ANESTHESIOLOGY

The Journal of THE AMERICAN SOCIETY OF ANESTHESIOLOGISTS, INC

Volume 6 SEPTEMBER, 1945
 Number 5
 THE HAZARD OF ANOXIA DURING NITROUS OXIDE. ANESTHESIA *

A. L. Barach. M.D.. and E. A. Rovemstine. M.d.
New York, N. Y.

In the following discussion, it is proposed (1) to review the extent to which asphyxia has been used and advocated as an adjunct to nitrou oxide anesthesia, (2) to establish that death and psychotic disease hav resulted from anoxic nitrous oxide anesthesia, and (3) to criticize the deliberate use of anoxia as unphysiological, dangerous to life and mentaif health, without justification in anesthetic practices and, finally, to reo monstrate against its continued recognition in clinical practice or stug dent instruction.

Historical
When Joseph Priestley, more than 170 years ago, heated iron filing that had been treated with nitrous air, he obtained nitrous oxide, a ga $\stackrel{\rightharpoonup}{s}$ destined to play a unique role in medicine. Humphry Davy used the gas to inaugurate his brilliant investigations in pharmacology. H_{\square}° pointed out that "the gas (nitrous oxide) may probably be used with advantage during surgical operation" (1). The provincialism of the medical profession of that time (1800) allowed more than forty yeart to pass before nitrous oxide again played a dominant role in medicas history when Horace Wells introduced it as an anesthetic agent for exodontia. For more than a century thereafter, nitrous oxide has maire

[^0]tained an important place in clinical anesthesia and today is admini tered probably to more individuals each year than any other inhalatiof agent. Throughout its long story are many incidents that highlight iks present prominence. Although Wells was not successful with it, Coltöㅡ, the itinerant chemist who introduced it to him, was responsible for man국 thousands of administrations without a death in his "painless denteg parlors" (2). Through the American dentist, Evans, who maintaineg a large practice in Paris, Colton brought nitrous oxide to Europe. soon became the favorite dental anesthetic agent and was given to mank thousands of patients.

At the beginning of the next century, it was hailed by Hewitt, the recognized European leader in this field, as "the safest anesthetic age known' (3). This record was established without the advantage off refined apparatus and often without the use of oxygen. Oxygen mis tures were first recommended by the Chicago surgeon Andrews in 1860 (4). His advice, long since forgotten, was founded on experimenes with rats and clinical obseryations on his own patients as well as tho of friends in the dental profession. The mixtures most successfulp used were one-fifth oxygen and four-fitths nitrous oxide, Before A ${ }^{\circ}$ drews, it was generally believed that the body could in some way splat off and utilize the oxygen of the nitrous oxide molecule. Paul Ber差 who also added oxygen to nitrous oxide, gave mixtures "containing five sixths nitrous oxide and one-sixth oxygen under pressure of one-fiftob above atmospheric" to patients in a closed chamber (5). Bert's woris served to confirm the argument in favor of the positive anesthetic prop erty of the gas, but the method was costly and cumbersome and gained no place in practical anesthesia.

In 1886, Hewitt, experimenting with definite proportions of nitrou oxide and oxygen, found that anesthesia could be maintained with nit trous oxide when given with a concentration of oxygen equal to that if atmospheric air (3). The time required for induction was increase ${ }_{6}$ but the period of available anesthesia was proportionately prolonge \mathscr{C}^{6} Finally, he recommended a 7 per cent oxygen mixture which gave © rapid induction and an available anesthesia for fifty seconds. It is ure likely that Hewitt made this recommendation of a 7 per cent oxygeig mixture for a dental anesthesia of less than one minute with the remote憵 idea that it would be adopted for operations lasting more than an houg

From the time of its first use, procedures for the convenient adminis tration of nitrous oxide have developed progressively. Preparation of the gas compressed in metal cylinders, constraction of ingenious appas ratus for its administration, the introduction of rebreathing and the carbon dioxide absorption technic, together with many safety acces. sory appliances have been a part of the nitrous oxide story.

The Advocacy and Teaching of Anoxia in Nitrous Oxide Anesthesia

A great impetus to nitrous oxide－oxygen anesthesia in this countrig was the work of Teter，who developed a very popular gas－oxygen appar ratus．Working with Crile in Cleveland，and enthusiastically endorseas by him，Teter was soon able to influence the trend of nitrous oxide oxygen anesthesia and to be responsible for the sale of a thousand gas machines by 1915，although there were fewer than one hundred profes． sional anesthetists in this country at that time．Every machine carried instructions which recommended a 5 to 10 per cent oxygen mixture，di产 regarded cyanosis，and endorsed a state of anoxemia as essential to gas anesthesia（6）．

In 1911，McKesson introduced the principle of fractional rebreathing into gas anesthesia．He developed and manufactured apparatus whic provided conveniences not previously available with earlier machin for gas administration．More significantly，he proposed，practiced，ang taught new but potentially hazardons technic for using nitrous oxide major as well as minor surgery．McKesson＇s most radical departure from the recommendations of Hewitt，Andrews and others were firstle， induction of anesthesia with undiluted nitrous oxide，and secondly，the saturation technic．

In inducing anesthesia with 100 per cent nitrous oxide，McKesso and his followers admit that asphyxia is produced but insist it is of little consequence，since the appearance of signs of severe oxygen wat would indicate the need for oxygen，and then a low concentration of oxygen（ 5 to 10 per cent）was to be added．Thereafter，the patient $/{ }_{B}$ given all the oxygen that can be administered withont permitting ane ${ }_{3}^{*}$ thesia to become ineffective for completion of the surgical procedur In practically all instances，except for the aged，those with reduced ref sistance from disease，and those given generous amounts of sedative drugs before induction，anesthesia is maintained with considerably les ${ }_{3}$ than 20 per cent oxygen in the respired mistures．

When saturation is practiced， 100 per cent nitrous oxide is continueg to the point of profound asphyxia and finally，respiratory arrest．典 this point or immediately before，if the pulse becomes irregular or verg slow，oxygen is given under pressure sufficient to inflate the lungs． This prevents the immediate resumption of breathing，and before spoe taneous respirations recur，muscles become relaxed．After the singfe inflation of the lungs with oxygen，an anesthetic mixture is providef which，experience suggests，may be needed，depending upon the oper® tion and the patient．When this misture is inadequate to maintain re－ laxation，the asphyxial procedure is repeated as a secondary saturatio

Many anesthetists，and others who administer anesthesia withoet physiological training，have accepted McKesson＇s teaching．The sat⿸广 ration and secondary saturation technics are not practiced extensivel but the rapid induction with 100 per cent nitrous oside is popular．The
fear of serious consequences from asphyxia during nitrous oxide ance thesia has been minimized, since temporary bouts of severe asphyx $\overline{\mathrm{P}}$ or the presence of moderate or severe anoxia has not been general ${ }^{\text {E }}$ understood as representing an extremely grave hazard.

Clinical Results from the Use of Anoxia during Nitrous Oxidc Ane? thesia

The morbidity and mortality following the use of nitrous oxide for surgical anesthesia have increased despite the refinements of adminin震 tration and the more modern technics; in fact, such morbidity and mo ${ }^{\circ}$ tality probably are of higher incidence today than at any time durine the century of its use. The "safest of all anesthetic agents" in 1900 has become one of the most, if not the most, dangerons today. A $A_{\text {P }}$ though anesthetic mortality statistics are regularly reported for the various agents in use, anesthetists will admit readily that the deaths fof lowing anesthesia are most often due to technical errors during the ad ministration or to improper use of the drug in question. This is ugg reservedly true when nitrous oxide is employed, since the gas itself haf not been found to produce a toxic reaction for any tissue. In fact, the singular property of nitrous oxide, together with its commanding afo peal because it is a simple, inorganic chemical with a low boiling point that does not explode or ignite, has been a strong indorsement for iteop continued use. Furthermore, convenience of administration and lact of discomfort for the patient are strong factors in favoring its frequen ${ }^{6}$ selection for clinical anesthesia. No drug, except those given by veil, produces its effects more rapidly or pleasantly, or leaves the body more quickly than nitrous oxide.

The single serious imperfection of nitrous oxide is its lack of poo tency. When given with a concentration of oxygen found in air, nitrout oxide will not produce a degree of narcosis in many individuals tha ${ }^{9}$ could be identified as surgical anesthesia. Some degree of musculad flaccidity is regularly regarded as essential to surgical anesthesia ab well as insensibility to pain stimuli. Furthermore, surgical anesthesiob is always predicated on the basis that freedom from pain and muscleg relaxation are secured withont oxygen want. It follows, then, that if nitrous oxide is to fulfill the reguirements for surgical anesthesia in $\underset{\substack{0}}{ }$ patient who has not received previous depressant drug medication, som\& degree of anoxia may be an accompaniment. This is suggested by ex ${ }_{\varnothing}^{\varnothing}$ tensive clinical observation and abuudant experimental data.

Early efforts to analyze the blood gases during nitrous oxide anes ${ }^{\circ}$ thesia were without benefit of the refined apparatus for blood analysis now available. However, from the first reports, it was obvious that anoxemia was always a factor. Kemp (7), Leake and Hertzman (8)N Green et al. (9) agree with Brown, Lucas and Henderson (10), who, fol $\%$ lowing experimental work on animals, insisted that "patients anes-
thetized with nitrous oxide will always suffer from a severe degree o anoxemia．＂McQuiston，Cullen and Cook recently reviewed the evt dence supporting the contention that a mixture of 20 per cent oxyge and 80 per cent nitrous oxide may be used without cansing serious all oxemia（12）．They also completed significant studies on haman being and concluded that the administration of nitrous oxide－oxygen mixtures under pressures of 10 to 15 mm ．mercury above atmospheric produceß no significant increase in the concentration of nitrous oxide or oxyge\％̆ of the blood．They emphasized the fact，after analyses of blood gase that＂any appreciable reduction in oxygen below 20 per cent may be come extremely dangerous to the patient．＂In all their experiments． when the percentage of oxygen in the inspired gases was below 13 ．里． per cent，the arterial oxygen tensions were in the range of extremg asphyxia， 30 mm ．of mercury．It is obvious，then，that the administras tion of nitrous oxide is often accompanied by anoxemia，and that the degree of anesthesia is more dependent upon the reduction of oxyge： than upon an increased concentration of nitrous oxide．

It may be argued that in the modern practice of anesthesia，it is uno common to anesthetize patients who have not received some depressani drug，usually one of the opiates or a basal anesthetic agent such ag． tribromethanol or a barbiturate．This is true certainly for hospitalize surgical patients．It is also true that in the hospital a vast array of drugs and equipment is available to permit changing agents or technic 8_{5}^{8} as the individual requirements demand．However，this is unusual int the office of physician or dentist，or in out－patient hospital clinics．I类 follows，also，that when patients are properly prepared with sedativo and hypnotic drugs，it is often not necessary to administer a mixture of nitrous oxide and oxygen which contains less than 20 per cent oxygeno There are numerous reports attesting to the truth of this statemento Cullen and his associates use mixtures that never contain more than 8 な per cent nitrous oxide（usually 60－70）during the operation for thoraco $\stackrel{\rightharpoonup}{\vec{*}}$ plasty（13）．Raginsky and Bourne found blood oxygen content with safe limits when not more than 80 per cent nitrous oxide was given fot satisfactory anesthesia in man（14）．

The mortality and morbidity following nitrous oxide anesthesia ing hospital practice is apparently not high when determined from reported statistics．This may be true but there is much misleading information accumulated，since it is frequently the practice to consider as anesthetie deaths only those that occur in the operating room or soon thereaftero Moreover，in hospital practice，if there is evidence of asphyxia during ${ }^{\circ}$ nitrous oxide anesthesia，the usual procedure is to add another agene which may then be held responsible for any untoward results．

The mortality and morbidity statistics for nitrous oxide－oxygen an esthesia in office and clinic practice are difficult to obtain，since reports． from these sources are infrequent and inadequate．If statistics are col $\stackrel{\sim}{\sim}$ lected from the files of daily newspapers，the representatives of insur－
ance companies and the personal reports from confreres，anesthetist must admit it is not negligible．The authors have knowledge of 11 sudF den deaths during anesthesia in New York City offices during the pas＊ five years．This is not a large number but one must not lose sight of the fact that all of these deaths were preventable；in no instance was the surgical procedure of such magnitude as to require hospitalization of done for a patient whose physical condition merited hospitalization．理 should be noted further that newspaper reports are written onlo when the subject has sufficient prominence to merit＂a story．＂Sinced deaths do occur not infrequently during and as a result of nitrous oxiden anesthesia，one must assume that technical crrors are often committe⿻日禸 or the present approved principles for administering nitrous oxide ar ${ }_{\underline{\text { s．}}}$ ． themselves at fault．That the former is often true is readily admitted since many individuals，not trained or with little experience in physio logical anesthesia，are using nitrous oxide daily．：The latter faul ${ }^{\circ}$ namely，the grave hazard of currently approved technics，is now being critically scrutinized，since recent investigations have revealed tha⿱丷⿱⿻⿴囗丨丷日小心． widespread degeneration of the brain may result from nitrous oxideg oxygen anesthesia．

Lesions Produced by Anoxia during Nitrous Oxide Anesthesia

One of the most significant of such investigations was the report bog Courville in 1936 （15），followed by a more elaborate monograph thre years later（16）．These extensive studies left little room for disagreef ing with his conclusion that serious as well as fatal results may follow nitrous oxide－oxygen anesthesia，even though it is administered withou gross error and by accepted technics．Courville classified the case studied into several groups．The first of these included patients wh $\stackrel{O}{\circ}$ died during anesthesia with nitrous oxide．Death in these instance 8 could be attributed to a pre－existing lethal lesion，to an inter－current lesion independent of the surgical one，to a combination of disease an Φ asphyxia，or，finally，as directly due to the effect of the anesthetic agend itself．In the last group，no pathologic lesion is found at autopsy to account for sudden death．Reviewing similar published case reports the cause of death may be ascribed to status thymicolymphaticus，idiog syncrasy or anoxemic depression of the respiratory center．The latter cause is more widely accepted．There are case reports，however，tha ${ }^{\circ}$ suggest a specific depressant action of nitrous oxide in some individuals At the present writing sufficient evidence has not accumulated to sup port this suggestion．

Delayed exitus after nitrous oxide－oxygen anesthesia constitutes $\stackrel{\circ}{\mathbb{F}}$ second group．These patients may survire for hours or months，an ${ }_{\Phi}$ from them valuable pathological studies have been made．The anoxi最 produced in these individuals during anesthesia＂initiates a procesE that progresses until a situation is reached that is incompatible with life．＂Cases corresponding to this classification are numerous，and
most anesthetists with wide experience are familiar with one or mose in their own or in the practices of their confreres. A typical case r port is epitomized from Courville's monograph. A male, aged 42, hap 18 teeth extracted during one half hour of nitrous oxide-oxygen anesthesia. He failed to regain consciousness and soon developed generalized convulsions. He remained in coma and exhibited typical decer炰 lrate rigidity with extensor convulsions until death sixty-four houjs after anesthesia, at which time there was a temperature of 105.2 F . anf pulmonary edema. No gross evidence of disease in any of the bodys organs was found at autopsy. Tissue from the grosisly normal brawi revealed the characteristic changes to account for the clinical manife윤 tations.

Instead of hours, the survival period may be greatly prolonge ${ }^{\text {क }}$ Typical among these are patients who have transient respiratory faik ure, followed by a period of several hours of convulsions and coma, ten ${ }^{\boldsymbol{p}}$ porary improvement of the mental state for a day or even weeks, and finally death. The typical degenerative changes in brain tissue are present. One such instance is that of a 13 year old school boy who had had no previous illness of any consequence. While playing vigorouslie he sustained a fractured femur. Nitrous oxide-oxygen anesthesia wag administered during closed reduction with the aid of the fluoroscop Anesthesia was uneventful from the standpoint of pulse rate and respis ration during twenty-five to thirty minutes of darkness. (The fluorof scope did not function properly.) When the light in the room pert mitted, marked cyanosis was noted. Oxygen was administered, and th\% color quickly became normal. Convulsions were not present during o R after anesthesia. The child failed to regain consciousness and died wit/ terminal hyperthermia after five days' existence completely decerebrateo

Another group in the classification of Courville with serious mors bidity due to the anesthetic agent includes cases with recovery but with residual mental symptoms indicating cortical nervous system damagefo These patients may present few clinical manifestations of anoxemis during anesthesia. Recovery from narcosis is usually delayed, and mikg to severe convulsions may be noted during the prolonged coma. Thes residual symptoms may be indicative of cortical or lenticular damage or both. The following cases are illustrative.

A girl, aged 19, subnitted to appendectomy during nitrous oxide $\frac{\stackrel{\rightharpoonup}{\circ}}{\square}$ oxygen anesthesia. She regained consciousness three days later and learned that she had had several convulsions. She was blind for three. months and was unable to make herself understood for six months ${ }_{\sim}^{\infty}$ Eight years later, her mental reactions were those of a 10 year old, but, without evidence of disordered mental activity. Characteristic athetoid ${ }^{\circ}$ movements were noted in the arms and legs; hyperactive deep reflexes, moderate atrophy. of museles of the hand and spastic extremities added to the clinical picture of serious damage to the lenticular nucleus (15). N A 30 year old patient was operated upon for ectopic pregnancy during
nitrous oxide-oxygen anesthesia. As the abdomen was being opene d , respirations ceased but were restored after ten or twelve minutes' a a it ficial respiration. When a neurological examination was done eight hours later, the patient was stupid and apathetic. The extremities Became spastic, and mental and emotional disturbances persisted. Eight months later, because of an advanced degree of dementia, she was committed to a hospital for the insane. Her condition was but slighty improved seven years later (15).

Another tragic case was reported by McClure: "A student at e University of Michigan was leading her class in the particular groip. She came to Detroit and had an impacted molar extracted. She went alone to the dentist. When she reached home that afternoon, her vis was blurred. She was later taken to an ophthalmologist, and glas號es were prescribed. In school her companions noticed no change in heir, but the teachers did. Her work began to fall off, and before may months had passed, this girl had failed completely in her school womk. She returned home and visited the same dentist to have an impacted molar on the other side removed. He said, 'Don't let anybody give ygu gas again, for you can't take it.' She had become blue; artificial respiration had been given" (17).

The final group from Courville includes those who have transitögy mental and emotional manifestations but apparently recover completedy. Visual and auditory disturbances, aphasia, convalsive states and delirium are among the complications from which complete recovery has been reported.

The consequences of nitrous oxide anesthesia which have been $\stackrel{\circ}{\mathrm{g}}$ viewed above are due to the accompanying anoxia. One group onfy, Lowenberg, Waggoner and Zbinden, support the contention that a sepcific action of nitrous oxide in some measure at least may be responsiege (18). Granting that anoxia is the pathogenic factor in cerebral damaje during nitrous oxide-oxygen anesthesia, the existence of predisposing factors, if any, assumes major importance. There are numerous $\stackrel{\text { fe- }}{f}$ ports of prolonged severe anoxia with complete recovery. Ward add Olson describe "the most severe case with recovery that has ever begn reported" (19). A member of the crew of a bomber flying at 25,000 fegt was found, after being without oxygen for fifty-five minutes, "uncenscious, apneic and markedly cyanotic with ice in mouth and nostril ${ }_{\text {s }}$ " The patient was unconscious for eight hours and semi-comatose f . eleven more. After this, there were no subjective symptoms, and pssichological changes lasted only six days. Recovery was considered to fe complete. Many other reports provide evidence that some individuals may survive, without serious residual manifestations, prolonged stăgnant anoxia (shock) and anemic anoxia (hemorrhage).

In the clinical literature, observers have frequently suggested timat some predisposing factor or factors may account for the apparent disparity in the tolerance of individuals to low oxygen concentrations. The rather loose term, idiosyncrasy, has been used to explain a minimal
tolerance to anosia．Other more or less vague explanations have asse ${ }^{\circ}$－ ciated untoward effects of anoxia，with status thymicus，chronic alcohol ism and other disease processes．It has been regularly recognized the⿻丷木⿱中⿰㇀丶冂力八 the contributory effect of certain disease states in the production of anoxemia may be significant．Pulmonary lesions that interfere wifg the transport of gases to aerate the blood，anemias that result in one type of anoxia，diminished cardiac reserve and hyperthermia are up animously acknowledged as predisposing factors in low tolerance foi anoxic anoxia．It may be generally stated that an individual who sow fers from chronic anoxia will quickly react severely to an imposed acuée anoxemic state．However，except in the presence of the specific cond tions enumerated above，no method is available for the selection of ind $\frac{p_{j}}{-1}$ viduals who may suffer very severely from brief bouts of anoxia frog those who will recover fully after prolonged oxygen want．Even the physiologically trained anesthetist who deals with anoxia constantly wid avoid such prognosis，although extensive，intelligent experience in proves his judgment and provides an alert defense against complice． tions in individuals who，before or during induction of anesthesie． arouse the suspicion that they have little resistance to anoxia．

In order to protect the patient－public against death or permane $\frac{\tilde{g}_{\mathrm{g}}}{}$ impairment in mental functioning，asphyxia of very short duration muşis be regarded as a grave hazard to the great majority of individual ${ }^{\circ}$ Experimental investigations point strongly to this assumption．Tl\＆ earlier studies on the histological changes in nerve cells were made 1 t ligating the blood supply for varying periods，with and without rem covery．Gildea and Cobl reviewed and added morphological studies of the effects of cerebral anoxia（anemic）（20）．Non－specific cortical lot sions were found，such as focal areas of necrosis（devastation areas $\overline{\text { § }}$ if several hours elapsed after an anemic period of a few minutes hag been suffered by cats．Weinberger and the Gibbons produced tempos rary occlusion of the pulmonary artery of the cat and found permanent severe，pathologic changes in the cerebral cortex after an anemic periotion of three minutes and ten seconds（21）．Thorner and Lewy immerse guinea pigs and cats in nitrogen for varying sublethal periods（ 22 身 They conclude that anoxia of no more than sixty seconds＂is followed by metabolic changes and by morphological changes in the cortical nerise cells＂＇even though the recovery period was only thirty minutes．If was longer（ten hours），＂the cortex was markedly damaged．＂The res sults from anoxic anoxia studied by Armstrong and Heim were similag （23）．
 keys，found that a single，sudden exposure to asphyxia with an atmosy phere containing 7 per cent oxygen for twenty－five minutes was＂capg ble of producing extensive laminar necrosis in the cortex of the mop key＂（24）．With repeated exposures of mild hypoxia（12 to 13 volum＊ per cent oxygen in the blood），histological changes occurred，first，in the cell bodies of the cortical gray matter and often in the cortex of the
frontal lobe when the temporal and occipital lobes were normal（ 249 ． Studies on human beings have been made on patients who have been ex－ posed to asphyxia from some cause and whose central nervous tissuegs have been available later for examination．Such studies by Courvil速 （16），Schreiber（25），McClure and associates（26），Hartman（27才， O＇Brien and Steegman（28），Stewart（29），Schnedorf，Lorhan and OErr （30）leave little doubt that the lesions in the brain in man after anoxem resemble closely those demonstrated in animals．There is essention agreement with Courville that such lesions most often include（a）sclerdo sis of scattered pyramidal nerve cells，（b）patchy neerosis，（c）degeneris． tion of various cortical layers，（d）sub－total destruction of limited poe－ tions of the cortex and（e）similar lesions in the lenticular nucleus．

It has long been known that the brain is the organ most sensitive anoxia．The recent findings of Morrison，indicating that the cortex of the frontal lobe may show pathological changes during exposure to mo\＆ crate degrees of oxygen－want when the parietal and temporal lobes are normal，are of special interest（24）．Alteration in the function of the frontal lohe cortex may not be detected by psychological tests．Earlief reports of the change in mental functioning produced by altitude anoxia mention characteristic insidious cerebral disturbance．Heber，in di要 cussing the symptoms of the average European at Ledak，Cashmir（1品 300 feet），says：＂Mental deterioration is not as serious，however，as the change in temperament and／or subjective functions．It is astonisle ing how the most decisive of men will slowly and insidiously lose the power of decision and become unwilling to bear responsibility＂（ 31 長 Barcroft also remarked that any prolonged mental effort in Cerro diめ Pasco，at an altitude of 14,200 feet，involved a degrec of effort at timew which necessitated a trip to the Coast to prevent a nervous breakdow $\stackrel{\rightharpoonup}{\text { D }}$ （32）．Barach concluded that impairment in emotional control was $\stackrel{\Phi}{8}^{\circ}$ more consistent response to anoxia at a simulated altitude of 15,000 feeq than the results of psychometric and physiological testing（33，34）．In a study of 16 subjects exposed to this altitude for one and three－quarte e° hours，overconfidence and euphoria with exaggerated self－esteem too place in the majority，whereas dulness，irritability and lethargy were observed in the remainder as consequences of exposure to this degree ob anoxia．It seems，therefore，quite possible that permanent damage is the frontal lobe cortex as well as in other areas of the brain may tak \vec{e} place with little obvious personality change，although subtle disturbance in emotional response may nevertheless have been produced．

Next to the brain the heart is the organ most sensitive to anoxia\％ The inhalation of 12 per cent oxygen as a test for coronary insufficienc．${ }_{6}^{6}$ must be carefully administered since pulmonary edema and shock hava been encountered as a consequence of this degree of anoxia（11）．Under conditions of anesthesia，patients with coronary sclerosis or unrecoge nized myocardial disease may develop acute coronary insufficiency as a result of anoxic nitrous oxide anesthesia without the warning signat of pectoral pain．

The Proposal of 80 Per cent Nitrous Oxide, 20 Per Cent Oxygen Mix tures in a Single Cylinder

After the introduction of helium as a therapeutic gas, the advisability of dispensing this therapeutic agent combined with a minimum per centage of oxygen was apparent (35). Mixtures of 20 to 25 per cen \vec{S} oxygen with the remainder helium were used in the clinical administra tion of helium and have been adopted in practice. The conspicuon? danger of administering a low concentration of oxygen by inadvertently increasing the flow of helium made helinm-oxygen mixtures appear tơ the authors as a clinical necessity. It is the purpose of this paper to lay ${ }_{2}^{2}$ a sound physiological corner-stone for the conviction that nitrous oxide $\frac{0}{0}$ oxygen anesthesia should not be administered with an oxygen percent를. age of less than 20 per cent. Even with this safeguard, the dangers of asphyxia during nitrous oxide-oxygen anesthesia are not abolished ${ }^{\circ}$ Respiratory osstruction remains a principal cause for asphyxia. It iow most certain, , owever, that transient bouts of obstruction, as from $\stackrel{0}{-}$ laryngospasm, wial j : tolerated without damage more often if the pa tient is breathing 20 per cent oxygen when they occur. It is, further-응 more, our conviction that this cannot be assured unless such mixtures are prepared and delivered from a single cylinder. It is proposed that such mixtures be made available.

An investigation by Mr. Parker Francis * led to the conclusion that a mixture of 80 per cent nitrous oxide and 20 per cent oxygen could beeo supplied in cylinders now in use, providing that the cylinder is filled to one-third its normal content. The cost of the gases and the transportation charges obviously would be increased. However, the ${ }^{-}$eylindero which holds 165 gallons of oxygen at 2,000 pounds pressure or 420 gallons of nitrous oxide at about 800 pounds pressure could be filled with $\stackrel{\rightharpoonup}{8}$ 150 gallons of the mixture at $700{ }^{\circ}$ pounds pressure. If this amount was not exceeded, the mixture would come out uniformly from start to finish h with a concentration of 20 per cent oxygen and 80 per cent nitrous oxide. $\dot{\stackrel{\rightharpoonup}{*}}$

Unfortanately, there is at the moment no device other than that of ${ }_{\circ}^{\circ}$ a mixture of nitrous oxide and oxygen which will ensure the provision 8 of 20 per cent oxygen. Even among the better anesthetic applianceso on the market today, the accuracy of flow meters may vary as much as 8 5 per cent, and anesthetists are constantly exposed to the temptation to decrease oxygen to aid the induction or to produce more profoundo anesthesia.

First of all, it is important to recognize that inducing anesthesia witho pure nitrous oxide or using a concentration of oxygen lower than 20.0 per cent to produce profound anesthesia has been the cause of seriouso central nervous system damage as well as death itself. Since severeN anoxia has now been established as the primary factor in the patho-s genesis of psychoses, degenerative changes in the central nervous system and death itself, the only tenable conclusion must be an unqualified avoidance of asphyxia as an adjunct to nitrous oxide-oxygen anesthesia. ${ }^{\wedge}$

[^1]After an extensive consideration of the factors that have been dig－ cussed，the authors can find no possible justification for a continuanee of such an unphysiological practice as is carried on by anoxic nitrobis oxide－oxygen anesthesia．It is evident that a considerable proportio ${ }_{\mathrm{m}}^{\mathrm{n}}$ of the population will not become anesthetized sufficiently to permgit painless surgery or exodontia with the proposed mixture of 80 per centt nitrous oxide and 20 per cent oxygen when preanesthetic sedation h恚 not been provided．Modern anesthesia must decree emphatically theit the patient is not to be fitted to the anesthetic technic，but new techniegs must be devised to meet the circumstances．If anesthesia with a 20 por cent oxygen 80 per cent nitrous oxide mixture is not sufficiently pré－ found，other anesthetic gases must be employed or pre－anesthetic sedig－ tion used which does not force the individual to breathe a mixture coñㅇ taining a deficient concentration of oxygen．

Summary

The current use of anoxia as an adjunct to nitrous oxide－oxyg需 anesthesia has been the cause of（A）death from asphyxia，（B）psp． choses from permanent brain damage，（C）personality defects whieh may or may not be recognized，（D）impairment in circulatory and re－ spiratory function which may contribute to pulmonary atelectasis，pu monary edema，or cardiac failure．

Nitrous oxide－oxygen anesthesia is an alarming hazard at the pref ent time，since oxygen－want is advocated deliberately to aid anesthesi罂． The available evidence indicates that nitrous oxide should never 1 administered with an oxygen concentration below 20 per cent．If su量 ficiently profound anesthesia is not then obtained，other technics shou be used rather than resort to asphyxia or even so－called moderate anoxia．

Cylinders containing 80 per cent nitrous oxide and 20 per cent ox＇t gen will provide an unvarying concentration of these gases；with a cylin－ der pressure of 700 pounds．The increased cost of such mixtures shou 學 not be made the basis of permitting a practice that is dangerous as we as unphysiological，e．g．，the use of sub－normal oxygen concentrations 要 anesthesia．＊

Finally，the medical profession should be widely informed that se called＂gas oxygen＂anesthesia is in many instances a procedure that deliberately exposes the patient to severe anoxia，the results of whio may be psychotic invalidism，personality defects，or death from circa－ latory or respiratory failure．

REFERENCES

1．Dary，Humphry：Rescarches，Chemical and Philosophical，chiety concerning Nitrous Oxi茄 or Dephlogisticated Nitrous Air and its Respiration，Bristol，Bigga and Cottle， 180 最．

[^2]2．Waters，Ralph M．：Nitrous Oxide Centennial，Anesthesiology 5：551－565（Nov．） 1944.
3．Hewitt，F．W．：Anestheties and Their Administration，London，Oxford Press， 1922.
4．Andrews，E．：The Oxygen Mixture－A new Anesthetic Combination，Chicago Medical aminer 9： 456 （Nor．） 1868.
5．Bert，Paul：Compt．Rend．Acad．d．Sc．2：87，728， 1878.
6．Miller，Albert H．：Teehnical Derelopment of Gas Ancathesia，Anesthesiology 2：398－009 （July） 1941.
7．Kemp，G．T．：Nitrous Oride Anesthesia，Brit．M．J．2：1480， 1896.
8．Leake，C．D．，and Hertman，A．B．：Blood Reaction in Ethylene nnd Nitrous Oxide An隹s． thesia，J．A．M．A． 82 ： 1162 （April 12） 1924.
9．Greene，Chas．W，et al：The Distribution of Nitrous Oxide and Oxygen in the Blood ofot Dogs during Gas Anesthesia，Arch．Int．Med．35：371－388（Mar．） 1925.
10．Brown，W．E．；Lueas，G．H．W．，and Henderson，V．E．：The Anesthetic Value of Nitrous Oxide under Pressure，J．Pharmacol．\＆Exper．Therap．31：269－289， 1927.
11．Levy，R．L．；Barach，A．L．，and Bruenn：Effects of Induced Oxygen Want in Patients whith Cardiae Pain，Am．Heart J．15：187， 1938.
19．MeQuiston，W．Otis；Cullen，Stuart C．，and Cook，Erelyn V．：Arterial Oxygen Tensionn with Nitrous Oride Anesthesia，Anesthesiology 4：145－149（Mar．） 1943.
13．Cullen，Stuart C．；McQuiston，W．Otis，and Peterson，Vernon W．：Nitrous Oxide Arps－ thesia for Thoracoplasty，Anesthesiology 2：310－316（May） 1941.
14．Raginsky，B．B．，and Bourne，Wesley：The Orygen Content of Blood during Nitrous Oxighe－ Orygen Anesthesia in Man，Anesth．\＆Analg．13：152－155（July－Aug．） 1934.
15．Courville，C．B．：Asphyxia as a Consequence of Nitrous Oxide Anesthesia，Medicine \mathcal{T} ： 129－245， 1936.
16．Courville，Cyril B．：Untoward Effects of $\mathrm{N}_{2} \mathrm{O}$ Anesthesia，Monntain View，Cal．，Paceife Press．Publ．Assn．， 1939.
17．MrClure R．A．：Discussing Anoxia－The Anesthetist Point of View－by Waters，R． J．A．M．A．115：1687－90（Nov．16） 1940.
18．Lowenberg，Konstantin；Waggoner，R．W．，and Zbinden，Theodore：Deatruction of the Cerebral Cortex following Nitrous Oxide－Oxygen Anestheaia，Ann．Surg．104：An （Nov．） 1936.
19．Ward，R．L．，and Olson，O．C．：Severe Anoxia with Recovery，J．Aviat．Med．（Dec） 19 豹．
20．Gildea，E．F．，and Cobb，S．：The Effects of Anemia on the．Cercbral Cortex of the Cot， Arch．Neurol．\＆Psychiat．2s：876－903， 1930.
21．Weinberger，L．M．；Gibbon，M．H．，and Gibbon，J．H．：Temporary Arrest of the Circu感－ tion of the Central Nervous System，Arch．Neurol．\＆Psychiat．43：615， 1940.
ㅇ．Thorner，Melvin W．，and Lewy，F．H．：Effects of Repeated Anoxia on the Brain，J．A． M．A．115：1595－1600（Nov．9） 1940.
－23．Armstrong H．G．，and Heim，J．W．：Effects of Repeated Daily Exposure to Anoxia， Aviat．Med．9；92， 1938.
94．Morrison，L．Raymond：Unpublished communication．
25．Schreiber，Frederick：Appea of the Newborn and Associated Cerebral Injury，J．A．M．© d． 3：1263， 1938.
26．McClure，R．L．；Hartman，F．W．；Schnedorf，F．G．，and Schelling，V．：Anoria－A Soufe of Possible Complications in Surgical Anesthesia，Aun．Surg．110：835， 1939.
27．Hartman，F．W．：Some Etiological Factors and Lesions in Cerebral Anoxia，Am．J．Cinh． Path．8：629， 1938.
28．O＇Brien，J．D．，and Steegman，A．T．：Severe Degeneration of the Brain following Nitrofgn
Oxide Anesthesia，Ann．Surg．107：486－491， 1938 ． Oxide Anesthesin，Ann．Surg．107：486－491， 1938.
29．Stewart，J．D．：Cerebral Asphyxis During Nitrous－Oxide and Oxygen Anesthesin，Niev England J．Med．218：754， 1938.
30．Schnedorf，J．G．；Lorhan，P．H．，and Orr，T．G．：Problem of Anoxia in Surgery ayd Ancathesia，Areb．Surg．43；169－185（Aug．） 1941.
31．Heber，A．R．：Some Effects of Altitude on the Human Body，Lancet 1：1148， 1921.
32．Barcroft，J．；Binger，C．A．L．；Bock，A．V．；Doggart，J．H．；Forbes，H．A．；Harrop，（C）： Meaking，J．C．，and Bedfield，A．C．：Observations upon the Effect of High Altitude pn the Physiological Processes of the Human Body，Carried out in the Peruvian Andes， Chiefly at Cerro de Pasco，Phil．Tr．Roy．Soc．London，ver．B，211：351， 1923.
33．Barach，A．L．；Brookes，R．；Eekman，M．；Ginsburg，E．，and Johnson，A．E．：Impairment of Emotional Control as a Test of Altitude Anoxia，J．Am．Ariat．Med．， 1945.
34．Barach，Alvan L．：Principles and Practices of Inhalational Therapy，Philadelphin，．J．©． Lippineott Co．，1944，cf．Chapters 2 and 19.
35．Barach，Alvan L．：The Therapeutic The of Helium，J．A．M．A．107：1273， 1936.

[^0]: * From the Department of Medicine, Columbia University College of Physicinns and Ba ${ }_{5}^{\circ}$ geons, The Presbyterian Hospital and The Department of Anesthesia, New York University College of Medicine.
 \dagger The term anoxia as used in this manuscript is interpreted as it is generally used now Waters (17) has pointed out properly that by derivation anoxia means without oxygen an플 has suggested "hypoxia"' a better word for oxygen want or oxygen deficit.

[^1]: - Results of observations made by the Paritan Compressed Gas Corporation.

[^2]: －The use of 80 per cent helium－ 20 per cent oxygen mixed in tanks has been made mand ${ }_{3}$ tory in clinical medicine despite the high charges for mixing these gases which，when added to freight expense，results in cylinders that sell for $\$ 17.00$ to $\$ 25.00$ for approximately 200 cubic feet．Avoidance of asphyxia is as important in anesthesia as it is in clinical medicine．

