Systemic and Regional Blood Flow during Epidural Anesthesia without Epinephrine in the Rhesus Monkey

Murali Sivarajan, M.D.,* David W. Amory, M.D., Ph.D., \dagger Leo E. Lindbloom, Ph.D. \ddagger

The radioactive-microsphere technique was used to determine distribution of cardiac output and regional blood flow in thesus monkeys before and $10,20,40$, and 80 minutes after induction of epidural anesthesia with lidocaine (l per cent) without epinephrine. Four monkeys were studied during low epidural anesthesia (sensory level T10) and five other monkeys were studied during high epidural anesthesia (sensory level T1). During T10 epidural anesthesia, blood flow (per 100 g tissue) to the lower extremity was sipnificantly increased 10 minutes alter induction of anesthesia. There was no other significant change in regional blood flow during T10 epidural anesthesia. During TI epidural anesthesia, blood fow to the heart was significantly reduced at 10 minutes, blood flow to the liver was sipnificantly reduced at 10 and 40 minutes, blood flows to kidneys and miscellaneous organs (lymph nodes, salivary glands, etc.) were significantly reduced at 10,20 , and 40 minutes, and blood flow to the brain was significantly reduced throughout anesthesia. Vascular resistance in the lower extremity was reduced in each monkey following epidural anesthesia, indicating arteriolar dilatation. Also, during both levels of anesthesia, the lungs received an increased proportion of the microspheres, suggesting an increased peripheral arteriovenous shunting of microspheres due to the arteriolar dilatation. (Key words: Anesthetic techniques, peridural, hemodynamics; Heart, blood flow; Brain, blood flow; Kidney, blood flow; Liver, blood flow.)

Simultaneous measurements of blood flows to various organs during epidural anes-

[^0]thesia without epinephrine have not beerg studied cither in amimal or in mam. This has resulted in a lack of knowledge of how car diac output may be redistributed during anes $\frac{0}{\overline{2}}$ thesia. The radionctive-microsphere tech nique enables simultaneous measurements of blood flows to all organs and tissues by injection of non-recirculating microspheres into the left ventricle.' The microsphere are distributed to each organ in direct pro ${ }^{7}$ portion to its blood flow. linjection of micro spheres with different isotope labels at various intervals permits repeated measure ments of regional blood flow in the same animal.

We utilized this technique to study sysion temic and regional blood flow changes ith rhesus monkeys, during epidural anesthesian without epinephrine, at two dennatone level ${ }_{0}^{W}$ of sensory block.

Materials and Methods

The subjects of the study were nine mono keys (Macaca mulatta), weighing 3.9 toh 7.3 kg . Three to five days before the experitu ment, catheters were placed in the inferio vena cava, abdominal aorta, and left venö tricle of the heart as described previously: On the day of the experiment, using methoo hexital ($30-60 \mathrm{mg}$) sedation, 20 -gauge Teflo 8 catheters were placed in the epidural space vio the sacral hiatus and advanced to about the level of LI-2. After insertion of the epin dural catheter, the monkeys were tilted to $\stackrel{-}{4}$ supine position in their restraining chairs and placed in sound-protected booths. Room atie with a $3-5 \mathrm{l} / \mathrm{min}$ flow of oxygen was cong tinuously pumped into the booths to maires tiin Piuk around 70-140 torr. All catheter were brought outside the booths and con nected to Statham strain gauges placed 接 midthoracic levels; thus all measurements infusions and blood sampling could be per-
formed without disturbing the animal. After sufficient time for recovery from methohexital ($1-1 / 2$ hours), baseline measurements were carried out. Arterial, central venous and left ventricular pressures were continuously recorded on a Sanborn 150 recorder. Cardiae outputs were determined in duplicate by the indicator dye-dilution technique using indocyanine green. All blood was returned to the animal after the dye-dilution curve had been obtained. Immediately after each cardiac output determination and injection of radioactive microspheres, arterial blood was analyzed for $\mathrm{pH}, \mathrm{P}_{\mathrm{O}_{z}}$ and $\mathrm{P}_{\mathrm{co}_{z}}$.

After baseline measurements had been obtained, lidocaine (l per cent) without epinephrine was injected through the epidural catheter: $10-30 \mathrm{mg}$ for low epidural anesthesia (sensory level approximately T10) and $40-80 \mathrm{mg}$ for high epidural anesthesia (sensory level approximately T1). Four monkeys were studied during low epidural anesthesia and five monkeys were studied during high epidural anesthesia. Level of anesthesia was confirmed by response of the animal to towel clip application to consecutive dematomes and conrelated with decrease in arterial blood pressure and paralysis of lower extremity; in high-level blocks upper-extremity weakness was the end point. Four subsequent sets of blood flow measurements were made $10,20,40$, and 80 minutes after lidocaine had been injected. No fluid was administered other than that used in flushing the catheters between measurements.

The distribution of blood flow to various organs was determined at each time interval by injecting a suspension of one of the five ganma-emitting nuclide-labelled microspheres ($50 \mu \mathrm{~m}$ in diameter) into the left ventricle after each cardiac output determination. The microspheres are distributed to each organ in proportion to its blood flow and are trapped in the organ arterioles. The following nuclide labels were used: ${ }^{+5}$ scandium, ${ }^{95}$ niobium, ${ }^{85}$ strontium, ${ }^{31}$ chromium and ${ }^{14}$ cerium.

At the end of the experiment the amimal was exsanguinated under sodium thiopental anesthesia and the organs and tissues removed, weighed to 0.1 g , and placed in plastic vials. Radionctivity in each vial containing part or all of the organ was measured
in a Packard NaI scintillation counter. All of the tissues from the major organs wereo counted to determine the radioactivity in these orgams. However, only 20 per cent representative samples of skin, muscles, bones, and fat were counted, and these counts were multiplied by 5 to give the total counts for these tissues.
Energy distribution patterns were recorded on a pulse height amilyzer set to divide the output of the scintillation counter into $1,024^{\sim} N$ channels of I kev each. Since the five nuclides $\stackrel{\text { en }}{=}$ used in an experiment emitted gramma rays at different but definite energy levels in the $0-1000 \mathrm{kev}$ range, the amount of radioactivity from each isotope in each vial could be determined. The composite emission spectrum from each vial, representing five isotopes, was processed by a PDP-15 digital computer to give individual counts of all five isotopes in each vial. After all organs and tissues had been counted and processed to give the amount of each of the five nuclides present, the total body count of each nuclide was derived by summation of counts of each nuclide from individual organs and tissues. The percentage of cardiac output to each organ was calculated as the amount of radioactivity of each nuclide in that organ divided by total body count of that nuelide. Flow to each organ was the percentage of cardiac output times the cardiac output calculated from the dyedilution curves obtained immediately prior to injection of that particular nuclide. Right leg blood flow was taken as indicative of lower extremity blood flow since the left leg had been rendered ischemic in the process of placing the arterial catheter.

The baseline regional blood flow to each organ was expressed as the percentage of cardiac output received by that organ and as the absolute blood flow through it $(\mathrm{ml} / 100 \mathrm{~g}$ tissue/min). The changes in systemic hemodynamic measurements and the changes in regional blood flow values in each monkey were compared with the baseline values for $\stackrel{\sim}{\infty}$ the same animal, using Student's t test for \circ paired observations. Changes during T10 epi- $\stackrel{\rightharpoonup}{\nu}$ dural anesthesia were compared with changes during TI epidural inesthesia using a Student's t test for group means. Changes were considered significant when P was less than 0.05.

Results

The systemic hemodynamic values and ar－ terial $p \mathrm{H}, \mathrm{P}_{\mathrm{o}}$ and P_{co} values are shown in tables 1 and 9 and figure 1．During T10 epi－ dural amesthesia the only significant changes were an 18 per cent decrease in meam ar－ terial pressure（MAP） 20 minutes after in－ jection of lidocaine and an 11 per cent de－ crease in cardiac output（ Q_{t} ）at 10 minutes． Tl epidural anesthesia decreased MAP（ 14 to 47 per cent）for the first 40 minutes and decreased Q_{1}（ 30 per cent）for the first 20 minutes．These changes were statistically significant．Total peripheral resistance（TPR） showed no significant change during either level of imesthesia．
Regional blood flow alterations during T10 epidural anesthesia were minimal（table 3 and figures 2 and 3）．Blood flows to the major
organs were not altered significantly．The right leg（non－ischemic）received a signifi－ cantly increased percentage of the Q_{i} and absolute blood flow for the first 10 minutes．
Regional blood flow values during Tl epi－क dural anesthesia are shown in table 4 and ${ }^{\text {B }}$ figures 2 and 3．The percentages of $Q_{\text {a }}$ re－${ }^{-1}$ ceived by the heart，brain，and liver did not change signific：antly，while the absolute blood flows to these organs showed significant de－ creases；in the brain，this decrease lasted on throughout epidural anesthesia．Both the per centages of Q_{i} and absolute blood flow： to kidneys and organs and tissues grouped under＂miscellaneous＂（testes，penis，bladder． salivary glands，thyroid，adrenals，major ves－3 sels and nerves，trachea，esophagus，tongue， fat，lymph nodes，etc．）were decreased signifi年 cantly．Blood flows to the lungs and the righte

Table 1．Systemic Hemodynumic Values during T_{10} Epidumal Anesthesia in Four Monkeys（Mean \pm SD免

	Control	10 Minutes	20 Minute	40 Minutes	so Minute
Heart rate （beats／min）	183 ± 23	197 ± 00	189 ± 25	195 ± 18	191 ± 39
Mean arterial pressure（torr）	110 ± 7	81 ± 12	$90 \pm \mathbf{7}^{*}$	102 ± 7	$104=12$
Cardiac output $(\mathrm{ml} / \mathrm{k} / \mathrm{min})$	307 ± 28	－72 $\pm 34^{*}$	$\underline{275}=44$	264 ± 48	260 ± 37
Total peripheral resistance（torr） $\mathrm{l} / \mathrm{min}$ ）	71.48 ± 16.12	62.01 ± 25.10	69.96 ± 34.72	$80.50=31.12$	$81.69=30.0{ }^{\circ}$
pH	7.57 ± 0.02	7.55 ± 0.04	7.54 ± 0.02	$7.53=0.04$	7.56 ± 0.008
$\mathrm{P}_{\mathrm{O}_{2}}$（torr）	98 ± 28	91 ± 26	112 ± 24	114 ± 16	102 ± 2－
$\mathrm{Pam}_{\mathrm{Cu}_{2}}$（torr）	$36 \pm \mathbf{2}$	38 ± 4	37 ± 1	38 士 4	$37 \pm 4 \mathrm{~N}$

＊$P<0.05$ ．
Table ㅇ．Systemic Hemodynamic Values during T，Epidural Anesthesia in Five Monkeys（Mean \pm SD

	Contro！	10 Mtimutes	20 Minute	40 Minutes	So Minuten
Heart rate （beats／min）	191 ± 33	170 ± 20	172 ± 14	$175=14$	181 ± 20 휵
Mean arterial pressure（torr）	$120 \pm \geqslant 1$	$63 \pm$ 7f	79 ．$\pm 14 \dagger$	$103 \pm 19^{*}$	117 ± 20
Cardiac output （ $\mathrm{ml} / \mathrm{k} \mathrm{c} / \mathrm{min}$ ）	306 ．．± 7	$\underline{207} \pm 781$	$213 \pm 49^{*}$	241 ± 52	259 ± 79 ¢
Total peripheral resistance（tort） $1 / \mathrm{min}$ ）	$64.50=21.03$	53.51 ± 20.47	61.09 ± 16.85	71.41 ± 94.98	$7 \mathrm{~T} .99 \times 29.89$
${ }^{1} \mathrm{H}$	7.55 ± 0.02	7.57 ± 0.01	7.57 ± 0.02	7．55	7.55 ± 0.030
$\mathrm{Pr}_{\mathrm{O}_{4}}$（torr）	100 ± 19	110 ± 20	111 ± 21	117 38	120 38
$\mathrm{Pas}_{\text {（torr）}}$	37 ± 4	36 ± 5	37 ± 5		38 ± 4

[^1]leg showed transient but significant increases. Blood flow to the carcass showed no significont change.
Regional vascular resistances per 100 g tissue for major organs and right leg are shown in table 5 . Though some of the changes were statistically significmet, they were not consistent. For example, during T1 epidural anesthesia the vascular resistance in the brain was decreased significantly at 10 minates but increased significantly at 80 minutes. Even though the mean vascular resistance in the right leg did not show statistically significant changes due to the large standard deviation, it was decreased in cach of the nine monkeys in the entire study (both levels) after induction of epidural anesthesia.

Discussion

We did not observe any significant variation in rectal temperature, hematocrit, or arterial $p \mathrm{H}, \mathrm{P}_{0=}$ and $\mathrm{P}_{\mathrm{cos}}$ values during either level of epidural anesthesia. The seemingly alkalotic $\mu \mathrm{H}$ values with near-nomal Pcos values in awake restrained monkeys have been reported before.:-4

Systemic Hemodynamics

Previous reports.5 have documented that the severity of hypotension is proportional to the height of segmental blockade, and our findings of greater decreases in MAP during TI epidural anesthesia concur with these findings. However, our findings of significont decreases in Q_{t} during both levels of anesthesia are at variance with previous re-ports.- ${ }^{-111}$ Bonica et al., ${ }^{-}$Kennedy et al., ${ }^{\text {,. } 9}$ and Wahba ef al. ${ }^{10}$ reported no change in Q_{1} during high epidural anesthesia ($\mathbf{T} 4-5$) induced with lidocaine. Bonica ${ }^{11}$ concluded that the lack of significant hemodynamic effects was due to 1) compensation achieved by increased baroreceptor reflex activity via the unblocked cardiac sympathetic segments ($T 1$ and $T 2$) resulting in an increased Q_{1}, and 2) cardiovaseular stimulation due to systemically absorbed lidocaine. Evidence in the literature suggests that small to moderate doses of lidocaine produce cardiovascular stimulation ${ }^{12}{ }^{13}$ and large doses of lidocaine depress the circulation. ${ }^{14}$ Bromage and Rob-

Fic. 1. Effects of T10 and T1 epidural ane:thesia without epinephrine on mean atterial pressure, cardiac output, and total peripheral resistance. The values at each time interal are mean percentage changes from control $\pm S E$ of the mean. Statistical significance compared with control is indicated next to the data points and statistical significance of differences between T10 and T1 epidural anesthesia is indicated on the horizontal axis.
son, ${ }^{15}$ from their study of human volunteers, concluded that for epidural anesthesia the dose of lidocaine without epinephrine should not exceed $7-8 \mathrm{mg} / \mathrm{kg}$ body weight. In our study, the dose of lidocaine for T10 epidural anesthesia did not exceed $5 \mathrm{mg} / \mathrm{kg}$, and for Tl epidural anesthesia the dose was less than $8 \mathrm{mg} / \mathrm{kg}$ in all monkeys except one, which

	Cantor	10. Mbames	20. Mtumix		so Mhinter
Hent Per cent (? Flow/100 μ / mln	$\begin{aligned} 4.73 & \pm 0.8 \cdot 1 \\ 357 & \pm 68 \end{aligned}$	$\begin{aligned} & 1 .(K) \pm 1.31 \\ & 280 \pm 118 \end{aligned}$	$\begin{aligned} & 4.80 \pm 1.12 \\ & 318^{4} \pm 41 \end{aligned}$	$\begin{aligned} & 5.85 \pm 1.54 \\ & 375 \\ & \hline 55 \end{aligned}$	$\begin{aligned} & 4.78 \pm 1.57 \\ & 290 \pm 80 \end{aligned}$
Brahl Per cent Q_{1} Flow $100 \mathrm{~g} / \mathrm{min}$	$\begin{aligned} & 4.40 \pm 0,46 \\ & 60 \pm 7 \end{aligned}$	$\begin{aligned} & 5.13 \pm 2.48 \\ & 68 \pm 18 \end{aligned}$	$\begin{aligned} & 5.05 \pm 2.18 \\ & 68 \pm 8 \end{aligned}$	$\begin{aligned} 4,65 & \pm \\ 50 & \pm 1.31 \\ 50 & \pm 10 \end{aligned}$	$\begin{gathered} 4.20 \pm \\ 57^{4} \pm 1.88 \\ \hline \end{gathered}$
Kidney: Per cent Q Flow/ $100 \mathrm{c} / \mathrm{m} / \mathrm{m}$	$\begin{aligned} 12.08 & \pm 4.25 \\ 701 & \pm 243 \end{aligned}$	$\begin{aligned} & 13.73 \pm 2.73 \\ & 716 \pm 188 \end{aligned}$	$\begin{aligned} & 12.33 \pm 1.57 \\ & 650 \pm 1.43 \end{aligned}$	$\begin{aligned} & 10,63 \pm 1.12 \\ & 537 \pm 12.4 \end{aligned}$	$\begin{aligned} & 11.23 \pm 2.37 \\ & 568 \pm 12.4 \end{aligned}$
Liver (hepatic urtery and pertal veind) Per cent (ot Fow $100 \mathrm{~g} / \mathrm{min}$	$\begin{aligned} 18.83 & \pm 6.68 \\ 212 & \pm 87 \end{aligned}$	$\begin{aligned} & 18,00 \pm 2.22 \\ & 179 \pm 4 \end{aligned}$	$\begin{aligned} & 21.45 \pm 4.18 \\ & 220 \pm 75 \end{aligned}$	$\begin{aligned} & 18.58 \pm{ }^{4.82} \\ & 185 \pm 85 \end{aligned}$	$\begin{aligned} & 18.05 \pm 6.30 \\ & 176 \pm 83 \end{aligned}$
Langs Per cent Q_{1} Flow/100 y/min	$\begin{aligned} & 0.25 \pm 0.11 \\ & 13 \pm 6 \end{aligned}$	$\begin{array}{rl} 1.74 & \pm \\ 68 & 1.07 \\ \hline \end{array}$	$\begin{gathered} 1.41 \pm 1.31 \\ 53^{ \pm} \pm 39 \end{gathered}$	$\begin{aligned} 0.97 & \pm 1.30 \\ 30 & \pm 32 \end{aligned}$	$\begin{gathered} 0.76 \pm 0.84 \\ 27 \pm 24 \end{gathered}$
Atght leg (nom-iselvemite) Per cent Q_{1} Flow/ $100 \mathrm{~g} / \mathrm{min}$	$\begin{aligned} 5,30 & \pm 206 \\ 13 & \pm 6 \end{aligned}$	$\begin{aligned} & 8.10 \pm 0^{8.06^{*}} \\ & 17 \pm 6^{*} \end{aligned}$	$\begin{aligned} 6.35 & \pm 1.16 \\ 14 & \pm 5 \end{aligned}$	$\begin{aligned} & 6.03 \pm 1.65 \\ & 12 \pm 5 \end{aligned}$	$\begin{aligned} & 6.40 \pm 1.88 \\ & 13 \pm 5 \end{aligned}$
Cureass\$ Pur cent (Q) Flow 100 g/min	$\begin{aligned} & 13.78=7.65 \\ & 28 \pm 6 \end{aligned}$	$\begin{aligned} & 35.33 \pm 4.19 \\ & 20 \pm 2 \end{aligned}$	$\begin{aligned} & 38,00 \pm 6.33 \\ & 99 \pm 4 \end{aligned}$	$\begin{aligned} & 43.43 \pm 4.50 \\ & 24 \pm 3 \end{aligned}$	$\begin{aligned} & 30.13 \pm 4.97 \\ & 22 \pm 3 \end{aligned}$
Alfseellunconsi Per cent Q, Fow 100 dtmin	$\begin{aligned} & 5.83 \pm 2.40 \\ & 16 \pm 22 \end{aligned}$	$\begin{aligned} 4.43 & \pm 0.52 \\ 31 & \pm \end{aligned}$	$\begin{aligned} 5.08 & \pm \\ 35 & \pm 8 \end{aligned}$	$\begin{aligned} 5.08 & =2.90 \\ 33 & =17 \end{aligned}$	$\begin{aligned} 7.88 & \pm 4.07 \\ 53 & \pm 37 \end{aligned}$

[^2]

	Conitrul	10 Ntinutes	20, Mhutes	f(1) Minut's	sin Minutex
Hent Percent © Flow/ $100 \mathrm{~g} / 1 \mathrm{~min}$	$\begin{aligned} & 6.62 \pm 1.74 \\ & 512 \pm 18.4 \end{aligned}$	$\begin{aligned} 4.57 & =0.72 \\ 2.46 & \pm 117^{*} \end{aligned}$	$\begin{aligned} & 5.48 \pm 1.12 \\ & 200 \pm 87 \end{aligned}$	$\begin{aligned} 5.87 & \pm 1.38 \\ 35.4 & \pm 8.4 \end{aligned}$	$\begin{aligned} 6.71 & \pm 1.27 \\ 4.15 & \pm 16.4 \end{aligned}$
Brat! Per cent (\$) Flow/100 $1 / \mathrm{min}$	$\begin{gathered} 4.13 \pm 0.53 \\ 82^{ \pm} \pm 11 \end{gathered}$	$\begin{aligned} & 1.39 \pm 1.70 \\ & 55 \pm 01 \end{aligned}$	$\begin{aligned} 4.67 & \pm 1.56 \\ 63 & \pm 141 \end{aligned}$	$\begin{aligned} 3.98 & \pm \\ 62 & \pm .87 \\ 62 & 0^{*} \end{aligned}$	$\begin{aligned} 3.90 & \pm 1.19 \\ 65 & 8^{*} \end{aligned}$
Kidneys l'or cent Q Flow 100 ,	$\begin{aligned} & 1.1 .48 \pm 3.33 \\ & 070 \pm 350 \end{aligned}$	$\begin{aligned} & 1 \cdot 4.57 \pm 4.19 \\ & 652 \pm 2921 \end{aligned}$	$\begin{aligned} & 1.1 .65 \pm 3.40 \\ & 680 \pm 103^{*} \end{aligned}$	$\begin{aligned} 11.74 & \pm 1.78^{*} \\ 617 & \pm 136^{*} \end{aligned}$	$\begin{aligned} & 12.10 \pm 3.10\rangle \\ & 686 \pm 300 \end{aligned}$
Liver (hepatic artery and portal veinil) Per cent Q Flow/100 4 /1min	$\begin{aligned} 20.08 & \pm 2.83 \\ 264 & \pm 53 \end{aligned}$	$\begin{aligned} & 10.34 \pm 3.18 \\ & 150=3.4 \end{aligned}$	$\begin{aligned} & 92.08 \pm 3.70 \\ & 19.4 \pm 56 \end{aligned}$	$\begin{gathered} 18.78 \pm 3.17 \\ 100 \pm 55^{*} \end{gathered}$	$\begin{aligned} & 29.10 \pm 0.66 \\ & 256 \pm 120 \end{aligned}$
Lilligs Per cent 0_{1} 	$\begin{aligned} & 0.54 \pm 0.35 \\ & 33 \pm 2.4 \end{aligned}$	$\begin{aligned} 2.21 & \pm 0.811 \\ 01 & \pm 56^{*} \end{aligned}$	$\begin{aligned} & 3.12 \pm 2.61 \\ & 1.12 \pm 136 \end{aligned}$	$\begin{aligned} & 1.39 \pm 1.20 \\ & 60 \pm 63 \end{aligned}$	$\begin{gathered} 0.38 \pm 0.22 \\ 20 \pm 15 \end{gathered}$
Heght leg (non-ischemic) Per cent O_{2} Flow/ 100 g/min	$\begin{aligned} 5.23 & \pm \\ 13 & \pm\end{aligned}$	$\begin{aligned} & 8,07 \pm 2.26^{*} \\ & 13 \pm 5 \end{aligned}$	$\begin{aligned} & 8.02 \pm 2.86 \\ & 1.1 \pm 6 \end{aligned}$	$\begin{aligned} & 5.54 \pm 1.55 \\ & 11 \pm 5 \end{aligned}$	$\begin{aligned} & 1.62 \pm 1.82 \\ & 0 \pm 4 \end{aligned}$
Carcass§ Pur cent Q, Flow/ 100 g/min	$\begin{aligned} & 34.76 \pm 3.57 \\ & 23 \div 0 \end{aligned}$	$\begin{aligned} & 32.60 \pm 7.64 \\ & 1.4 \pm 5 \end{aligned}$	$\begin{aligned} & 32.04 \pm 7.48 \\ & 15 \pm 4 \end{aligned}$	$\begin{aligned} & 42.58 \pm 8.82 \\ & 23 \pm 4 \end{aligned}$	$\begin{aligned} & 38.14 \pm 11.85 \\ & \mathfrak{2 a} \pm 11 \end{aligned}$
Mincellameonsh Per cent (") Flow $100 \mathrm{~g} / \mathrm{mln}$	$\begin{aligned} 0.50 & \pm 2.87 \\ 50 & \pm 16 \end{aligned}$	$\begin{aligned} 5.08 & \pm 1.85 \dagger \\ 21 & \pm 8 \dagger \end{aligned}$	$\begin{aligned} 6.08 & \pm 1.54^{*} \\ 2.4 & \pm 121 \end{aligned}$	$\begin{aligned} & 5.32 \pm 1.11^{*} \\ & 25 \pm 134 \end{aligned}$	$\begin{aligned} & 8.60 \pm 2.55 \\ & .2 \pm 24 \end{aligned}$

[^3]

Fic. 2 . Effects of T10 and T1 epidural anesthesia without epinephrine on coronary, cerebral, renal, and hepatie blood flows. The values at each time interval are mean percentage changes from control \pm SE of the mean. Blood flow is expressed as flow in mi/100g of tissuemin. Statistical significance compared with control is indicated next to the data points and statistical significance of differences between T 10 and T 1 epidural anesthesia is indicated on the horizontal axis.
received $12 \mathrm{mg} / \mathrm{kg}$ inadvertentlys. In two other monkers not included in the study, we measured serum lidocaine levels after injecting $12 \mathrm{mg} / \mathrm{kg}$ lidocaine epidurally. Peak serum lidocaine level was $5.78 \mu \mathrm{~g} / \mathrm{ml}$ in one animal and $8.04 \mu \mathrm{~g} / \mathrm{ml}$ in the other. Munson ef al. ${ }^{15}$ observed consistent elecations of systolic blood pressure and pulse rate and no sign of cardiovascular depression in rhesus monkevs after intravenous infusions of lidocaine that resulted in a mean serum lidocaine level of $24.5 \mu \mathrm{~g} / \mathrm{ml}$. Hence it is unlikely that the cardiovascular depression that we observed during both levels of anesthesia was due to systemic effects of lidocaine. It is probable that our monkeys, though acclimatized to the restraining chairs for three to five days, were excited and had high sympathetic tone. Subjects who have high sympathetic tone provoked by apprehension,
injury, or disease have much greater hemodynamic changes when the sympathetic tone is removed. ${ }^{\text {T }}$ In addition, during T1 epidural amesthesia in our monkeys, blockade of cardiac sympathetic fibers arising from the upper four or five thonacic nerves may have contributed to the cardiovascular depression. ${ }^{18}$

We observed no significant change in total peripheral resistance during either level of epidural anesthesia. We had postulated that this might be due to increased renin-angiotensin activity in response to decreased MAP. $=$ Recent measurements of renin-angiotensin ${ }_{\square}^{\circ}$ activity in dogs during total sympathetic $\stackrel{\rho}{\sim}$ blockade induced by spinal anesthesia sup-응 port this hypothesis.s
§Amory DW (Department of Anesthesiology, University of Washington, Seattle. Washington ơ 98195): Personal communication.

Fig. 3. Effects of T10 and Tl epidural anesthesia without epinephrine on blood flows to the lungs right leg, carcass and miscellaneous organs. The values at each time interal are mean percentage changes from control \pm SE of the mean. Blood flow is expressed as fow in $\mathrm{ml} / 100 \mathrm{~g}$ of tissue/min. Statistical significance compared with control is indicated next to the data points and statistical significance of differences between T10 and T1 epidural anesthesia is indicated on the horizontal axis.

Table 5. Regional Vaseular Resistance during $T_{10}(n=4)$ and $T_{1}(n=5)$ Epidural Anesthesia (Mean \pm SD)

	Comitrel	10 Minutes	$\underline{50}$ Nimates	H0 Minutes	S0 Minutes
$\begin{gathered} \text { Heart } \\ \text { T10 } \end{gathered}$ T1	$\begin{aligned} & 0.32=0.08 \\ & 0.26=0.10 \end{aligned}$	$\begin{aligned} & 0.33 \pm 0.10 \\ & 0.30 \pm 0.13 \end{aligned}$	$\begin{aligned} & 0.28 \pm 0.03 \\ & 0.28=0.07 \end{aligned}$	$\begin{aligned} & 0.2 S \pm 0.07 \\ & 0.31=0.11 \end{aligned}$	$\begin{aligned} & 0.36 \pm 0.12 \\ & 0.30 \pm 0.16 \end{aligned}$
Brain T10 TI	$\begin{aligned} & 1.60 \pm 0.21 \\ & 1.46 \pm 0.25 \end{aligned}$	$\begin{aligned} & 1.21 \pm 0.16 \\ & 1.16=0.15^{*} \end{aligned}$	$\begin{aligned} & 1.34 \pm 0.15 \dagger \\ & 1.30 \pm 0.33 \end{aligned}$	$\begin{aligned} & 1.7 \bar{t}=0.30 \\ & 1.70=0.4 \end{aligned}$	$\begin{aligned} & 1.89=0.38 \\ & 1.84 \pm 0.50^{*} \end{aligned}$
Kidneys T10 TI	$\begin{aligned} & 0.17 \pm 0.05 \\ & 0.13 \pm 0.05 \end{aligned}$	$\begin{aligned} & 0.11 \pm 0.03^{*} \\ & 0.11 \pm 0.04 \end{aligned}$	$\begin{aligned} & 0.14=0.04 \\ & 0.12 \pm 0.03 \end{aligned}$	$\begin{aligned} & 0.19 \pm 0.04 \\ & 0.17 \pm 0.06^{*} \end{aligned}$	$\begin{aligned} & 0.18 \pm 0.03 \\ & 0.19 \pm 0.09 \end{aligned}$
Liver T10 TI	$\begin{aligned} & 0.60 \pm 0.29 \\ & 0.48 \pm 0.20 \end{aligned}$	$\begin{aligned} & 0.47 \pm 0.16 \\ & 0.41 \pm 0.11 \end{aligned}$	$\begin{aligned} & 0.4 \overline{4} \pm 0.24^{*} \\ & 0.42 \pm 0.11 \end{aligned}$	$\begin{aligned} & 0.64 \pm 0.29 \\ & 0.59 \pm 0.24 \end{aligned}$	$\begin{aligned} & 0.69 \pm 0.39^{*} \\ & 0.55 \pm 0.29 \end{aligned}$
$\begin{aligned} & \text { Right leg } \\ & \text { T10 } \\ & \text { T1 } \end{aligned}$	$\begin{aligned} & 10.3 \pm \pm 4.82 \\ & 10.65=6.08 \end{aligned}$	$\begin{aligned} & 5.07=1.23 \\ & 5.61=2.64 \end{aligned}$	$\begin{aligned} & 7.45 \pm 3.36 \\ & 6.51 \pm \mathbf{2 9} \end{aligned}$	$\begin{array}{r} 9.91 \pm 5.67 \\ 11.57 \pm 6.29 \end{array}$	$\begin{array}{r} 9.24=4.37 \\ 15.57=8.05 \end{array}$

Regional vascular resistance is expressed as torr/m1/ 100 g of tissue/min.

* $P<0.05$.
$\ddagger P<0.01$.

Table 6. Coronary Blood Flow es. Cardiac Work during T, Epidural Anesthesia

	10 Minatev	20. Minutes	41 stisutes	Sol Minuter ${ }^{\text {a }}$
Mean change in flow/100 g (per cent)	$\begin{aligned} & -52 \\ & -64 \end{aligned}$	$\begin{aligned} & -42 \\ & -53 \end{aligned}$	-31	$\begin{array}{ll} -14 & \stackrel{0}{2} \\ -18 & \stackrel{\circ}{2} \end{array}$
Mean change in cardiac work'min (per cent)				

Regional Blood Flow

Lidocaine without epineplorine when injected into the epidural space rapidly enters the systemic circulation within a few minutes. ${ }^{19}$ Therefore, in discussing the effects of epidural anesthesia on organ blood flow, the effects of systematically absorbed lidocaine have to be taken into account. Bloor and White ${ }^{30}$ observed in unanesthetized dogs that a small bolus of lidocaine $(0.25 \mathrm{mg} / \mathrm{kg}$, iv) produces an increase in coronary blood flow, whereas large doses ($2 \mathrm{mg} / \mathrm{kg}$, iv) decrease coronary blood flow. Thomsen ct al.:1 reported a 14 per cent decrease in coromary blood flow in anesthetized dogs only after large doses of lidocaine ($5 \mathrm{mg} / \mathrm{kg}$ bolus followed by steady infusion at the rate of $0.15 \mathrm{mg} / \mathrm{kg} / \mathrm{min}$). Serum levels of lidocaine were not reported in either study. It is unlikely, however, that the moukeys in our study achieved similar concentrations of lidocaine in the circulation. Benowitz ct al., $=$ using the radiactive-microsphere technique, studied the changes in the distribution of Q_{t} in rhesus monkeys during intravenous infusions of lidocaine. At serum lidocaine levels ranging from 1.2 to $2.4 \mu \mathrm{~g} / \mathrm{ml}$, they observed significant increases in the percentages of Q_{t} received by the heart, hepatic artery and long bones, while MAP and total Q_{t} remained unchanged. We did not observe such increases during either level of epidural anesthesia. It is likely that with the significant reductions in MAP and Q_{t} that we observed during both levels of anesthesia, any increase in blood flows to the heart, hepatic artery, and long lones caused by systemic lidocaine could have been abolished. Sakabe et al. ${ }^{3}$ found that subseizure doses of lidocaine had no effect on cerebral blood flow in dogs, and that doses capable of inducing seizures markedly increased cerebral blood flow. Therefore, we conclude that the decreases in cerebral blood flow that we observed during Tl epidural anesthesia were
not due to lidocaine in the systemic circulattion.

T10 Epidural Anestiesta

It appears that the moderate decreases in ${ }_{\infty}^{\infty}$. MAP (1S per cent) and $Q_{\text {, }}(11$ per cent)굴 are insufficient to cause significant changess. in regional blood flows. These findings are similar to those we observed earlier during low spinal anesthesia in rhesus monkeys. ${ }^{2}$

Tl Epidural Anestiesia

In our study, the transient but significanto decrease in coronary blood flow (52 per cento at 10 minutes) parilleled the reduction in MAP (47 per cent). This agrees with the findings of Eckenhoff et als: ${ }^{=1}$ and Hackel ${ }^{\circ}$ et al., ${ }^{-5}$ who studied coronary blood flow changes during hypotension induced by intra- $\frac{\omega}{\omega}$ venous administration of tetraethyl ammonium chloride or spinal anesthesia. Everno though coronary blood flow decreased signifi-o cantly, myocardial minute work calculatedo as the product of MAP and Q_{t} decreased more than the decrease in coronary bloodo flow (table 6). This indicates adequate perfusion relative to myocardial work load.
Cerebral blood flow is maintained over a $\stackrel{\rightharpoonup}{4}$ range of perfusion pressures from 60 to 1500° torr. ${ }^{\text {an }}$ This autoregulation maintains cerebralo blood flow during hypotension resulting fromo spinal anesthesia. ${ }^{\text {: }}$ However, we did not ob- 8 serve autoregulation in our monkeys. With theo decreases in MAP, cerebral blood flow de creased throughout the duration of anesthesia. Cerebrovascular resistance showed incone sistent changes. Galindo ${ }^{=4}$ reported signifi- $-{ }_{\sim}^{2}$ cant decreases in internal carotid blood flowo in dogs following epidural anesthesia with lidocaine. Kusumoto ${ }^{* y}$ used mepisacaine to ${ }^{2}$ induce epidural anesthesia in human subb jects and observed increases in lactate \sqrt{N} pyruvate ratio and excess lactite in the intemal jugular venous blood, suggesting rela-
tive hyposia and deereased cerebral blood flow. While lidocaine has no effect on cerebral blood flow, $=3$ the above-mentioned studies ${ }^{2 x} \mathrm{~m}^{2}$ and ours suggest a possible effect of lidocaine and mepitacaine on cerebral antoregulation. Further work in this area is indicated.

Autoregulation also plays a role in the maintenance of blood flow to kidneys over a range of perfusion pressures from 80 to 180 torr. ${ }^{311}$ But in human subjects, Kemnedy et al.* found at significant 14 per cent reduction in renal blood flow during high (T5) epidural anesthesia without epinephrine, without concomitant change in MAP and Q_{1}. The greater decreases in renal blood flow (31 to 37 per cent) that we observed were accompanied by significant decreases in MAP and Q_{1}. These findings suggest that renal autoregulation might also be affected during high epidural anesthesia induced with lidocaine.

Total hepatic blood flow (sum of hepaticartery and portar-vein flows) is dependent on MAP. ${ }^{31}$ With 14 to 47 per cent decreases in MAP, we observed 28 to 40 per cent decreases in total hepatic blood flow. This agrees with the findings of Kennedy et al. ${ }^{9}$ in human volunteers. Portal-vein flow in our studies was computed as the sum of arterial flows to the Gl tract, mesentery; pancreas and spleen, since the microsphere technigue measures only arterial flows directly. The microspheres do not enter the portal circulation as a result of entrapment in the arterioles and capillary bed. Changes in arterial flows to GI tract, mesentery, pancreas and spleen paralleled changes in MAP.

The lungs in each of the nine monkeys in the study (both levels of anesthesia) received an increased proportion of the microspheres during anesthesia. This was accompanied by decreases in regional vascular resistance in the lower extremity in each monkey, which indicates arteriolar dilatation. The increase in the lungs probably reflects the microspheres that return to the lungs after passing through peripheral anatomic arteriovenous shunts that open up due to arteriolar dilatation produced by the sympathetic blockade. Evidence for arteriovenous shunting of microspheres has been reported. ${ }^{1,2 \pi z}$

Table 7. Comparison of Peak Effects of T1 Spinal Anesthesia and T1 Epiduril Anesthesia without Epinephrine (Mean Per Cent Change from Control)

	Tl Spina!	Tl Epidara
Mean arterial pressure	-23*	-47*
Cardiac output	-29**	-39**
Coronary blood flow	-19	-52**
Cerebral blood flow	-18	-33**
Renal blood flow	-36**	-37^{*}
Hepatic blood flow	-23*	-40*

* Statistically significant change compared with the control for the same group.

Comparing these observations with ouro earlier findings of systemic and regional blood flow changes during spinal anesthesia in $\stackrel{N}{\widetilde{0}}$ rhesus monkeys, , we see greater decreases in MAP and Q_{1} during epidural anesthesia \mathscr{Q}^{2} (table 7). The maximum decreases in MAP were 20 per cent during T1 spimal anesthesia and 47 per cent during TI epidural anesthesia. Maximum reductions in \hat{Q}_{t} were 20 per cent during T1 spinal anesthesia and 32 per cent during T1 epidural anesthesia. Also, coronary and cerebmal blood flows were significantly decreased during epidural anesthesia, whereas they showed only nonsignificant changes during spinal anesthesia. The greater reduction in MAP during epiduml anesthesia is similar to the observations made by Defalque, ${ }^{\text {, }}$ but the greater decreases in \dot{Q}_{t} during epidural anesthesia differ from findings in a previous study:: Although the greater changes during epidural anesthesia could be attributed to lidocaine absorbed from the epidural space, available evidence in the literature does not wholly support this hypothesis. ${ }^{1-13.15 .16: 20.3}$

References

1. Hoffbrund BI, Forsyth RP: Villidity studies of rudioactive microsphere method for the study of distribution of cardiac output, organ blood flow, and resistance in the conscious rhesus monkey. Cardiovase Res $3: 426-43$, 1969
2. Sivarajan M, Amory DW, Lindbloom LE et al: $\vec{\lambda}$ Systemic and regional blood-flow changes ${ }^{\text {D }}$ during spinal anesthesia in the rhesus monKey. ANESTHESIOLOGY 43:78-88, 1975
3. Forsyth RP, Nies AS, Wyler F, et al: Normal distribution of cardiac output in the unanes-
thetized restrained shesus monkey. J Appl Physiol 25:736-741, 1965
4. Munson ES, Gillespie JR, Wagman IH: Respirttor" blood gases and $p \mathrm{H}$ in two species of unanesthetized monkeys. J Appl Plysiol 2S:105-109, 1970
5. Bromage PR: Vascular hypotension in 107 cases of epidural amalgesia. Anaesthesia 6: 26-29, 195I
6. Defalque HJ : Compared effects of spinal and extradaral anesthesia on blood pressure. ANESTHESIOLOCY $23: 62 \xlongequal{2}-630,1962$
7. Bonica JJ, Kennedy WF, Ward RJ, et al: A comparison of the effects of high subarmehnoid and epidural anesthesia. Acta Anaesthesiol Scand Suppl 23:429-437, 1966
S. Kennedy WF, Sawyer TK, Gerhershagen HU, et al: Systemic cardionascular and remal hemodenamic alterations during peridural anesthesia in nommal man. ANesthesiologr 31:-14-421. 1969
8. Kennedy WF, Everett GB, Cobls LA, et al: Simultaneons systemic and hepatic hemodynamie measurements duringhigh peridural anesthesia in normal man. Anesth Analy (Cleve) 50:1069-1078, 1971
9. Wahba WM, Craig DB, Don HF, et al: The cardiorespiratory effects of thoracic epidural anesthesia. Can Anaesth Soc J 19:

IL. Bonica JJ: Cardiovascular effects of peridural block. Clin Anesth 2:63-81, 1969
10. Kino FF, Jalan UH: The central action of lignocaine and its effect on cardiac output. Br J Phamacol 14:592-526, 1959
11. Jorfeldt L, Lōfstrom B, Pernow B, et al: The effects of local anesthetics on central circulation and respiration in man and dog. Acta Anaesthesiol Scind 12:153-169, 196 S
12. Deacock AR, de C, Simpson WT: Fatal reactions to lignocaine. Anaesthesia 19:217291, 1964
13. Bromage PR, Rolsson JR: Concentrations of lignocaine in blood after intravenous, intrimuseular, epidural and endotracheal administration. Amaesthesia 16:461-478, 1961
14. Munson ES, Wagman IH: Acid-base changes during lidocaine induced seizures in Macaca mulatta. Arch Neurol 20:406-412, 1969
15. Bonica JJ, Berges PU. Morikawa K: Circulat tory effects of peridural block: I. Effects of level of analgesia and dose of lidocaine. Anesthesiology 33:619-626, 1970
16. McLean APH, Mulligan GW, Otton P, et al: Hemodynamic alterations associated with epidural anesthesin. Surgery 62:79-87, 1967
17. Bromage PR: Physiology and phamacology
of epidural amalgesia. Anesthesiologr 28 : 592-625, 1967
18. Bloor CM, White FC: Effect of lidocaine on coronary hemodynamics before and durind coronary artery occlasion in the intace conscious dog. Circulation $39-40$ suppla 1II: 47.1969
19. Thomsen JH, Terry W, Stenlund RR, et al: The ${ }^{3}$ effects of lidocaine on systemic and coronary hemodynamics. Arch Int Phamacodyrp 194:83-92, 1971
20. Benowitz N, Forsyth RP, Memon KL, et alm Lidocaine disposition kinetics in monkey and mam- 1. Prediction by a perfusion model $\frac{0}{\sim}$ Clin Pharmacol Ther 16:87-98, 1974
21. Sakabe T, Maekawa T, Ishikama T, et alD The effects of lidocaine on canine cerebrat metabolism and circulation related to the electroencephalogram. ANESTHESIOLOGS 40:433-441, 1974
22. Eckenhoff JE, Hafkenschiel JH. Foltz EL, et al Po Influence of hypotension on coronary blood $\frac{8}{4}$ flow, cardiac work and cardiac efficiencer Am J Physiol 152:545-553, 1948
23. Hackel DB, Sancetta SN, Kleinerman J: Efo fects of hypotension due to spinal anesthesie on coronary blood flow and myocardiam metabolism in man. Circulatioin 13:92-97 1956
24. Lassen NA: Cerebral blood flow and oxygerg consumption in man. Physiol Rev 39:153 235,1959
25. Kleineman J, Sancetta SM, Lynn RB, et alt Stidies of hemodynamic changes in humamo beings following induction of low and high spinal anesthesia. IIl. The effects on cerebrato blood flow, cerebral oxygen and glucoseo metabolism (abstr). J Lab Clin Med 40 N 819-820,1952
¥8. Galindo A: Hemodynamic changes in the in temal carotid artery produced by total symb pathetic block (epidural anesthesia) and cartu bon dioxide. Anesth Analg (Cleve) $43 \frac{1}{\circ}$ 276-28-4. 196-4
26. Kusumoto H: Effects of hypotension on cere8 bral function during epidural anesthesia. Jaio J Anesthesiol $20: 8$ 은 -832, 1971
27. Shiplev RE, Study RS: Changes in renal blood flow; extruction of inulin, glomendar filtries tion rate, tissue pressure and urine flow with acute alterations of renal artery presio sure. Am J Physiol 167:676-68S, 195i
28. Bauer RW: Liver circulation and function. Piyg siol Rev 43:115-213, 1963
29. Amory DW, Steffenson JL, Forsth RP: Sy: temic and regional blood fow changes during halothane anesthesia in the rhesus monkey Avesthesiology 35:81-90, 1971

[^0]: *Assistant Professor.
 \dagger Associate Professor, Departments of Anesthesiology and Pharmacology:
 \$ Postdoctoral Research Fellow.
 Received from the Department of Anesthesiology and Anesthesia Research Center, University of Washington School of Medicine, Seattle, Washington 98195 . Accepted for publication March $\geqslant 3,1976$. Supported by Grant HE 14726 from the National Institutes of Health. Reported at the Annual Meeting of the American Society of Anesthesiologists, Washington, D.C., October 1974.

 Address reprint requests to Dr. Sivarajan.

[^1]: ＊$P<0.05$ ．
 $+P<0.01$ ．

[^2]: 1 Portal vein flow is the sun of blood flows to GI tract, mesentery, pancreas and spleen.

 Cil

[^3]: I Portal vein diow is the sum of blowd llows to the Cit tract, mesentery, panereas nut spleen.

