ANALYSIS OF VENTILATORY DEPRESSION BY ENFLURANE Title W.M. Wahba, F.R.C.P.(C). Author Department of Anaesthesia, Queen Elizabeth Hospital of Montreal, and McGill Affiliation: University, Montreal, Québec H4A 3L6. Introduction. The present study was designed to more clearly define the mechanism of ventilatory depression during enflurane anesthesia by measuring tracheal pressure generated during airway occlusion (P^{O}) at FRC (i.e. the mechanical transform of neuro-muscular ventilatory drive), the duration of inspiration, and minute ventilation. Methods. Ten perfectly healthy, consenting adults (FEV₁₀>85% predicted) scheduled for peripheral operations were included in the study approved by the hospital Ethics Committee. Anesthetic technique: phenothiazine premedication, thiopentone induction, intubation, then enflurane in No0: 0, in a non-rebreathing system. After stabilization for twenty minutes at as many vaporizer settings as possible, we measured: VE, f, PaCO, PO and T; and derived: mean inspiratory flow rate (VT/Ti), impedance (PO 0.5"/VT/Ti) and elastance (PO max./VT). Results. In all subjects ventilation was significantly less at the higher inspired concentrations without change in frequency (Table I). The features of PO tracings were: a progressive reduction in amplitude and slope, and a clear cut reduction in the timetension index. Figure I is a representative tracing (with the expected value at 0.1 sec. in awake subjects rebreathing CO2 marked by "x"). Mean inspiratory flow rates were in-variably less at deeper levels due to the combined effects of reduced VT and shortened T_1 . Impedance to flow was unchanged due to the proportionate changes in P^O and VT/T_1 . But, pulmonary elastance (stiffness) increased at deeper levels (Figure 2). Discussion. Hypoventilation is due to a reduction in the mechanical transform of neuromuscular output coupled with a shorter inspiratory time (i.e. reduced flow rate). Reduced Po is due to central depression and the dose-related, curare-like effect of enflurane on muscles, which is not reversed by neostigmine². Differentiation, therefore, is impossible. But the progressive reduction in Po slope and the unchanged frequency suggest that the changes in Po are largely muscular. The shorter T_1 may be a homeostatic reflex. This relative pump failure, together with lung stiffness, will compound the consequences of anesthesia on pulmonary mechanics 3 and central depression. References. $\overline{\text{Milic-Emili}}$, J: Recent advances in the evaluation of respiratory drive. Int. Anes. Clin 15(2):39-58, 1977. 2. Lebowitz MH, Blitt CD, Walts LF. Depression of twitch response to stimulation of the ulnar nerve during Ethrane anesthesia in man. Anesthesiology 33:52-57, 1970. 3. Westbrook PR, Stubbs SE, Sessler AD, et al: Effects of anesthesia and muscle paralysis on respiratory mechanics in normal man. J. Appl. Physiol 34:81-86, 1973. | | TABLE I | | | | | |--|---|---|----------------------------------|----------------------------------|---| | | INSPIRED EMPLURANE CONCENTRATION (%) | | | | | | | 1.0 | 1.5 | 2 | 3 | | | Min.Ventilatn
L/m²/min.
Frequency
bpm | 3.3
.6?
20.5
2.0 | 3.57
.56
24.0
3.2 | 3.17
.36
22.9
1.6 | 2.13 •
.24
20.9
1.6 | | | PacO ₂ torr Inspir. Time T ₁ sec. VI/T ₁ 1 7sec. | 30.0
2.0
.90
.12
.36
.05 | 40.6
7.0
.00
.13
.37
.04 | 47.2
5.0
.79
.10
.36 | 51.2
3.8
.fi
.13
.24 | • | | Impedance
cm HoO/4/sec | 17.9
4.0 | 7.0 | 24.0
5.0 | 27.2
4.6 | | Significantly different from value at 1% or 1½%. Downloaded from http://asa2.silverchair.com/anesthesiology/article-pdf/51/3/S383/624367/0000542-197909001-00382.pdf by guest on 20 March 2024