# On-line Systolic Time Intervals during Anesthesia in Patients with and without Heart Disease 

P. J. Dauchot, M.D.. J. P. Rasmussen, M.D., $\dagger$ D. H. Nicholson, M.D., $\ddagger$ R. T. Divers, M.S.,§ P. G. Katona, Sc.D.," R. M. Zollinger, Jr., M.D.,** J. D. Knoke, Ph.D., $\dagger$ E. W. Kyo, M.B.B.S., $\dagger$<br>J. S. Gravenstein, M.D. $\ddagger \ddagger$


#### Abstract

Twenty-four patients with severe, 24 with moderate, and 24 without heart disease were selected for measurements of systolic time intervals (STI) and blood pressure before and during anesthesia. In all patients anesthesia was induced with thiopental, $4 \mathrm{mb} / \mathrm{kg}$. After tracheal intubation. 12 par tients from each heart-disease class received halo-thane-N_O-O2 (halothame) and 12 patients from each class morphine-d-tubocurarine-N: $\mathrm{O}-\mathrm{O}_{2}$ (MS-dTe). Thiopental increased the pre-ejection period (PEP). decreased len ventrienlar cjection time (LIET), and accelerated heart rate (HR). These ehanges were similar in patients with and without heart disease. Halothate and MS-ITTe lowered systolic blood pressure and increased PEP/LNET. With halothane but not with MS-dTe these changes were more pronounced in patients who had heart disease. Changes of the PEP/LVET ratio during halothane anesthesia were a better discriminating variable among patients without, with moderate, and with severe heart disease than


[^0]were changes in systolic blood pressure. (Key words: Heart, systolic time intervals; Blood pressure, anesthesia; Analgesies, narcotic, morphine; Neuromuscular relaxants, $d$-tubocurarine; Anestheties, intravenous, thiopental: Anestheties, volatile. halathane.)

ANESTHESLA relying on moquine sulfitenitrous oxide-oxygen amd d-tubocurarine (MSdTe) has gatned popularity becanse it appears to canse little cardionasenlar depression. ${ }^{\text {- }}$ Halothane, on the other hand, is : cardiace depressant, and arterial hypotension during halothane anesthesia is well recognized.

Systolice time intenals (STI) are said to provide particularly useful information in the noninvasive assessment of cardiac function. ${ }^{\text {j-6 }}$ Hence, STI might reveal cardiovascular changes during anesthesia, particularly in patients who have heart disease that alterattions in arterial pressure fail to show. We, therefore, measured blood pressure and STI in patients with and without heart diseane during halothane and MS-dTe anesthesia to determine whether the measurennent of STI can improve the evaluation of the cardiovascular status during anesthesia.

## Methods

Seventy-two patients scheduled for major alodominal procedures were studied after infomed consent was ohtained. Their ages ranged from 95 to 76 years. Medical history; physical examination, routine laboratory data, bedside respintory function tests, arterial bood gases during breathing of room atir and 100 per cent inspired oxygen, electrocardiography, and chest radiograns were obtained preoperatively. Eath patient was then chassified in one of three classes: Class I, no heart disease; Class II, moderate heart disease;

Class III, severe heart disease. This classification paralleled that of the New York Heart Association ${ }^{\text {h }}$ but combined the latter's classes III and IV into a single class, severe heart disease. Thirty-six men (mean age 56 years) were assigned to a halothane treatment group, while 24 men and 12 women (meam age 50 years) were assigned to a MS-dTc treatment group. Each treatment group was made up of 12 patients with severe, 12 with moderate, and 12 without heart disease.

Patients in the MS-dTc group had radial arterial cannulas placed using local anesthesia before induction of general anesthesia. In all patients systolic time interals (STI) were computed from the simultaneous processing of lead II of the ECG, phonocardiogram, and carotid arterial pulse contours. A microphone was placed in the fourth intercostal space to the left of the stermum for detection of the initial high-frequency component of the second heart sound ( $\mathrm{S}_{2}$ ). A piezoelectric trimsducer was secured over the carotid artery using an elastic and Velcro collar 6 inches wide. The resultant analog waveforms were sampled 250 times per second in 4 -millisecond intervals by an analog-to-digital converter and processed on-line in real time with a PDP 11/20 computer using 16 K of core memory. ${ }^{*}$ The onsets of the four events (the QRS wave of the ECG, the start of the carotid upstroke, the dicrotic notch, and the $S_{n}$ ) were determined by computing first and second derivatives. The accuracy of the detection algorithms was monitored by the computer operator, who visually scanned waveforms that were intermittently displayed with cursors marking the computer-detected onsets of the four events.

Heart rate (HR) was determined from R-R intervals, whereas the pre-ejection period (PEP) was measured as the interval from $Q$ to the start of the carotid upstroke minus the $S_{z}$ -to-dicrotic notch time interval. Left ventricular ejection time (LVET) was computed as the time interval from the start of the carotid upstroke to the dicrotic notch.

HR, PEP, LVET, and PEP/LVET were computed beat-by-beat for 15 seconds and then averaged so as to damp out the effects of the respiratory cycles. These values, as well as internal measures of quality control such as the standard deviations and the number of successfully processed STI versus the number
of heart beats per 15 -second interval, were then stored on disk. These processed data were presented numerically via a teletypewriter and graphically via a Gould 4800 electrostatic printer and a Computek 300 CRT display terminal for both the computer operator and the anesthesiologist and surgeon in the operating room using a slave TV monitor.

Arterial blood pressure was measured every minute with an Avionics Ultrasonic Arteriosonde Monitor placed on the upper arm or directly when an arterial line was available. The triple product (TP) was computed as LVET $\times$ systolic blood pressure (SBP) $\times \mathrm{HR}$ in the halothane study alone. Arterial blood-gas amalyses were performed intermittently. All intraperative events were noted loy the anes thesiologist upon his records, as well as reported on the voice channel of a multichamel amalog tape recorder.

After placement of the monitoring sensors, baseline data were obtained and 0.6 mg atropine sulfate injected intravenously. This was followed by $4 \mathrm{mg} / \mathrm{kg}$ sodium thiopental, iv. Five minutes later, 100 mg succingleholine was injected iv and the trachea intubated. Ventiation was controlled with an Air-Shields ventilator delivering 50 per cent oxygen with nitrous oxide in the halothane group and a mixture of 30 per cent oxygen and 70 per cent nitrous oxide in the MS-dTc group. In the halothane group, all patients received halothane via a Fluotec vaporizer at 1.5 vol per cent inspired concentration for the initial 15 minutes of anesthesia. Later inspired halothame concentrations varied between 1.5 and 0.5 vol per cent as determined by the clinical judgment of the anesthesiologist.
In the MS-dTe group, after intubation, all patients received morphine sulfate, $0.2 \mathrm{mg} / \mathrm{kg}$. iv. Five minutes later an initial dose of $d$ tubocurarine, $0.4 \mathrm{mg} / \mathrm{kg}$, was injected iv. Additional doses of $d$ Te were added as needed for muscle relaxation.

In both groups, data were collected throughout the operation and the pre-atropine data were used as baseline (control) data. In the halothane group, only data from the first 15 minutes of halothane anesthesia were used for analysis and averaged. In the MS- $d \mathrm{Tc}$ group, several periods following the injection of $d \mathrm{Tc}$ were examined: an early period ( $0-5$
period (35-40 min). These times refer to the minutes after injection of $d$ Te. The data of each individual period were avenged.
For each group, all data were statisticullyamalyzed by analysis of varime and be stepwise discriminant analysis. The significance of the obsersed difference between patient classes and times was assessed by the Scheffe method of multiple companson. The BMD programs $08 V$ and $071^{9}$ were emploved in the amalysis, using a PDP $11 / 45$ computer.

## Results

## Halothane

The results for the halothane group are summarized in tables 1 and $\underline{9}$. Table 1 shows the control data before induction of anesthesia for the three cardiace classes. Patients with heart disease (Class II and Class III) hand significantly higher SBP's and TP's than patients without heart disease. Patients who
had severe heart disease had significantly greater pulse pressures (PP) than the healthy patients. There was no significant difference among the classes for HR or STI.

Table 2 shows the responses to thiopental and halothane expressed as percentage deviations from pre-anesthesia control values in the three patient classes. Thiopental calused significant increases in HR, PEP, and the PEP/ LVET ratio and a significant shortening of LVET in each of the three classes. A decrease in PP with thiopental reached statistical significance in Class I only.

Inhalation of 1.5 per cent halothane resulted in a significant reduction in PP and significant increases in HR, PEP and PEP/LVET ratio in all classes. In addition to this, SBP and LVET decreased simnific:menty- in Classes II and III, while the TP decreased significantly in Class III only.

A discriminant amalysis was employed to examine the question whether systolic time interals contribute information about cardiac

Table 1. Halothane Group, Baseline Data before Induction of Anesthesiat

|  | $\begin{gathered} \text { Claw } \\ \text { No Heart Diwewe } \\ 12 \text { Patient } \end{gathered}$ | Cl.n II <br> Moxderate Ifent Diveate 12 Patietots | $\begin{gathered} \text { CLus } 111 \\ \text { Serere Heart } \\ \text { Diwere } \\ 12 \text { Patient: } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Number of patients taking drugs* | 1 | 2 | 9 |
| Age (gears), mean and range | $\begin{gathered} 53 \\ 3 \xlongequal{53}-65 \end{gathered}$ | $\begin{gathered} 57 \\ 28-73 \end{gathered}$ | $\begin{gathered} 58 \\ 25-76 \end{gathered}$ |
| Pre-ejection period (PEP) (msec) | $\begin{aligned} & 86 \\ & (3) \ddagger \end{aligned}$ | $\begin{aligned} & 83 \\ & (5) \end{aligned}$ | $\begin{gathered} 84 \\ (4) \end{gathered}$ |
| Left ventricular ejection time (LVET) (msec) | $\underset{(5)}{287}$ | $286$ (S) | $\begin{aligned} & -399 \\ & (10) \end{aligned}$ |
| PEP/LTET | $\begin{gathered} 0.30 \\ (0.01) \end{gathered}$ | $\begin{gathered} 0.29 \\ (0.01) \end{gathered}$ | $\begin{gathered} 0.98 \\ (0.01) \end{gathered}$ |
| Systolic blood pressure (SBP) (mm Hg) | $\begin{gathered} 127 \\ (4) \end{gathered}$ | $\begin{array}{r} 150 t \\ (6) \end{array}$ | 157! <br> (S) |
| Pulse pressure (PP) (mm Hg) | 47 <br> (3) | $\begin{aligned} & 57 \\ & (\pi) \end{aligned}$ | $\begin{aligned} & 69! \\ & (6) \end{aligned}$ |
| Heart rate ( HR ) ( $\mathrm{min}^{-1}$ ) | $78$ <br> (2) | so <br> (4) | 75 (3) |
| Triple product (TP) | $\begin{aligned} & \stackrel{308}{(139)} \end{aligned}$ | $\begin{aligned} & 3402 t \\ & (188) \end{aligned}$ | $\begin{aligned} & 34911 \\ & (214) \end{aligned}$ |

[^1]Table 2. Halothame Gromp, Changes in Cardiovasenlar Variables Induced by Anesthesia

|  | Thisurental <br> (4 mesk) |  | $\begin{gathered} \text { \{.t.loth, me } \\ \text { a.5Per Cent) } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Class 1: Twelve patients withont hear discase <br> Pre-ejection period (PEP) <br> Left ventricular ejection time (LVET) <br> PEP/LIET <br> Systolic blood pressure (SBP) <br> Pulse pressure ( PP ) <br> Triple product (TP) <br> Heart rate (IIR) | 117 84 141 94 79 100 128 | (3)* <br> (3) $\dagger$ <br> (8) $\dagger$ <br> (3) <br> (6)* <br> (3) <br> (6) $\dagger$ | $\begin{gathered} 116(6)^{*} \\ 95(2) \\ 129(6) \\ 97(4) \\ 72(4)\} \\ 115(7) \\ 129(6) \end{gathered}$ |
| Cliss II: Twelve patients with moderate heart diseatse Pre-ejection period (PEP) <br> Left ventricular ejection time (LVET) PEP/LIET <br> Systolic blexd pressure (SBP) <br> Pulse pressure (PP) <br> Triple product (TP) <br> Heart rite (IIR) | 121 82 146 91 83 94 123 | (-4) $\dagger$ <br> (이) <br> (5) $\dagger$ <br> (6) <br> (II) <br> (8) <br> (7) 1 | $\begin{aligned} 141 & (6) \dagger \\ 91 & (2)^{*} \\ 159 & (6))^{\dagger} \\ 79 & (4) \dagger \\ 59 & (4) \dagger \\ 56 & (8) \\ 117 & (7)^{*} \end{aligned}$ |
| Class III: Twelve patients with severe heart disease <br> Pre-ejection period (PEP) <br> Left ventricular ejection time (LVET) PEP/LIET <br> Systolic hiood pressure (SBP) <br> Pulse pressure (PP) <br> Triple product (TP) <br> Heart rate (HR) | 126 86 149 90 83 99 123 | (6) $\dagger$ <br> (2) $\dagger$ <br> (8) 1 <br> (4) <br> (9) <br> (5) <br> (5) $\dagger$ | $\begin{array}{r} 151(6) \dagger \\ 59(2) \dagger \\ 172(5) \dagger \\ 70(5) \dagger \\ 48(6) \dagger \\ 76(9) \dagger \\ 120(8)^{*} \end{array}$ |

[^2]function not arailable through "standard monitoring" (BP, HR, PP). First, using the baseline data and the percentage changes of all the recorded variables during the first 15 minutes of inhalation of 1.5 per cent halothane, a stepwise discriminant amalysis was performed. Changes in SBP offered the best discrimination of all the standard monitoring (i.c.. HR, SBP, DBP', PP) variahles during inhalation of halothane, 1.5 per cent. Adding to SBP another "standard" variable did not significamtly improve the discrimination. The best discriminating variable obtainable from all monitored modalities, including the STI, was the change in PEP/LVET ratio during inlalation of halothane, 1.5 per cent. Adding any other recorded modality to the PEP/LVET ratio did not significantly improve this discrimination. Table 3 shows how these two discriminant functions separate patients
with no (Class I), moderite (Class II), and severe (Class III) heart disease.
Next, we considered the question whether STI could be used to identify correctly, among the 36 patients, the 12 patients with severe, the 12 with moderate, and the 12 without heart disease. It the cardiovascular classifications of these 36 patients were not known intraperatively and rather the patients were assigned randomly, equally, to the three classes of heart disease, each patient would have a $33 \%$ chance of being classified correctly. With the percentage change in SBP during halothame, 1.5 per cent, as a discriminating variable, the probability of a correct assignment improved from 33 to 67 per cent for the healthy patients (Class 1) and from 33 to 58 per cent for the patients who had severe heart disease (Class III). The changes in SBP alone did not improve the


Fig. 1. Halothane group, probability of correct assignment based upon: A, random assignment; $B$, assignment using percentage change in systolic blood pressure as the introperative discriminant variable; $C$, assignment using percentage change in PEP/LVET ratio as the intraoperative discriminant variable.
chance of correct assigmment of patients with moderate heart disease (Class II). For the whole population, the probability of correct assigmment increased only from 33 to 53 per cent, using SBP changes during halothane. STI offered better information, beculuse if the anesthesiologist had available the percentage change in PEP/LVET ratio during halothane anesthesia as the intraoperative discriminant variable, the chances of correct assignment increased from 33 to 83 per cent for the unknown Class I patient, from 33 to 50 per cent for the Class II patient, and from 33 to 67 per cent for the Class III patient. For the population as a whole, the probability of correct classification was doubled, from 33 to 67 per cent, b using STI changes during halothane anesthesia. The probabilities of correct assignment are summarized in figure 1 .

## Morphine-d-Tubocurarine

Table 4 summarizes the control dati. Recumbent resting blood pressures measured by the Riva-Rocci method in the right arm on the evening before operation were not different from those recorded via radial arterial manometry- in Classes 11 and III, but tended to be elevated after radial cannulation in Class I. Heart rates did not change with arterial cannulation, but pulse pressure tended to be greater when measured invasively. There was no significant difference among classes in terms of any of the baseline values.
Tables 5 and 6 summarize the effects of anesthesia. The data are expressed as percentages of "after cannulation of madial artery" baseline values. There was no difference among the classes in their responses to anes-

Table 3. Halothane Group, Discriminant Functions

|  | DF $1^{-}$ | DF ${ }^{\text {P }}$ |
| :---: | :---: | :---: |
| Class I: No heart disease <br> Class H: Moderate heart disease <br> Class III: Severe heart disease | $\begin{aligned} & x<11.8 \% \\ & 11.8 \% \leq x<24.6 \% \\ & x \geqslant 24.6 \% \end{aligned}$ | $\begin{aligned} & y<37.6 \% \\ & 37.67 \leqslant \%<63.5 \% 0 \\ & y \geqslant 63.5 \% \end{aligned}$ |

[^3]thesia. Patients who had severe hoart diseane responded Lenerally as did the patients without heart disease to thiopental, morphine sulEate, and dTe. The differences reported as statistically significant all refer to the different times after drus injection. Thus, after thiopental injection, heart rates increased, LDET was shortened, and PEP and PEP/LVET increased. MS and dTe injections were followed by similar changes. but now SBP and PP also decreased. The SBP' and LIET eflects were short-lived. The PEP effect developed more slowly and was largely responsible for the sustaned increase in PEP/IVET ratio.

## Discussion

In most other studies reported in the Iteratture, measurement of systolic time interals has been done manually, using high-speed paper tracings, a time-consuming and retrospective manetwer. Several computerized systems for off-line detection of systolic time interals have been developed. Our system
offers an opportunity to use systolic time intervals in a real-time setting. This application may become important for operating room monitoring only if these techniques offer the anesthesiologist new information that is clinically useful.
Many studies have confimed the close relationship between the daration of systolic time interals and various physiologic and phamacologic alterations of cardiac function. ${ }^{11}$ - ${ }^{2}$ In general, these studies have established that a decrease in stroke volume or cjection fraction is accompanied ly an increase in the PEP/LVET ratio, that in acute increase in afterload will result in prolongation of PEP, ${ }^{13}$ and that an increase in heart rate induced by atropine or atriat pacing will be accompanied beashortening of LVET withont change in PEP.'" Additionally, drugs associated with either positise or negative inotropic effects, such ats inoproterenol and proprinolol, are associated with either shortening or lengthening of PEP. These changes in PEP have been shown to correlate closely

Thale d. Morphine-d-Tubocurarine Croup, Baseline Data before Induction of Anesthesia

|  |  | Clan <br> Minderate He.str Dive.... 12 P.tiant | $\begin{gathered} \text { Clam IIt } \\ \text { sovere herse } \\ \text { Divene } \\ 12 \text { P.tientive } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Number of patients taking dracs* | 0 | 6 | 7 |
| Age (years), mean and range | $\begin{gathered} 45 \\ 31-6 s \end{gathered}$ | $\begin{gathered} 54 \\ 35-66 \end{gathered}$ | $\begin{gathered} 60 \\ 50-72 \end{gathered}$ |
| Pre-ejection period (PEP) (mser) | $\begin{aligned} & 53 \\ & (\overline{5}) f \end{aligned}$ | $\begin{aligned} & 92 \\ & (5) \end{aligned}$ | S6 <br> (5) |
| Left ventricular ejection time (L'ET) (msec) | $284$ (7) | 283 <br> (9) | $\begin{aligned} & 293 \\ & (10) \end{aligned}$ |
| PEP/LVET | $\frac{.29}{(.02)}$ | $(.32$ | $\begin{gathered} .29 \\ (.03) \end{gathered}$ |
| Systolic hood pressure (SBP) (mm Hy) (alter cammatation of radial arter:) | $\begin{aligned} & 161 \\ & (12) \end{aligned}$ | $\begin{gathered} 153 \\ (9) \end{gathered}$ | $152$ <br> (4) |
| Pulse pressure (PP) (mm Hg (after cimntiation of radial artery) | 67 <br> (S) | 71 <br> (8) | 70 <br> (5) |
| Heart rate (HB) (min ${ }^{-1}$ ) | so <br> (-4) | 76 <br> (4) | $74$ (3) |
| Systolic blood pressure (SBP) (mm Hg) (evening before operation) | $135$ <br> (5) | $150$ <br> (6) | $1+7$ <br> ( 7$)$ |
| Pulse pressure (PP) (mm Hgr) (evening before operation) | $50$ <br> (5) | 35 <br> (6) | 56 <br> (6) |

* Number of patients taking one or more dnugs for treatment of eardionascular disease (indudes antibepertensives, diureties, antiarhythmics, vasodilators, glycosides, heta bockers).
$\dagger$ Figures in parentheses are standard errors.

Table 5. Mophaine-d-Tubocurarine Group, Thiopental-induced Changes in Cardionatacular Sariables in Percentages of Baseline Data*

|  |  | Jathe. I'tionute (1) | Prometion ferian! " 1 EEP | 1.eft Deaticular Finctun Tuar (WET) | PEPALET | He.att Histe (1111) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thiopental, 4 mgket Cliss 1 | 95 | 95 | 111! | 861 | 130t |  |
| Class II | si | S0! | 1121 | S98 | 1291 | 128 |
| Class 111 | 96 | 86 | 1219 | S61 | 1.17! | 1241 |

*See talile 4 .
† Data recorded at peak PEB/LVEI response to thiopentai.
i $P<0$. 0 : The response diftered significantly from the baseline response.

Table 6. Mophine-d-Tuboenrarime Cromp, Amesthesia-induced Chames in Cardionascular Varialbles in Percentages of Baseline Data*

|  |  |  | 1'se-arjertinti Period [1FT? | IC It Mentriculat Einctian Tillur (I.VET) | PEFINET | He.ort Rate (114) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Early } \\ & \text { Class } \\ & \text { Class II } \\ & \text { Class III } \end{aligned}$ | $\begin{gathered} 88 \\ 8: \\ 86 \\ 1 \end{gathered}$ | $\begin{gathered} 7.3 \\ 66 \\ 80 \\ i \end{gathered}$ | $\begin{aligned} & 111 \\ & 105 \\ & 106 \end{aligned}$ | $\begin{gathered} 94 \\ 93 \\ 93 \\ 1 \end{gathered}$ | $\begin{gathered} 121 \\ 116 \\ 117 \\ 1 \end{gathered}$ | $\begin{gathered} 121 \\ 125 \\ 126 \\ 1 \end{gathered}$ |
| Middle Class 1 Class II Class III | $\begin{aligned} & 9.3 \\ & 9.5 \\ & 8 . \end{aligned}$ | $\begin{gathered} 64 \\ 50 \\ \mathbf{6 0} \\ 1 \end{gathered}$ | $\begin{gathered} 130 \\ 117 \\ 123 \\ 1 \end{gathered}$ | $\begin{aligned} & 95 \\ & 99 \\ & 97 \end{aligned}$ | $\begin{gathered} 135 \\ 119 \\ 131 \\ 1 \end{gathered}$ | $\begin{aligned} & 113 \\ & 111 \\ & 111 \end{aligned}$ |
| Lite Class I Class II Class III | $\begin{aligned} & 90 \\ & 98 \\ & 99 \end{aligned}$ | $\begin{aligned} & 66 \\ & 85 \\ & 94 \\ & 1 \end{aligned}$ | $\begin{gathered} 129 \\ 116 \\ 126 \\ 1 \end{gathered}$ | $\begin{aligned} & 95 \\ & 95 \\ & 95 \end{aligned}$ | $\begin{gathered} 154 \\ 19.9 \\ 131 \\ \vdots \end{gathered}$ | $\begin{aligned} & 109 \\ & 113 \\ & 110 \end{aligned}$ |

*See table 4.
i Data were averaged for patients during the first 5 minutes (early), and $10-20$ minutes (middle) and 35-10 (late) mintes atter injection of $d T \mathrm{~T}$.
$\ddagger P<.01$ : The responses of all three grotus differed significantly from the baseline responses, by the Scheffe method.
with changes in the first derivative of left ventricular pressure ( $\mathrm{dP} / \mathrm{d} \mathrm{d}$ ), a well-accepted insasive measurement of myocardial contractility. ${ }^{\text {.112t. } 14}$

Anesthetic agents penerally have a depressant action upon the myocardium, as shown by changes in left ventricular force, stroke volume, and STI. ${ }^{15} 16$ Thiopental in doses of 2 to $5 \mathrm{mg} / \mathrm{kg}$ body weight has been shown to decrease myocardial function, as expressed by a prolongation of PEP and an increase in the PEP/LVET ratio. ${ }^{15}$ This is in agreement with our findings in that the thiopental inductions in all three classes of patients were followed by the same qualitative responses.

The depressant action of halothane upon the cardiovascular system appears to be upon the myocardium, the peripheral vascular beds, and the autonomic nervous system. ${ }^{17-20}$ Halothame sulstantially alters myocardial contractility and changes regional blood flow and resistance bey a direct vasodilating action as a function of concentration of anesthetic and duration of administration. The negative inotropic action of halothane upon the heart was shown previously to prolong PEP, ${ }^{\text {s }}$ and this was confinued in our patients, in that the initial inhalation of 1.5 per cent halothane produced a lengthening of PEP and an increase in the PEP/LVET ratio.
halothane, 0.75 per cent alveolar. ${ }^{* T}$ A decrease in $1 /$ PEP $^{2}$ corresponds to a lengthening of PEP. The fact that, in our study, PEP started to lengthen significantly only 10 minutes after injection of $d$-tubocurarine mas have resulted from the different anesthetic regimen. The longer-lasting changes of PEP seen in our study are not readily explained, as several mechanisms may have been at work. Prominent among them may be ganglionic inhibition by dTc,as and the cardiovascular effects of MS, $\%=2 \mathrm{n}$ nitrous oxide, ${ }^{30.311}$ and surgical stimulation during light anesthesia.

The study allows two general statements about STI: 1) These nonimasively obtainable indicators of cardiac function cam offer infomation about anesthetic effects on the heart that is not available to the clinician who has to rely on the electrocardiogram and noninvasively obtained blood pressure recordings. 2) During halothane-but not during MS-dTc-anesthesia, patients who had heart disease showed significantly greater changes in STI than patients without heart disease.

These observations raise the question whether systolic time intervals would provide the anesthesiologist with clinically valuable information about the cardiovascular system of the anesthetized patient. We have shown that the changes in STI during halothame anesthesiatre more reliable indicators of existing heart disease than are the changes of SBP during halothame anesthesia. Yet, we do not know whether such information will lead to changes in anesthetic management or postoperative care that would lessen the morbidity and mortality of the perioperative period. Until it has been demonstrited that information provided by STI reduces perioperative morbidity and mortality, these measurements have to be accepted as a promising but not yet established monitoring technique for the surgical patient under inesthesia.

Neither do these studies suffice to draw the conclusion that anesthetic management with MSACTC is superior to that with halothane. While changes in STI as well as SBP were more pronounced during halothane than during MS-dTe amesthesia, particularly in patients with heart disease, the significance of such changes has not been assessed in this study. An evaluation of the intra- and postoperative complications of clinical importance with the two anesthetic management regimens
is nevessary before one mesthe tic approach can be finered oser another.

The athors that Min Rumber Siratis, R.N., for tecdancal assitance as mare edinician.

## References

1. Lownatein F: Morphime":Anerthesia"-a per-
 $19 \% 1$
2. Comaham T] III, Ominsky AJ, Wollman It, et al: A prospective random comparison of halothane and marphime for open-heant anes-
 (x:9 35:528-535. 197:
3. Weisvler AM. Garrard CL.: Systolie time interwh in canlian disease (D). Surd Come Cartiovase Dis -40:1-4, 197!
4. Wernder AM. Garrad Cl.: Systolic time intersal in cardiac divease (II). Mod Cone Cardiobase Dis -40:5-S. IM 1
5. Weaver PC: A study of the cardiovaseular effects of hatothame. Ann R Coll Surg Engel 19:114-1:36. 19:1
6. Garrard CL Jr. Weissler AM. Dodge HT: The relationship of alterations it systolic time interaals to ejection fraction in patients with

7. New York Heart Association: Diseate of Heart and Blood lessels: Nomenclature and Criteria for Diamoses. Sixth edition. Boston. Little, Brown, 1964
S. Kitoma PG. Divers RT, Franck JB, et al: Systolic time intervals: On-line computation in the surgical patient. Proc San Diego Biomed Symp 1:115-117. 1973
8. Dixen WJ (editor): BMD Biomedical Computer Program. C'nisersity of Californial Press. Berkeler, $19 \pi 3$
9. Harris WS, Schoenfeld CD. Weissler AM: Effects of adrenergic receptor activation and blockade on the systolic precejection period. heart rate and arterial pressure in man. J Clin liwest 46:170+-1\%1-4. 1967
10. Metzger CC. Chough CB. Kroetz FW, et at: True isovolamic contraction time. Aln J Cardial 25:4.3-4.42 1920
11. Tather RC. Mever JF Miciay JL: Evaluation of the pre-ejection period as an estimate of myocardial contractility in dogs. Am J Cirdial 27:354-301. 1971
12. Weissler AM, Harris WS, Schoenfeld CD: Bedside techniques for the evalmation of ventricular function in man. Am J Cardiol 23 : 5.7-553, 1969
13. Gleason WL. Bramwald E: Studies on the first derivative of the sentricular pressure pulse in man. IClin Insest 41:80-91, 1962
14. List WF, Hiotakis K, Grweustein JS: Die Wirkung von Thiopental anf die Myokardfinktion. Anterthesist 이: 38: -390, 19:2
15. Price IIL. Helrich M: The effect of eyclopror
pane, diethyl ether. nitrons oxide. thiopental, and hydrogen ion concentration on the myocardial function of the dog heartJumg preparation. J Pharmacol Exp Ther II5: -06-늬.6, 1955
16. Eger EI II, Smith NT, Stoeftims RK, et al: Cardiovascular effects of halothane in man. ANESTHESOLOGY 32:396-409. 1970
1S. Eger EI II, Smith XT, Cullen DJ, et al: A comparison of the cardiovasealar effects of halothime, flarovene, ether and eychoropane in mam: a resumé. ANesthesiologi 34:2541. 1971
17. Vitner SF, Smith NT: Effects of halothane on left ventricular function and distribution of recional blowd fiow in dogs and primates. Cire Res 34:155-165. 19:-
18. Snith NT, ELer EI II, Stoeltimer RK, et al: Cardiovascolar effects of halothame in man. JIMA 206:1495-1409. 1965
19. Price HL, Helrich M: The effect of eychopropane diethyl ether, nitrous onide, thiopental and hydrogen ion concentrition on the myocardial function of the dog heart-lung preparation. J Phannacol Fxp Ther I IS̃: 206.1955
20. Brown J.I: Anesthesia and the contractile forct of the heart. Anesth Analg (Cleve) 39:4Si$49 \mathrm{~S}, 1960$
21. List WF. Risler B. Knate-Kinz J: Vernosermus der Myokardfunktion von dimorsisehen Alterspatienten dureh Einacldosell vom BetatMethyldigoxin. Med Klin 6s: 10sis- 1056. 197.3
22. Flacke IV, Atanackovic D, Gillis RA. et al: The actions of histamine on the mammalian heart. J Phamacol Exp Ther L̄̄5:271-27.7. 1967
2.5. Munger WL, Miller RD. Stevens WC: The dependence of $d$-tabocurarine-indaced hypotension on alveolar concentration of halothane, dose of d-tubocurarine, and nitrous oxide. Anesthestology 40:-42-445, 1974
23. McCullough LS, Reier CE, Delaumois AL, et al: The effects of $d$-tubocmarine on spontaneous postganglionie sympathetic aetivity and histamine release. Anesthestology 33: 329-334, 1970
24. Wong KC, Martin WE. Hormbein TF, et al: The cardiovascular effects of morphine sulfate with oxygen and with nitrons oxide in matn. ANESTHESIOLOGY 3S:542-549, 1973
-2S. Zelis R, Mansotr EJ, Capme RJ, et aI: Cardiosascular effects of morphine. J Clin Iment 54: 13-47-1255. 197.4
25. Lappas DG, Buckley MJ, Laver MB, et al: Left ventricular performance and pulmonary circulation following additions of nitrous oxide to mophine during coronar-artery surgery. Anestitesiologi 43:61-69, 1975
26. MeDemott RW, Stanley TH: The cardiovascular effects of low concentrations of nitrous oxide during morphine amesthesia. Anesthesiology 41:89-91, 1974

[^0]:    *Assistant Professor, Department of Anesthesiology:
    $\dagger$ Instructor, Department of Anesthesiology.
    $\ddagger$ Resident, Department of Anesthesiology. University Hospitals of Cleveland.
    § Craduate student. Department of Biomedical Engineering.

    Associate Professor, Department of Biomedical Engineering.
    ** Associate Professor, Department of Surgery.
    if Assistant Professor, Department of Biometry:
    I! Professor and Director. Department of Anesthesiology.
    Received from the Departments of Anesthesiology, Biomedical Engineering, Biometry, and Surgery, Case Western Reserve University, Cleveland, Ohio +4106 . Accepted for publication January 25, 1976. Supported by Grant GM-19599 from the National Institutes of General Medical Sciences.
    This work is dedicated to the late N. B. Andersen, M.D., esteemed colleague and friend of the authors, who initiated this investigation.
    Address reprint requests to P. J. Dauchot, M.D., Department of Anesthesiology, University Hospitals of Cleveland, 2065 Adelbert Road, Cleveland, Ohio 44106.

[^1]:    * Number of patients taking one or more drugs for treatment of cardiovascular disease (includes antilypertensives, dimeties, antiamhythmics, vasodilators, glycosides, beta blockers).
    $\dagger$ Figures in parentheses are standard errors.
    $\ddagger$ Significantly different from Class I ( $P<.05$ ), by Scheffe's method.
    See text for abbreviations and methods.

[^2]:    All responses (mean $\pm$ SE) are percentages of data shown in Table 1.
    $* P<.65$, significant difference from control, by the Scheffe method.
    $f P<.01$, simnificant difference from contrel.

[^3]:    - Discriminant Function 1, in which $x$ represents the percentage decrease from baseline in SBP during inhalation of halothane, 1.5 per cent.
    $\dagger$ Discriminant Function 2 , in which 9 represents the percentage increase from baseline in PEP/LVET ratio during inhalation of halothane, 1.5 per cent.

