Special Article

Pathologic Effects of Chronic Halothane Inhalation:

An Overview

Louis W. Chang, Ph.D., and Jordan Katz, M.D.

Recently, all American Society of Anes-thesiolog-sponsored survey of the effects of the operating room enviromment on persomel suguested that chronic exposure to trace amomes of anesthetic in the ambient air might constitute a potential hazard. ${ }^{1}$ The report of the Ad Hoc Committee complemented other animal and human studies suguesting that prolonged exposure was related to increased incidences of cancer, hepatic disease. spontaneous abortion. and congenital aboormalities. ${ }^{-9}$ These reports supplement existing concerns of possille toxic effects of acule exposure to a variety of anestheties.

Perhaps the most extensive studies of possible toxicity concern halothane and the liver. Hepatitis following exposure to halothame has been reported frequently. ${ }^{1+* 1}$ Possible etiologies have been reviewed by sarions investigators. ${ }^{1-z e}$ Although there are suggestions to the contrary:-1 halothane hergatitis has generally been accepted as a pathologic entite: In addition, recent studies have demonstrated that hepatic lesions similar to those found in man conld be induced in rats:-4: and guinea pigse after single or repeated exposures to halothane.

We have been studying the effects of chronic exposure to halothane in the rat. with particular emphasis on ultrastructural alterations of three orsans-the liver, kidney, and brain. Results indicate that the morphologic

[^0]changes that owe mimie toxie damges came by other ertogenic substances such as carbor tetrachloride.
This review collates our results with find ings reported by others and presents, we fee ${ }^{\text {P }}$ a strong catse for the foxic potential of halom
 individual experimental designs and findinge refer to the original articles.

Pathologic Effects on the Liver

Effects of Anesthetic Coxcentration

Because of the controversy concernine halothane and hepatic necrosis, a patholeg. pamel was formed as a part of the Natiomat Halothane Study (conducted by the Xationid Academy of Scionces-Natinnal Researcl Council) to investigate the pathology of "hato thame hepatitis.". It was found that the hematic necrosis had mo eomsistent paltern varving from minor focal lenions with eithe random or regular zomal distribution to tota $\stackrel{Q}{Q}$ parenchemal destruction. In some instance: the necrosis tended to occur in the vicinity of the centrilobular vein. C'Itrintructural studie? of hepatitis induced beacute exposure to hato thane have been performed in both man ant
 consist of swelling and necrosis of the live ${ }^{2}$ cells. especially in the central zones. witlo inflammatory infiltrates. The cells appearect dark and shrunken in some areas, swollenf and pale in others. Active parenchyma hepatitis with foci of hepatecellular necrosis. 0 alterations in cotoplanmic reticulum and bile camalionli, mitochondrial changes. and medin-figure formation have been fond.

Epfecis of Subanesthertc Concextratoows

In a recent stads, Stevens at al. compared the toxicities of hatothane inothmane and aliethel ether at wabamesthetic coneentrations in mice, rats, and minineat pios.te It was fomed that after 3.5 dats at exponme halothane mone daced a greater decreme.nt in weight exatia and athoberincidence of hepatic de semerative changes than the wher acents. In our hatwat tories. using electron micraseopy, we demonstrated cellolar changes isuch as degenteration of the mitoclandria. endoplasmic reticulam. and bile canalicali) (fies. 1 and 2) in the livers of rats exposed to suldinitat lesels of hatothatme. 10-500 ppon, for four to eight werek. ${ }^{10}$; la deneral, mone extensive lenoms were fomed in anmals exposed to higher eoncentrations of halothame. Additionally, preamant rats were exposed to halothane. I0 ppm. thronghout Lestation and degenerative changes (such as fatty champe, lenkocytic infiltration, acenmalat tion of lysosomes, and cellular necrosis) were obsered in the livers of the offspring (figs. 3 and 4) ${ }^{3}$

Despite increasing evidence that hatothane is hepatotoxic, the incidence of tinly recotnizable hepatic neerosis in haman sobjects followine halothame anesthesiat is very low." Howeser. Stevens of al. cantioned that perhatpe hepatic injury following halothane anesthe'siat in man is mot so rate as the incidence .f massive hepatitis would surgest. Ele vations of SCPT and BSP retention have been fomed following hatothane ame sthe sia, ${ }^{\text {wh }}$: sugenting that at mild hepatic ingury following exponare to hatothatne mat not be uncommon.

At least two explamations hatre heern sumgested for the hepatotovie effects of halothame. Since gramuloma formation and cosinophilia are sometimes associated with halothathe hepatitis. hypersensitivity maty underlie the pathone nic mechanism. ${ }^{\text {ate }}$ A sensitivity phemomenon of the antibody-antigen type could oceur if a haptene is fommed by conjugation of hepatic protein to the halothane molecole. or a metabolite ot it. Howerer. increasiner evidence has indicated that halothane, or its metabolite probably has a direct bepatotoxic effect on the liver. Dambage to liver cells following exposure to halothane in dogs. ${ }^{-1}$

has been reported. As is the case with the volatile anesthetie charomorm and other haloqeateded compononds such as carbon tutrat chloride there mate be a toxic metaholite that accommlates within biolosical tisomes. Cohen and Hood reported acemmulations of metalolites from varions volatile anesthetios in the monse. but the se metabolites conld not be identified becanse they were bomad to tissure constitnents from which they cond not be extriteted.en

Of interest is the fine that hatothane metalsolism is appatrently concentration-depromi- $\overline{\text { a }}$ ent. Mone metabolism and breakdown of $\frac{?}{?}$ hatuthane ocenred in the livers of amimals exposed to lower coneentrations of the asent. 8 If the metaholites of hatothane are reaponsible for hepatic damaqe chronic exposure to low levels of hatothame mitht then be more toxic than alente exposures.

Pathologic Effects on the Kidney

Methoxyfurame is now known to be mephrotoxic in clinical concentrations. and $^{-6}$ There is mo evidence that halothame hats at similar effect. Raventos.": in his classic papero in 1956, reported that some elements of renal damause primarily dilatation of the prosimad comsolnted tubules. did oceur when animals were subigected to repeated exposiares to hatothanc. In our laboratory we stadied the renal morphologic changes following ehronic exposure to sobanesthetice concentrations of 10 and 500 pum hatothane ${ }^{\text {by }}$ light and electron mictoseopy.: In adult nats lesions were demonstrated in the proximal comvoluted titbules. Deceneration of the mitochondria with formation of large membramous bodies was frequently found (fig. 5). Acemmalation and 8 fusion of lysosomes were also observed in the tubular epithelial cells (fig. (\mathfrak{b}). Similar changers in the lysosomes have heen reported to oceror ${ }_{-}^{*}$ in methosyturane nephropathy: choline-de-e ficient rats, ${ }^{\text {a }}$ manganese-deficient mice, ${ }^{+3}$ and \bar{D} the Chediak-Higashi syodrome ${ }^{\text {se }}$ It has heeno $\frac{\infty}{-}$ proposed that these abomomal lysonomal struc- ${ }^{3}$ tures are directly related to alternations inco lysosomal function.as
In addition to the mitochondrial and lysosomal changes, accumulation of spherical par-N ticles in the basement membrane (fig. 7). ex- -

Ftc. 1. Liver, adult rat. 500 pum halothane. \& weeks. Extensive dilatation of the bile canalic-
 tural changes have been observed in haman eases of halothame hepatitis, $\times 1+500$.

Fic. 2. Liver, adalt rat, 500 pm hatothane. $\frac{f}{}$ weeks. Vatomber degeneration of the endoplanic reticulum to form membrane-lomen vatomes (17) $\times 7.000$.

Fic. 3. Liver, neonatal rat. 10 ppm halothane throughont gestation. Extensive atcommataon of lipid droplets (litty change) within some hepotoreter, $\times \overline{5} .006$.

Fig. 4. Liver, neonatal rat. 10 pipm halothane throughout gestation. Large areas of necorosis were ob-

 bodies (MB) within the equthelial coll. The membramon bodies are believed to lee derived from de semerative mitochomdriat x 14.500 .

trusion of large evtoplanmic masses into the tubular humen, ataregation of smonth erodeplanmic reticulum, and swirling of the basal plasiat membane were observed in the pronimail tubules (fine. F). The clusters of spherical microparticles withan the basement membrame, as well as the extrusion of ceton) anmic material. have been fomed in both homan and animall kidnees affected be disease. $\overline{\text { on }}$ - It is beliewed that the se phenomenar represent discharge and extrusion of cellubar debris and material from injured cells. The finnation of smooth endophasmic reficulumagqeerates and the swirling of basal phasima membrate. however, may represent a compensatory response of the kidney. since the basal plasma membrane is involved in detoxification procesoes and tramsort of the end products into the tubular lumen. The swirline fomed in our amimats" hasal plasma membrames indicates a probable compensatory response of the membranes to halothane metabolites."

Chang and eo-workers aloo fond pathologic changes in neonatal kidness of rats subjected to intraterine exponare to low le vels of halothane (10 ppm).z General dequeratise changes such as mitechondrial swelling (fige 8), acemablation of lysosomes, and enhargement of the apical vactooles (fige 9) were observed. These desenerative changes were fomed to be contined to the proximal convoluted tulmber. Massive cellalar casts and cytoplasmie material were also found within the tubular lumen, indicating tubular injury (fig. IO).

The clear-cut nature of the morpholesic alterations fomed in our laberatory following chronic exposure sugesests that. at least in one species. halothame acts an a cellular texin to the kidnes. Whether such changes ocecor in man has not been determined.

Pathologic Effects on the Brain

Apparently no pathologic effect on the hrain of acute exposure to dinical concentrations of anesthetics has been reported. However. there are suggestions in the literature that chronic exposine to subanesthetic concentrat tions maty be deleterions to central nervons system function. Several reports from the European literature suggest that headaches and irritability in operating room persomel
and patients were camsed by divect action of sememat anesthetion on the liatin or cereloralo resels. b.at Functional disturbinces of the CXS. such as headaches aud depressiom, were reported to uecur in Russian anesthetists: following prolonse de expoure in porly ventilated operating rooms.: Mans investisators ${ }^{\text {D }}$ hate shown that actate expostare to subanesthetic concentrations produces temporary deficits in a variety of haman behavioral finctions, including memory, mood, and piselomotor actions: :- - :
One of the anthors showed at deteriora- $\frac{\infty}{\infty}$ tion in psycholorical finction of ane athe sian residents from the stant of their residence: to the end of one sear thitz, mpablished whervation). Ina part of that studs, the Reitan-3 Halstand test. a well-known me:ture of organic brain disorders, was marginally posi-p tive in severat of the residents. Becamse olo the many variables in that stude, concln-0. sions concermine canse and effect could not be drawn.
Our libunatory has repeated studies in : more controlled situation using the rat as a $\frac{\Phi}{o}$ model." We have shown that there was in-o deed a learning deficit in :mimals exposed in uiro to 10 pmon halethame throushontor Lestation. The defieit contime d many monthof past weaning and after the rats were out of the halothane enviromment. indicating that it was permament.
We believe that the work done in this laborat tory is the first to demonstrate morpholesice changes in the brain as a result of eaposure to low concentrations of hathothane. In adult rats ather four to eight woeks in an emeiron-a ment of 10 to $5(0)$ ppm hatothane. desenerate changes such as severe sacuolation of the Golgi complex (fig. 11) and collapse of the rongh endoplasmic reticulman (fian 12) combd bo whersed in some cortical neurons. "We hareo aloo fond deqenerative changes in the corticato nemons of neonatal rats exposed to halo $=\frac{0}{6}$ thane in utero at a level of 10 pmin the ambient air throughout sestation:-" Vacmola tion of the Golgi complex was asan a promion nent pathologic feature Weakenine and focab disuption of the newronal nuclear membrame $\overrightarrow{0}$ (fig. 1.3) was a frequent findiag. Such change 焉. in the nuctear membrane are precursors of cell de:ath. Accmanulation of cotophasmie debri若 and lyosomes couid still be observed withint

Fic. -. Kidney, adult rat. Sot ppm halothane. Accumulation of spherical micropartiches (SMP) in : pocket of the basement membrame (BMn). The SMP's are probably cellular delris being extruded intof the bavement membrame. $\times 10.500$.

Downloaded from http://asa2.silverchair.com/anesthesiology/artic

Downloaded from http://asa2.silverchair.com/anesthesiology/artic
 tion. Enlargement of the apical vactoles (AV) foming membrane-limited vacuolations. Mierovilbip (MV). $\times 1+500$.

 lumen. $\times 5.000$.

Fic. 11. Cortical newron, atdult rat. 500 pmo halothame. Denconeration and vacoolation of the Golsi complex (G). Nucleus (N). X29.000.

Fig. 12. Cerebral cortex. udult nat. 10 ppm halothane. Collapse of the rough endoplasmie reticulum (RER) was ohserved within some neurons. A dense matrical material was found between the stacks of \bar{N} collapsed reticular membranes, which became devoid of ribosomes. A siant lysosome (Ly) is also evi- O dent. $x+1.000$.

Fic. 13. Cerebral contex, meonatal rat. 10 mpm hatothane throughout gentation. Weakening and fical

FIC. 14. Corebral cortex, neonatal rat, 10 ppm halothame throughout gestation. Acemmulation of lipids, lyonomes. and cetlular deloris within a neuronal process. $\times 20$. 000 .
some nemonal processes and macrophates (fir. 14) in 100-day-old rats that had been sul)jected to prenatal exposure to halothame. indicating that the damage to the aerve cells in these amimals be halothane or its metabolite is :un enduring one:" These findings support the concept that hatothane nay have an wndesirable effect on the developing nervous system of the rat. Whether such accurs in other species. including man. has not been determined.

Concluding Remarks

We have reviewed both clancal and laboratory data suggesting that acute or chromic esposure to general anesthetics, primarily halothame. hats deleterions effects on at least three organs-the liver, kidnes. and bratn. The present review represents only a general overvien and an ap-to-date smmant of the morphologie and pathologic changes in the nat following exposure to halothane.

Since the pathologic effects of halothane have been revealed by dectrom microwemp only recently, the preciese "pathogenie mechanism" of halothane or its metabolites still needs to be investigated and cammot be determined at the present time. However, in view of the pathologic involvement of the eytomembrame systems (plasma nembrane mitochondrai. nuclear membrame. endoplasmic reticulum, and Colgi comples) atter exposure to halothane, it is not unreasonable to postulate that the prime toxic effect of halothane (or its metabolites) is on the biological mentbrames.

Most of the information in the present review conceming the pathologic effects of halothume is derived from studies in our baboratories. The experimental animals were exposed to 10 and 500 ppm hallothane for four to eight weeks in carefulty monitored chambers. while the control animals were housed in hatothane-free chambers. All the amimals were satrificed by intracardial perfusion with glutaraldehyde to ensure proper and immediate preservation of the tissite and cellular morphology. Tissue samples from the ecerebral cortex, remal corten, and liver were then carefully obtained with a sharp blade and further fixed in proper fixatives for light and electron microseopy. Levions we have found
in specimens of bain, liver and kidney represent very subtle pathologic chamges in the tissurs, becathe most of them are obsernats ble only with electron microscopy and mot with light microscops. However, we are con ob fident that onr findings are valid becemse the $\frac{\circ^{\circ}}{8}$ are readily ohservable andare comsistent morece than in 55 per cent of the tissue sumple ${ }^{3}$ examined. Cone of these ahomatities waz observed in the tissues of the contrel anix mals. Moreover. we has e reproduced our find ${ }_{\sim}^{D}$ ings consistently in subsequent experiments no some performed under a "donble-blind" ssis. tem to ensure total objectivity.

There is no doubt that many of the findinges. reviewed in the present paperare still subject to critical delate. Nevertheless, from all the data and information obtained to date, indica, tions that hatothane or its metabolites mas have a direct toxic effect on the biolosic: D_{N}. system are strong. However. sitice all these $\frac{0}{0}$ observations were obtained from laboratoro amimals subjected to experimental conditionsog direct extrapolation of these findings to malo is nor warrmited.

Since the pathologic effects of other anero thetic agent were not comparatively stadied it cannot be dsommed that the lesions ohtaine in rexponse to halothane exposure are "spe cific" for hadothance. The demonstration of relationship leeween structural and finctionat changes in animals followingexposure to halote thame is still lacking, and this relationshis needs to be investigated in future studies.

References

1. Oceupational Disease amony Operatina Roorg Persommel: A National Studs, Ad Hoe Como mittee of the Anerican Society of Ane the sie

2. Corbett TH. Ball GL: Chromic exposure to methoxyflurame: A possible ecenpationab hazard to anesthe siolowists. Anesthesiolog: 34:532-535. 1971
3. Smith BE. Gaml ML. Morat F: Imevitationk into the teratogenice cifects of amesthetio
 THESIOLOCY $26: 260-261$, 1965
4. Cohen EX. Bellville JW: Brown BW: Amen the:sia, pregnancy and misearriage: A study "b operating room murses and amesthetists $\frac{8}{0}$ ANESTHESIOLOGY 35:343-317, 197!
5. Vasman AI: Working conditions in surevery ant
 Eksp Khir Anesteziol :3:4-49. [964
6. Lefle: L. Nemes CS. Berta L: Psochinche BeLastumqen und Morliditit der Anaisthetisten.
 Prostre 1sino.

S. Corluelt ThI Comell RC. Eindr- Jl.. Millard RI: D:llecto of low concentration of nitrom onde-
 3011, 197:3
 ing theatre taff": (culitorial). Am (lin Rev 4: $2.4-249.192$
7. Brody C: . Sivert RB: Itatothate amestherianat porsible c:ume of masise herpatic meromis. AnESTHESTOLOCY 2.4:2!-37. 19f3 3
8. Bunker JP, Blume nfeld CM: Liver necromin alter halsthane anesthesia. Canse or coinei-

 weciated with hahethatue atuevheria. N Eugl J Med 26s:525-530. 1963
9. Temple RL. Cote RA. Gorem SW: Mawise

 150:
10. Turnetta Fl. T.umaki HT: Hatothatue jamodice atul hepratotosicity. JA.MA ISt:655-660. 1963
11. Johnsom CC: Hepratitis insociated with halothathe. Northwent Med 63:fil1-613. 19f:
 liver (-.mplications in a welleral hompital. A statistical study. Can Anacest So J lo: $531-535$, 1963
12. Allen IIL. Netadf DW: A varch fir hator thate liver complications. Aneoth Amate (Clever 43:159-162, 15964
1s. Henderam IC: Gorkon RA: The incidence of
 to halothame. Can Anaenth Soc J 11:453-459. 196.4
13. Green KC: Mumeavin IM: Halathome and the liver. retrospective studies. Roy Soc Med Proe 5-:311-314. 1964t
14. Qiailbash A: Italothane hepatitia. Cam Med Asooc J IOS:171-177. 192:3
15. Simpon BR. Strumin L. Walton B: Halothame hepatitis: Fact or fallacy. Bull NI Acad Med 49:70s-7ำ1, 197:3
16. Natishl: Hepatic effectsothaththat-review of the literature, The Xitional Dahothane Study. Edited by Bunker JP. Forrent WH. Monteller F. et al. National linstifutes of Healdh and National hutitute of Comeral Medical Sciemers. Bethend.h. Md. 1969, pp 11-1s
17. Carmey FMTY. Van Dike Ri: Halothame hepa-titio-a critical review. Anesth Analy (Cle:vel 5l:1:5-160, 195:
18. Row WT, Cardell R1R: Effect of hatothate on the ultrastructure of rat liver cells. Am J Anat 135:5-35. 1952
19. Chame LW: Dudlex AlV Jr. Kate J: Cltrastructhral evidence of hepatic injuriev the chronice
"uponare to law levely of lootothatie. AmI Pathol 5-4: 101.3-104a. 19-1

 Eи, Mol Pathol 2:35-42. 1975
2-. Sipes IG; Brown BR, Jr, et al: An an: moded of heportotosicity amotinted with halo-
 figs, 19.6
2h. Hushe. HC: Lams CN: Hepatic neermin pro-䒠 duced hy repeated adminivtration of hathe
 1656-471. 19 - -2

 215. 166
20. Smuckler EA, Bombeck CT. Ny has 1.xi: Struco tural and functimal chancer in the ionlated ${ }^{\circ}$. perfured liver anociated with hatothame and dilomform. Battimore. Williamsand Wil.

B1. Mambon A. Ohamoto T. Matano Y: Electron microcoppic insentigation of the hepatotenice dfict following the repeated lowe of sarione inhalation amenthetic usents. Prow Amevtio
 ри, 913-915
21. Cormen (: Cotatosic effect of hatorenated ate enthere Conicity of Aluenthetion. Edited D. Fink BR. Baltimore. WilliansandWilkins 19(6s.
22. Kilion FM. Schaffiner F. Popper II: Hepatiti ather cymone to hatathane. Am Intern Med $71: 46^{-}-17.1959$
 tions and clectron microneons of hatothane induced hepatie iniurs, tmmmandag of the Liner. Edited tw Smith. Mand Williams n. Philaledphia. F. A. Davis, 1950. pp IS6-190
23. Kereley AF, Trey C. Marcon Xe at anic terichathithame lepatitia: Ilindoluricamd ultrastructural levoun anociated with powtoperattise Rewor in twa pationts. Gatromenterome 54:965, 1970
24. Coumalinoshat 13. Yardley J. Buitmott J: Theo liver in midd hathothine he patitiv. AmI Patholl fin:45-50.19\%0
 pathohes of a cace of hatothane hepatiti Am] Dia Di, 16:90.5-911. 19:.3
25. Steven WC. Earer EI II. White A, et at: Comé parative toxicitios of hithothame. iveflurame: $\frac{0}{0}$ and diethyl ether at whame whetic concentrator
 +2:414-419, 1975
 Whratmetmal evidence dhephtic lewions ino mematal rats: followint chronice vpontre tua
 I 9.5
 tors: The National Hatuthane Ane the aiataro Pontoperative Hepatic Necrmis Study

Bethe:sda. Add. C'.S. Covermment Printing Office. 1969
41. Thompson DF Griefenstein FE: Enzome patterns reflecting hepatic response to ane stluwia and operation. South Med J 68:69-7.4, 1975
42. Akdikmen SA. Fanagan TV, Limdmesser CM: A comparative stady of sormm ghatanic pyrnvic trmaminase chames following anesthesia with halothame, methoxdharane and other inlatition arents. Ane oth Anale (Cleve) 45: 819-815. 19866
43. Belfate S, Ahlgreell 1, Avelson S: Halothame hepatitis in amesthetists. Lameet I. 1 -ffifi146". 1966
4. Mathiéa A. Dilbulua D, Mills J: Experimental immonity to at metabolite of halothame and flarmene: Cutaneons delayed liypersensitivity. AnESTHESGOLOM A0:385-300. 10t.
45. Rodriquez M. Paronetto F, Schather F ot al: Antimitochondrial antitordies in jandice following drug administration. JAME 20S: 1-4S150. 1969
46. Donal E. Glagov S. Orlamdo R, et al: Fatal hatothame lepatitis with tramsient gramulomas. N Engl J Med 2.53:3:35-259. 1970
4. Doniach D: Cell mediated immonite to hatothame hepersensitivity. \mathcal{C} Engl J Med 2S:3: 315-316. 1970
4S. Paroneto F, Popper H: Lumpheste stimalation induced by thatothane in patients with thepatitis following exposure to halsothane. N Engl J Med 235:27-280, 1970
49. Sherlack S: Progress report: Hathothane hepattitis, Gut 19:32-4-329, 1971
50. Sterthen CR. Marsolis G. Fabia LW: Laborattor: olvervation with Fluothane ANESTHESIOLOG: 19:70-76. 195s
51. Jomes WM. Margolis G. Stepher CR: Hepatertoxicity of inhalation ane sthetic druss. AxesThesiolocy 19:715-7.3. 1958
59. Scholler V: Electron microseopic and atoradiographic studies on the effects of hatothane and dhloroform in liver cells. Actas Amaesthesiol Scand suppl 32:1-62, 1965
53. Vin Dyke RA: Biotransformation of walatile anesthetics with special emphasis on the roleof metabolism in the toxicity of ane sthetics. Can Anesth Soe J 20:21-23. 1973.
54. Cohen EN. Hood X : Application of lowtemperature auteradiography to studies of the uptake and metabolism of wolatile anesthetics in the monse. I Chloroform. Anesthesioldgy 30:306-317, 1969
55. Colien EN. Hood X : Application of howtemperature antorndingrapley to studies of the uptake and metabolismof wolatile anesthe ties in the monse. II. Diethy ether. Anestines:olocy 31:61-65, 1969
56. Sawer DC. Equr El II. Baliman Sll, et al: Comcentration dependence of hepatic hatothane metabolism. ANESTHESiology 34:230-235, 1971
57. Taves DR. Fry RW. Freeman RB: Toxicity
following methovflurame aneothesia. Il. Flumide concontration in tuphrotusicity. JAMA 214:91-65. 1970
58. Kosek TC: Mtake R1, Comsins MF: The morpholosy and pathancomenis of nephrotovicity followine the thosyfurame (Penthrame) atherthesiat-an experime ntal model in rats. Labluvest 25:545-5.50, 19:2
5o. Matze RI. Comsine R]: Remal tomicity of atheo theties: With specilie refi-rence to the ne-phire-
 J $20: 64-50$. 197.3
60. M: Mge HI. Comsin, MJ. Kowel JC: lowere-
 biochemial amb pathologic correlatione ANESthestolect 36:571-55\%. 19:2
6I. Mazee R1. Trudell JIR, Comsios MJ: Methony Harme metatulism and renal dyshaction Clinical correlationinman. Anesthesmboges 35:놔- $273.19 \% 1$
6?. Raventos J: Action of hanthane: A new volatile anesthetic. Br J Pharmacol 11:39:-395s, I9560
63. Chans LW: Dudley All Jr, Lee YK. et al: Cltrastructural chamges in the kidney kollowing chronic exposure to low levels of hatore

64. Xewherme l'M. Brestahim MR, Kula N: Effecte of two sunthetic antioxidants. vitumin E anct
 J Nutr 97:219-23Z, 196!
65. Bell L.T. llurleg LS: Cltrastructural effect $\frac{8}{8}$ of mandanese deficiency in liver. hearto kidney. and pancreas of mice. Lall luester 295:23-7.20.197.2
(6i. Prieur DJ, Davi, WC. Padedt CA: Defectived function of remal lysomes in mice with the $\hat{0}$ Chediak-1licashii sudrome Au J Pathol 6ite 콘-236. 1972
 of the uriniferons tubules. The kidne Volmue l. Edited by Romiller C. Muller AF Xew York, Acadernic Press, 1969, pu ins 4.4

6S. Burkholder l'M, Hyman LR. Barter RA: Extrat cellalar clustors of splerical microparticleeg in gloneruli in human remal slomerulamo disease. Lab Insent $24: 415-425.1973$
69. Chane LIV: Sprecher JA: Patholorical chatnere in the neonatat kidney following in utcrof exposure to methymercury. Environ Resㅇ 11:392-406. 1976
70. Witre RA. Burkhodder PM. Chang LIV: Cltrat stractural changes in renal prosimal tubule $\frac{8}{7}$ after chronic organic and inorganie mercurgo

71. Audersen NB, Amaranath L: Anesthetic effect $\frac{6}{0}$ on transport acruss cell membranes. Aness THESIOLOGY 39:126-152. 1973
72. Chane LW: Dudley AW Jr. Lee IK. et at Cltrastructural stidies on the patherogieato changes in the neonatal kidney followind it utere exposure to hatothane. Ensirn he $10: 17+189,1975$
formation in chichems. 11. Short-term memary. Prow H Soe Lomed 17s:-45-465, 197!
 Jrus on consuitia. hehavior. ! J Eisp I'selat (6:170-100). 105!
 Emburine learmine de ficitv and cerebral wnaftic mationnation from exponite to 10 ppor

 chonic exponiere to low level, of hatothane

so. Chane L.W. Yudley AW Jr, Kate I: Pathological
 wher exponare to labothane. Ensiron hen $11: 10-51.1906$

Cerebral Blood Flow and Metabolism

HYPOTENSION WITH TRIMETHAPHAN AND NITROPRUSSIDE In 14 umpremedicated dogs anesthesia was induced with thiopental ($5 \mathrm{mg} / \mathrm{kg}$) and maintained with ketamine ($2 \mathrm{mg} / \mathrm{kg}$). Muscular paralysis was achieved with pancuronima, the trachea intubated, and palmonary ventilation maintained to keep Pater nomalal. Cerebral perfusion pressure (CPP) was reduced with either trimethaphan or sodiam nitroprasside, and the effects of these drags upon cerebral blood flow (CBF) and oxygen uptake (CMR_{62}) compared. Anesthesia alone altered neither CBF nor CMR_{6}. When nitroprusside decreased CPP to levels an low as 30 torr, cerebral autoregulation remained nearly intact and CBF was lowered by no more than $10-15$ per cent. However, during administration of trimethaphan autoregulation was lost when CPP decreased below 60 torr. With values below this level, CBF progressively dimin-
ished as CPP decreased. The response ofo CMR $_{\text {o, }}$ was similar. A rate of infusion trimethaphan sufficient to lower CPP below 50 torr resulted in decreased $\mathrm{CMR}_{4,}$: when $\frac{1}{9}$ CPP was 30 torr, $\mathrm{CMR}_{\mathrm{t},}$ was 35 per cento below nomal. On the other hand, sodium nitropruside produced no change in cerebruld metabolism even when CPP was as low an 30 torr. The authors conclude that these differences in drug action may be of clinical significance. (Stouka IIIV. Schatz H: The Cerebral Response to Sodiam Nitroprusside and Trimethaphan Controlled Hupotension Canad Anacsth Soc J 22: 275-2s3. 1975. Absthacter's comment: Although major differences in the circulatory and metabolie $\overrightarrow{0}$ effects of these drugs were seen at extremelvo low CPP, the ir effects were much more similaro at the ustal clinical ranges of inducedo hypotension.

[^0]: Received from the Departments of Pathology and Anesthesiology, Cniversity of Winconsin. Madison, Wiseonsin 53706. Accepted for publicattion June 15, 1976. Supported W. Public Health Service Grant \#C.M296sis.

 Address reprint requests to Dr. L. W. Chang (Department of Pathology).

