK lymphocyte research
data following intraoperative anesthetic exposure are
consistent. There is a transient increase in NK activity
intraoperatively,”®!'® followed by a decrease in activity
for several days postoperatively.5%77:78.97-102,104,113 ¢
effect may be correlated with an increased number of
circulating NK lymphocytes intraoperatively,?® followed
by a decrease postoperatively.””!°" Although several hy-
potheses exist to explain this phenomenon, the most com-
pelling is that it is endocrine-related, possibly a direct ef-
fect of cortisol release.®” Whatever the precise mechanism,
it is becoming clear that regional anesthesia may block,
or at least blunt, postoperative NK immunodepres-
sion.78:99.101

Monocyte—In Vitro. Monocyte chemotaxis is impaired
in response to a variety of anesthetic agents.*®*® H,0,
production of purified monocytes (superoxide is necessary
for many monocyte-related killing functions) was de-
creased after halothane exposure in one study.®® Con-
comitant exposure of monocytes to v interferon was pro-
tective against this halothane-mediated immunosuppres-
sion. Thiopental has been shown to decrease tumor cell
cytolysis by mitogen-stimulated monocytes.?® Another
study examined the effect of anesthetic exposure on
monocyte production of « interferon;®® production of this
BRM was decreased.

Monocyle—In Vivo. Monocytes respond to anesthesia and
surgery by displaying decreased phagocytosis and de-
creased killing ability.>*3¢%9 Some studies?!"*®*9 indicate
that this adverse effect can be negated by regional anes-
thesia. The mechanism of the sparing effect of regional
anesthesia on this monocyte function may be due to
blockade of the neuro-endocrine axis.?®

PMN—In Vitro. PMN production of activated oxygen
radicals (substances necessary for killing function) is im-
paired following in vitro halothane exposure.®? Several
investigators have found a decrease in killing ability of
PMN exposed to anesthetic agents in wvitro;6%!08:109
phagocytosis,?"9565%111 and chemotaxis are also de-
creased.**?®% Other studies!®232:4464109 haye not con-
firmed changes in these PMN functional parameters. The
lack of agreement among these studies may be related to
the different specific anesthetic agents or laboratory tech-
niques used.

PMN—In Vivo. Examination of in vivo data reveals that
anesthesia and surgery consistently increase the number
of circulating PMN217:19.21.22.88,47,54.68.71.82,88.87 1\ 4 ouen
does so in normal volunteers who are anesthetized without
subsequent surgical procedure.'®*® Whether this increase
is or is not related to the increased PMN release from the
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bone marrow or blood vessel demargination (catechol-
amine mediated release of PMN from blood vessel en-
dothelium, to which they tend to adhere) has not been
documented. Two studies’*®? indicate that the granulo-
cytosis seen postoperatively may be decreased by regional
anesthetic techniques.

Phagocytosis has been reported by some researchers
to be decreased after anesthesia and surgery;2*!!49.51.00.85
other studies show no change in this PMN functional pa-
rameter, 222325468 This depression of phagocytosis was
not seen when regional anesthetic techniques were used
in one study,? but was found in another.!' Chemotaxis
studies following in vivo exposure are also inconclusive;
several studies showed decreased motility postopera-
tively,!>21:33.618587 and others showed no change.'***
Thus, while anesthesia and surgery definitely increase
circulating PMN cell numbers, it is unclear whether or
not the function of these cells is modulated to any signif-
icant degree.

Conclusions and Future Perspectives

The postsurgical infection rate observed in immuno-
logically normal individuals coupled with concern for the
potential worsening of the pre-existing immunocompro-
mised state of certain at-risk patient groups (such as pa-
tients suffering from AIDS) has promoted a sustained in-
terest in defining the interface between immunology and
anesthesia. Unfortunately, we still lack unified mechanistic
insights into both medical disciplines. In the realm of
anesthesia, work continues to delineate the intracellular
events that occur in cells in response to anesthetic expo-
sure. It is entirely possible that cell types from different
tissues are impacted differently by these agents, further
delaying the generation of a unified mechanistic theory
of anesthetic action.*? Similarly, in the realm of immu-
nology, we are only beginning to understand how the
human immune system identifies and eliminates an enor-
mous range of potential “non-self”” invaders. The iden-
tification of new mononuclear leukocyte subsets and the
identification of the immunoregulatory BRM signals that
control them have complicated this topic, as well as opened
up new opportunities for further research. This review
article has summarized data from major studies performed
to date that pertain to anesthetic agent effects on the hu-
man immune system. Inconsistencies in these data have
been highlighted. Potential causes for incongruity have
also been identified, including: 1) failure to segregate in
vivo effects of anesthetic agents themselves from other
intraoperative factors; 2) failure to ascribe observed in
vivo abnormalities to altered protein or cell trafficking
versus altered cell biology mechanisms; 3) failure to purify,
maintain, and study immune system components in a clin-
ically relevant fashion during the execution of in vitro
studies; 4) failure to consider immune system components
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beyond the circulating peripheral blood compartment;
and 5) failure to administer anesthetic agents during in
vitro experimentation under conditions that correlate with
clinical events. Several recent methodologic strategies in
each research arena that may allow investigators to obtain
more reproducible data in the future have been detailed.

In spite of the many inconsistencies found in the present
data bank, one conclusion of this review and several pre-
vious reviews'85761,105.108 j5 that the trauma of surgery is
a significant factor in the observed postoperative immu-
nodepression of immunologically normal individuals.
Studies have shown that the greater the surgical trauma,
the more profound the observed immune depression;' "¢
other studies have indicated that impairment of the stud-
ied immune component was not noted prior to the surgical
incision, but occurred sometime after surgical trauma be-
gan, 323667987 The exact mechanism by which surgical
stimulation impairs the immune response is not yet un-
derstood. The ability of regional anesthetic techniques to
block (or partially block) some aspects of observed post-
operative immune impairment may implicate the neuro-
endocrine axis. The contribution of anesthetic agents
themselves to observed postoperative immune depression
should not be underestimated. The multiple in vitro studies
showing reproducible effects of clinically relevant con-
centrations of anesthetic agents on the function of some
immune components cannot be ignored. Although these
effects may be more subtle than the effects of surgical
trauma, they may still prove to be of considerable clinical
significance.

The effect of anesthetic agents on many important as-
pects of immune function has not been adequately studied
due to technical difficulties in the laboratory and the rapid
emergence of a better understanding of human immu-
nology. BRM, for example, are critical elements of human
immune function; with few exceptions, the effects of an-
esthetic agents on BRM have not yet been studied. Seem-
ingly isolated alterations of immune function following
anesthetic exposure (such as decreased v interferon pro-
duction of halothane-exposed lymphocytes®®) may have
far-reaching effects in specific clinical settings.* For ex-
ample, as anesthesiologists treat ever-increasing numbers
of patients with AIDS and other immunodeficiency syn-
dromes, careful clinical research is warranted to monitor
these patients for exaggerated postoperative immuno-
suppression, as well as to search for effective treatment
interventions. Similarly, we are currently witnessing an
increase in cancer-related operations in our progressively
aging population. Recent evidence indicates that immu-
nosurveillance mechanisms are not only important in the
management of emerging malignancy de novo, but may
also be critical to the successful elimination of microscopic
residual tumor postoperatively.’® Clearly, even transient
impairment of tumor clearance mechanisms by anesthetic
agents under such circumstances may be detrimental.
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Several studies cited in this review indicate that different
anesthetic agents and techniques may be more sparing of
postoperative immunocompetence; a change in clinical
practice may be indicated if these effects are found to be
convincingly reproducible. Alternatively, pretreatment of
patients with immunocompetence enhancing BRM (such
as v interferon) may minimize postoperative morbidity.
Future research investigations should identify those at-
risk patient populations for anesthesia-related postoper-
ative immunosuppression and offer clinical strategies for
minimizing this risk. In addition, since many aspects of
immune system function (such as cancer immunosur-
veillance) require longer time frames (years) for adequate
scientific study, the anesthetic research community should
develop strategies for monitoring potentially long-term
dangers of anesthetic agent-mediated immunosuppres-
sion. The logical eventual direction for these research
studies will be to examine the impact of anesthetic agents
on immunoregulation, signal transduction mechanisms
and the gene expression basis for immune system impair-
ment. Research at the anesthesia-immunology interface
can expect to continue to benefit from the molecular/
technical research advances that are currently being ob-
served in both disciplines.
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