Protective Effect of Hypothermia in Cerebral Oxygen Deficiency Caused by Arterial Hypoxia

Christer Carlsson, M.D.," Magnus Hägerdal, M.D.,* Bo K. Siesjö, M.D. \dagger

To study the cerebral protective effects of hypothermia in arterial hypoxia, anesthetized (70 per cent $\mathrm{N}_{2} \mathrm{O}$), mechanically ventilated rats were cooled to a body temperature of 27 C . Hypoxia was induced by decreasing the oxygen content in the inspired gas mixture either to 6-7 per cent or to 2.5-3 per cent. This reduced mean Pa_{6}, to about 25 and $11-12$ torr, respectively. At $\mathrm{Pa}_{\mathrm{c}_{2}} 25$ torr, there was no change in cerebral blood flow (CBF), cerebral oxygen consumption ($\mathbf{C M} \mathrm{R}_{0_{3}}$), or labile tissue metabolites. The absence of signs of cerebral hypoxia could be attributed to an effect of temperature and $\mu \mathrm{H}$ on the hemoglobin-oxygen dissociation curve. Thus, at 27 C with a $\mathrm{Pa}_{0_{2}}$ of 25 torr the total oxygen content (T_{c}) of arterial blood remained $>15 \mathrm{ml}(100 \mathrm{ml})^{-1}$, about three times the value obtained at this $P_{0_{x}}$ in normothermic rats. At Pa_{10} 11-12 torr, arterial $\mathrm{T}_{\mathrm{O}_{2}}$ was reduced to about $5 \mathrm{ml}(100 \mathrm{ml})^{-1}$. The hypoxia induced no change in CMR_{4}, a threefold increase in CBF, a moderate lactacidosis in the tissue, and a small decrease in phosphocreatinc content, but no change in ATP, ADP, or AMP. These changes are less marked than those occurring at the same arterial $T_{0_{2}}$ in normothermic rats. It is concluded that hypothermia exerts a pronounced protective effect on the brain in hypoxic hypoxia, and that two mechanisms are involved. First, since hypothermia shifts the oxy-hemoglobin-dissociation curve towards the left, and prevents or minimizes a rightward shift due to acidosis, it maintains a high T_{m} in arterial blood at a given $\mathrm{Pa}_{\mathrm{ys}^{\prime}}$. Second, by reducing

[^0]$\mathbf{C M R}_{0_{3}}$, and thereby presumably also cellularenergy requirements, hypothermia exerts a protective effect at the cellular level. (Key words: Brain,* hypoxia; Hypoxia, cerebral; Hypothermia, hypoxia.)

It is cenerally assumed that the brain can be protected against the harmful effects of a reduced oxygen supply by hypothermia, ${ }^{1-6}$ as well as by certain anesthetic drugs, notably the barbiturates. 5 With one excep- ${ }^{-\infty}$ tion," the protective effects have been tested $\frac{8}{8}$ either during complete ischemin or in experi- ${ }^{-}$. mental situations the clinical validite of whicho is unclear. There is thus a need for furthee studies of potentially protective measures that can be instituted in clinical conditions of cere $\frac{\overline{0}}{0}$ bral hypoxia.

Very little is known about possible pro $\frac{2}{f}$ tective measures in hypoxic hypoxia. In thist condition, the oxygen supply to the brain isu endangered because there is a reduction in the arterial oxygen tension $\left(\mathrm{Pa}_{\mathrm{o}_{2}}\right)$ and contento ($\mathrm{Ta}_{\mathrm{o}_{2}}$). It is now well established that evers pronounced hypoxic (or anemic) hypoxia can be tolerated without causing a reduction ing cerebral oxygen consumption $\left(\mathrm{CMR}_{\mathrm{y}_{2}}\right)$ or major derangement in cerebral energns state. ${ }^{\text {i-15 }}$ It has recently been shown thit $\mathrm{CMR}_{\mathrm{m}_{2}}$ is mantained at normal values everg if $\mathrm{Pil}_{0_{2}}$ is reduced to $20-25$ torr, and tha $\overrightarrow{8}$ the increase in cereloral blood flow (CBFP represents the main, if not sole, mechanisng that prevents energy failure. ${ }^{16-15}$ This conch sion is supported by experiments showing that conditions that interfere with the compeno ${ }^{-}$ satory increase in CBF, such as a fall in blood pressure or ligation of a carotid artery, alseo lead to energy failure at the tissue level. $11.19 .20^{0+}$

In the present experiments, we have studied the effect of hypothermia (reduction in body temperature by 10 degrees C) on the circulatory and metabolic responses of the brain to hypoxic lypoxia. To allow comparison with previous laboratory experiments per-
fonmed at nomal temperature, ${ }^{13-15} \mathrm{l}^{1} \mathrm{a}_{\mathrm{o}}$, was reduced during hypothermia to 25 torr for maximally 30 minutes. However, since this did not induce any measurable change in CBF or cerebral metabolites, and since hypothermia did not canse a pronounced decrease in arterial $\mathrm{T}_{0_{z}}$, Pius, was reduced further so as to
 the approximate value that nomothermic animals reached at $\mathrm{Pa}_{0_{2}}-5$ torr. It is shown below that hypothermia exerts a pronounced protective effect on the brain under the conditions of the experiments.

Methods and Materials

Since the experimental techniques and methods used in the present study have been described in previous commmenications from the laboratory, ${ }^{1+15.21=}$ only the general outlines are given here. All experiments were performed on unstarved male Wistar rats ($300-400 \mathrm{~g}$) anesthetized with $2-3$ per cent halothane, tracheotomized, and immobilized with tubocurarine chloride $\left(0.5 \mathrm{mg} \cdot \mathrm{kg}^{-1}\right.$, intravenously). Halothane wats then discontinued and the animals ventilated with 70 per cent $N_{2} O$ and 30 per cent O_{2} until hypoxia was induced. One femoral artery was cannulated for blood pressure recording and for sampling of blood. Rectal temperature was reduced to 97 C over a period of 30 minutes, ventilation being adjusted to maintain arterial blood $p H$ close to 7.4 . The animals were then allowed a stabilizing period of 30 minutes at the reduced temperature before hyposia was induced. This was achieved by reducing the oxygen concentration of the insufflated gas mixture, keeping the nitrous oxide concentration constant at 70 per cent. there were three series of experiments, and these are described separately.

SEries A

In this series both femoral arteries and one femoral vein were cannulated. Furthermore, the caudad part of the superior sagittal sinus was exposed by means of a small burr hole for sampling of cerebral venous blood. At the end of the 30 -minute stabilizing period (at 27 C body temperature), the oxygen supply was reduced to give either a $\mathrm{Pa}_{\mathrm{o}_{2}}$ of about 25 torr or an arterial $\mathrm{T}_{0_{2}}$ of about
$5 \mathrm{ml}-(100 \mathrm{ml})^{-1}$. During the last 20 mintes of the 30 -minute hypoxic period, ${ }^{107}$ xenon was added to the insufflated gas mixture. At the end of the saturation period, arterial and cerebral venous blood were stmpled for ${ }^{133} x$ enon and $\mathrm{T}_{\mathrm{O}_{2}}$. Then ${ }^{133}$ xenon idministrat tion was discontinued, and samples were again taken from artery and vein during desaturation. After 5 minutes of desaturation, a further determination of cerebral arteriovenous oxygen differences ($a-v D_{0}$) was made. These experiments thus served to measure CBF and $\mathrm{CMR}_{\mathrm{o}_{2}}$ after 30 minutes of hypoxia. During the measurements, blood from a donor rat was slowly infused intravenously to avoid a decrease in blood pressure duc to blood loss. (For method, see Norberg and Siesjō, 1974. ${ }^{73}$)

Semies B

In this series, the animals were prepared $\frac{0}{\circ}$. as in series A. However, ${ }^{133}$ xenon was not used to measure CBF; instead, arteriovenous oxygen content differences were measured $1,2,5,15$, and 30 minutes after induction of hyposia (reduction of $\mathrm{T}_{\mathrm{a}}^{2}$ to about 5 $\left.\mathrm{ml} \cdot(100 \mathrm{ml})^{-1}\right)$. CBF changes were calculated from a-vD $\mathrm{D}_{\mathrm{O}_{2}}$, assuming constant $\mathrm{CMR}_{\mathrm{O}_{2}}$. CBF is inversely proportional to a-v- $\mathrm{D}_{\mathbf{0}}$ according to the equation

$$
\mathrm{CBF}=\frac{\mathrm{CMR} \mathrm{O}_{\mathrm{O}}}{\mathrm{a}-v \mathrm{D}_{\mathrm{Oz}}} \cdot 100
$$

In addition, cerebral venous $P_{o_{2}}$ was measured after 5 and 30 minutes of hypoxia.

Series C

In these animals, only one femoral artery was cannulated and the superior sagittal sinus was not exposed. Instead, preparations were made for freczing the tissue in situ.: At the end of the 30 -minute hypoxic period, arterial blood was collected and the tissue was frozen for subsequent meaurements of glucose, lactate, and pyruvate (arterial blood) or glucose, lactate, pyruvate, phosphocreatine (PCr), creatine (Cr), ATP, ADP, and AMP (tissue).

Arterial blood $\mathrm{P}_{\mathrm{O}_{2}}, \mathrm{P}_{\mathrm{CO}_{3}}$, and $p \mathrm{H}$ were measured at $\underline{7} 7 \mathrm{C}$ using microelectrodes. Arterial and venous T_{O} were measured ac- N_{A} cording to the method of Fabel and Lūbbers. ${ }^{5 \sim}{ }^{-6}$ CBF was measured with the modi-

Table: 1. Rectal Temperatures, Mean Arteriad Blood Pressures, and Blood Gases in Hypothemic Rats at Two Hypoxic Levels and in Hypothennic, Nomoxic Rats

	Numik: of Jlats:	Tromeriature (C)	Mabr (turr)	$\begin{aligned} & \text { Pithn } \\ & \text { (tors) } \end{aligned}$	P.4is (tors)	HI
Hypothemiat-nomboxia	6	$\begin{array}{r} 27.1 \\ \pm 0.2 \end{array}$	$\begin{aligned} & 127 \\ & \pm 5 \end{aligned}$	$\begin{array}{r} 113.0 \\ \pm \quad 17.0 \end{array}$	$\begin{array}{r} 98.4 \\ =0.9 \end{array}$	$\begin{array}{r} 7.341 \\ =0.011 \end{array}$
Hypothennia-hypoxia $\mathrm{P}_{\mathrm{B}_{4}}=\mathbf{2 5}$ torr	6	$\begin{array}{r} \underline{26.7} \\ \pm 0.1 \end{array}$	$\begin{aligned} & 197 \\ & \pm 3 \end{aligned}$	$\begin{array}{r} 25.8 \\ \pm 0.7 \end{array}$	27.6 ± 0.8	$\begin{aligned} & 7.401^{*} \\ &= 0.00-4 \end{aligned}$
$\mathrm{P}_{3} \mathrm{~L}_{5}=12 \mathrm{tarr}$	6	$\begin{array}{r} 26.8 \\ =0.1 \end{array}$	$\begin{aligned} & 111 * \\ & \pm 2 \end{aligned}$	$\begin{array}{r} 10.8 \\ \pm 0.9 \end{array}$	$\begin{array}{r} 27.1 \\ \pm 0.4 \end{array}$	$\begin{array}{r} 7.345 \\ \pm 0.012 \end{array}$

Valtes are means $=$ SEMS. Statistical differences were calculated between the hopoxic groups and the nomoxic gromp.

Data for momoxic, hypothemic rats taken from Hagerdal et al.z1

* 1 < 0.01 .
fication of the Kety and Schmidt: method described by Norberg and Siesjo, ${ }^{33}$ using a partition coefficient for 1×3 xemon of 0.70 as determined by Hagerdal ef al. ${ }^{11} \mathrm{CMR}_{02}$ was calculated as the product of CBF and $\mathrm{a}-\mathrm{v} \cdot \mathrm{D}_{0}$, the latter taken as the mean of the two determinations.

Statistical differences were calculated by me:ans of Aspin-Welch's test. ${ }^{2 *}$

Results

Series A

As stated, two groups of rats were studied. In one, the Pitra was reduced to about 25 torr (steady-state value), and in the other, the oxy-
gen concentration was further reduced to give an arterial blood T_{02} of about $5 \mathrm{ml} \cdot(100$ $\mathrm{ml})^{-1}$. Table 1 compares the datat obtained in these groups with those previously published from this laboratory for normoxic, hypothermic rats. ${ }^{31}$ During hypothermia (and before hyposia was induced), Paco was adjusted to about 30 torr, to give an arterial pH of about 7.4. The restults show that moderate hypoxia (Pios about 25 torr) did not induce a change in blood pressure, but that severe hypoxia (Pion about 11 tort) gave rise to moderate hypotension. There was no significant decrease in pH in any of the hypoxic groups (see, however, below).

Table 2 contains the values for arterial and cerebral venous $\mathrm{T}_{\mathrm{O}_{2}}$, cerebral $: 1-\forall \mathrm{D}_{0}, \mathrm{CBF}$

Table 2. Arterial and Cerebral Venous Total Oxygen Content, Cerebral Arteriovenous Differences for Oxygen, Cerebral Blood Flow and Cerebral Oxygen Consumption in Hypothermic, Hypoxic Rats and Hypothermic, Nomoxic Rats

	Nimbler of Rats	Ta,	T mom	$\mathrm{ar}^{-1 \mathrm{D}} \mathrm{O}_{0}$	CBF	CMR
		$\mathrm{mal} \cdot(100 \mathrm{mil})^{-1}$			$\mathrm{mI} \cdot\left(\mathbf{1 0 0} \mathrm{g}^{-1} \cdot\right.$ minin $^{-1}$	
Hspothermia-normoxia	6	$\begin{array}{r} \underline{26.90} \\ \pm 0.70 \end{array}$	$\begin{array}{r} 19.60 \\ \pm 0.80 \end{array}$	$\begin{array}{r} 7.30 \\ \pm 0.90 \end{array}$	$\begin{array}{r} 82 \\ \pm 11 \end{array}$	$\begin{array}{r} 5.60^{2} \\ =0.10 \end{array}$
Hypothermia-byposia $\mathrm{Pa}_{\mathrm{a}_{\mathrm{oz}}}=25 \text { tort }$	6	$\begin{aligned} & 15.74 i \\ & \pm 0.65 \end{aligned}$	$\begin{aligned} & 10.14 \dagger \\ \pm & 1.24 \end{aligned}$	5.66 ± 1.02	112 ± 27	
$\mathrm{Pat}_{\mathrm{t}_{3}}=12$ torr	6	$\begin{aligned} & 4.481 \\ = & 0.35 \end{aligned}$	$\begin{array}{r} \frac{2.187}{0} \\ \pm 0.27 \end{array}$	$\begin{aligned} & \quad \frac{2.32 \dagger}{} \pm 0.20 \end{aligned}$	$\begin{array}{r} 248^{*} \\ =38 \end{array}$	$\begin{array}{r}5.40 \\ \pm 0.3 \\ \hline\end{array}$

Values are means \pm SEM.
Data for nommoxic, hypothermic rats taken from Hagerdal et al.:1

* $P<0.01$.
; $P<0.001$.

Table 3．Chimges in Hectal Temperature，Mean Aterial Blood Pressure，Arterial Blood ph，and Arterial and Cerebral Venous Blood Pcoz and $P_{0,}$ with Time after Induction of Hypoxia（Six Hats）

	$\begin{gathered} \text { Temur-rature } \\ \text { (C) } \end{gathered}$	MAH＇ （turi）	pit．	Prow （thrs）	1， （thort）	$\begin{aligned} & \text { l'oun } \\ & \text { (teris) } \end{aligned}$	\mathbf{I}_{1}
Just before induction of hypoxia	$\begin{array}{r} 26.9 \\ =0.1 \end{array}$	$\begin{aligned} & 141 \\ & \pm 2 \end{aligned}$	$\begin{array}{r} 7.419 \\ \pm 0.016 \end{array}$	$\begin{array}{r} 28.9 \\ =0.3 \end{array}$	32.2 $=2.5$	$\begin{aligned} & 123 \\ & \pm 7 \end{aligned}$	$\begin{array}{r} 31.70 \\ =1.0 \end{array}$
After induction of hypoxia 1 min	$\begin{array}{r} 26.7 \\ \pm 0.1 \end{array}$	$\begin{aligned} & 144 \\ & \pm 3 \end{aligned}$				$20.6 \dagger$ ± 1.0	宕
2 min	$\begin{array}{r} 26.7 \\ \pm 0.1 \end{array}$	$\begin{aligned} & 12+4 \\ & \pm 3 \end{aligned}$		－		14.91 ± 0.9	N0N0
5 min	$\begin{array}{r} 26.6 \\ \pm 0.9 \end{array}$	$\begin{aligned} & 1197 \\ & =1 \end{aligned}$	7.432 +0.021	28.2 ± 1.2	$\underline{88.7}$ ± 0.7	$13.0 \dagger$ ± 0.6	11.66 $\pm 0.6 \%$
15 min	$\begin{array}{r} \because 6.5 \\ \pm 0.9 \end{array}$	$\begin{aligned} & 120 \dagger \\ & =2 \end{aligned}$				$\begin{aligned} & 11.94 \\ & \pm 0.8 \end{aligned}$	¢
30 min	$\begin{array}{r} 26.6 \\ \pm 0.2 \end{array}$	$\begin{aligned} & 114 \ddagger \\ & \pm 4 \end{aligned}$	$\begin{aligned} & 7.367^{*} \\ = & 0.006 \end{aligned}$	$\begin{array}{r} 28.0 \\ \pm 0.7 \end{array}$	$\begin{array}{r} \geq 8.5 \\ \pm 1.0 \end{array}$	$\begin{array}{r} 11.01 \\ \pm 0.7 \end{array}$	$\begin{array}{r} 7.98 \\ \pm 0.50 \end{array}$

Values are means $=$ SEM．
＊$P<0.05$ ．
i $P<0.01$ ．
$1 P<0.001$ ．
and CMRR $_{6}$ for the groups in table l．At $\mathrm{P}_{\mathrm{i}}^{2}=25$ torr（inspired onggen concentration $6-7$ per cent），arterial $T_{0_{2}}$ was reduced to $16 \mathrm{ml} \cdot(100 \mathrm{~m})^{-1}$ ．At the same Pitos，normother－ mic rats show a reduction of $\mathrm{Ta}_{\mathrm{o}_{2}}$ to $4-5$ $\mathrm{ml} \cdot(100 \mathrm{ml})^{-1}$ ，as previously reported from this laboratory．${ }^{16-1 \times}$ In the hypothermic ani－ mals， $\mathrm{Pa}_{0_{2}}$ had to be reduced to 11 torr（in－ spired oxygen concentration 2．5－3 percent）to obtain such low values for Tito．There was no change in CMR_{6} ，during hypoxia．At $\mathrm{P} \mathrm{a}_{\mathrm{o}}$ ， 25 torr，$a-v D_{0}$ and CBF were not significantly altered from normal，but at Pitos 11 torr there was a threefold increase in CBF．

Series B

In this series，arterial and cerebral venous blood was sampled just before and $1,2,5,15$ and 30 minutes after induction of hypoxia （final $\mathrm{Pa}_{\mathrm{o}_{5}}$ about 11 torr）．Table 3 illustrates values obtained for body temperature，mean arterial blood pressure，arterial blood $p \mathrm{H}$ ，and arterial and venous blood $\mathrm{P}_{\mathrm{cos}_{3}}$ and $\mathrm{P}_{\mathrm{O}_{7}}$ ．Tem－ perature was maintained at $26.5-26.9 \mathrm{C}$ ．Mean arterial blood pressure fell by 20 torr after 2 minutes and remained significantly reduced during the hypoxic period．After 30 minutes of hyposia there was a small but significant
decrease in arterial blood $p \mathrm{H}$ ．Patco，remaine Φ 2S－29 torr．During hypoxia，the cerebrim arteriovenous P_{Co} difference was close t t $太$ zero．The Pa_{a} ，values show that arteriad hypoxia developed gradually．However，afte the first 2 minutes of hyposia，Pars wato below 15 torr，and after 15 minutes the valuex was close to that observed after 30 minuteso Cerebral venous $\mathrm{P}_{\mathrm{O}_{2}}$ was below 10 torr in all aninals after 30 minutes．

In figure 1 arterial and venous blood $T{ }^{n}$ values have been plotted against time of hypoxia．Also shown are the CBF changeso calculated from $\mathrm{a}-\cdot \cdot \mathrm{D}_{\mathrm{O}_{2}}$ on the assumption of si_{5} constant $\mathrm{CMR}_{\mathrm{O}_{5}}$ ．The results indicate that CBF approximately doubled during the first I－80 minutes，and that the full CBF response $(: 8$ threefold increase：$c f$ ．table 2）was obtaine ${ }^{8}$ within the first 5 minutes．

Series C

In these animals，the physiologic change $\frac{\stackrel{\oplus}{0}}{\infty}$ were similar to those of series A and $B O$ Thus，at the end of the 30 －minute hyposico periods，mean Patoz values were 24.2 ± 0 ．黑． and 12.3 ± 0.3 torr，and arterial $\mathrm{T}_{\mathrm{o}_{2}}$ values were 17.10 ± 1.20 and $4.36 \pm 0.16 \mathrm{ml}$－（ 100 F $\mathrm{ml})^{-1}$ ，respectively．Metabolite concentrations

Fic. 1. Changes in arterial and cerebral venous total oxygen content, and cerebral blood flow, with time after induction of hypoxia to Tal symbols indicate significant differences from control, $P<0.05$, and vertical bars, $=\mathbf{S E M}$.
in blood and tissue were compared with those previously reported from this laboratory for normoxic animals maintained at 27 C body temperature : $=$
Table $\&$ shows the lactate and pyruvate concentrations of arterial blood, and the calculated lactate/pyruvate ($\mathrm{La} / \mathrm{Py}$) ratios. At $\mathrm{Pa}_{0_{z}} 24$ torr, neither the lactate concentrition nor the La/Py ratio had changed significantly. At $\mathrm{Pa}_{02} 12$ torr, there was a threeto fourfold increase in lactate, and a significant increase in La/Py ratio.

Tissue metabolites are shown in table 5. Since the brains of the (previously de-0 scribed ${ }^{21,128}$) control groups were not extracted and analyzed simultaneously with those of the hypoxic groups, minor differences in metabolite concentrations should be ignored. In general, though, there was satisfactory 9 agreement between the control groups and 8 that representing mild hypoxia (Pias about 24 torr). Since animals maintained at $\mathrm{Paman}_{2} \frac{3}{N}$ 24 torr had an arterial blood $\mathrm{T}_{\mathrm{o}_{2}}$ exceeding $15 \mathrm{ml}(100 \mathrm{ml})^{-2}$ and did not show an in- ${ }^{-}$

Table f. Arterial Concentrations of Lactate and Pynuate and Caleulated Lactate/Pyrmsate Ratios in Hypothermic Hypoxic Rats and Hypothemic Nomonic Rats

	Niumber of tuts	L.utate	Prevate	LT?
		naxul ha^{-1}		
Hypothermia-nomoxia	6	$\begin{array}{r} \frac{7.20}{0.29} \\ =0.29 \end{array}$	$\begin{array}{r} 0.154 \\ =0.014 \end{array}$	$\begin{array}{r} 14.5 \\ \pm 1.1 \end{array}$
Hypothermia-hypoxia $\mathrm{Pa}_{\mathrm{O}_{2}} \approx \mathbf{2 4}$ torr	6	$\begin{array}{r} -2.91 \\ =0.10 \end{array}$	$\begin{array}{r} 0.173 \\ \pm 0.012 \end{array}$	$\begin{array}{r} 17.9 \\ \pm 1.3 \end{array}$
$P a_{03}=12$ tort	6	$\begin{gathered} 7.641 \\ =0.94 \end{gathered}$	$\begin{aligned} & 0.2 .261 \\ = & 0.010 \end{aligned}$	$\begin{gathered} 3-1.1 t \\ =1.2 \end{gathered}$

Values are means \pm SEM.
Data for nomnoxic, hypothermic rats taken from Hägerdal et al. $=$ | $P<0.001$.
cre:ase in CBF (table 2), the metabolite values obtained may be provisionally regarded as representing a nomal state. Differences between the two hypoxic groups were therefore calculated statistically. The results show that pronounced hypoxia ($\mathrm{P}_{\mathrm{a}_{\boldsymbol{r}}}$ about 12 torr) gave rise to a two- to threefold increase in lactate concentration, as well as to a significant increase in LadPy ratio and decrease in phosphocreative concentration. However, there was no change in ATP, ADP, or AMP and thas no sign of energy failure in spite of the pronounced reductions of $\mathrm{Pa}_{\mathrm{a}_{2}}$ and $\mathrm{Ta}_{\mathrm{a}_{2}}$ (see Discussion).

Discussion

When discussing the present results, it is essential to define the term "protection." In cerebral oxygen deficiency; whether it is caused by arterial hypoxia or by ischemia, there may be changes in function, metabolism or structure, each of which can be reversible or irreversible. In practice, a prophylactic and therapeutic measure could be defined as protective if it prevented or minimized functional, metabolic or structural changes that would occur in its absence. From a clinical point of view, it would be desirable to evaluate the final results of a hypoxic or ischemic insult, and thereby also the efficiency of prophylactic and therapeutic measures, from functional signs and symptoms. However, such indices are not easily studied in experimental animals and, in acute experiments,
it seems preferable to use biochemical indice: of tissure hyposia. There is evidence thate. maless tissue hypoxia gives rise to change of in adenine nucleotide levels, ne uronal cellulad damage does not usually result. ${ }^{\text {win }}$ When ne change in ATP, ADP, or AMP is observed $\frac{\stackrel{\rightharpoonup}{\circ}}{}$ one can tentatively conclude that any oxygert deficiency present is too moderate to induce neuronal damage. At such moderate levels of $\mathbb{}$ tissue hypoxia, the amount of lactate ace comulated in the tissue and the magnitude of decrease in phosphocreatine may serve aso provisional measures of severity of hypoxia.
In hypoxic hypoxia, physiologic "protec tion" is provided by an increase in CBF The mechanisms of this increase have not been clarified. However, there are reasons to believe that hypoxia, at least when severe, leads to maximal vasodilatation and that, aco cordingly, CBF varies passively with the perfusion pressure. It follows from this thato prophylactic and therapeutic measures could 8 be protective if they either improve tissue perfusion or reduce the metabolic require ${ }^{2}$ ments of the tissae. Since cerebral vasodilation tion may be maximal, improventent of CBF should oceur mainly via an effect on perfusion pressure.
The present results should be considered it? relation to these obtained during hypoxia ine nonmothermic amimals. At a body temperature of 37 C , reduction of $\mathrm{Pa}_{0}=$ to 25 torr gives $\frac{2}{\mathrm{~N}}$ rise to an increase in CBF to about 500 peri cent of nomal, an increase in tissue lactate ${ }^{+}$ content to $8-10 \mathrm{mmol} \cdot \mathrm{kg}^{-1}$, a decrease of
phophocreatine by about 1 momol $\cdot \mathrm{kg}^{-1}$, and a small increase in ADP. ${ }^{1+15} .16$ is-18 at this Pithe aterial T_{or} falls gradually during the course of the 30 -minute hypoxic period to reach values of $4-5 \mathrm{ml} \cdot(100 \mathrm{ml})^{-1}$. This gradual reduction of Tase can be related to a progressive plasmatacidosis with ph values apmonaching 7.1 at 30 minutes.

In the hypothermic animals, reduction of Pian to 25 torr did not induce an increase in CBF , nor was there amy change in tissue metabolites indicative of tissue hyposia. Undoubtedle, this "protective" effect was partly. due to the fact that, in hepothermia, the arterial blood $\mathrm{T}_{\text {b }}$ did not fall below 15 $\mathrm{ml}-(100 \mathrm{ml})^{-1}, ~ i . e .$, Ti4m salues were about three times an high as those olserved in nomothermie animals at the same Pator. This can be attributed to two factors. First, a decreatse in temperature will be itself cause a shift to the left of the oxybemoglobin-dissociation curve. ${ }^{30}$ Second. hepothermia prevented the development of plasma acidosis and, therelo, the rightward shift of the curve that oceurs at nomal body temperature.

Evidently, if the hypoxic load is defined interms of Pane hypothermia has aprononnced protective effect. Since this does not necessarily reflect any protective effect at tissue level. Pites was reduced further to yield an arterial $\mathrm{T}_{0,}$ of about $5 \mathrm{ml} \cdot(100 \mathrm{ml})^{-1}$. Even at this Pian level (I1-I2 torr), the planma acidosis was less promonaced than at Piom 25 torr in normothernic animals, and it must be concluded that hypothermia efficiently minimizes anaerobic production of lactate in peripheral tissues. At Pi4): 11-12 torr, the hypothermic animats showed a threefold increase in CBF (from $82=11$ to $245=38$ $\left.\mathrm{ml} \cdot(100 \mathrm{~g})^{-1} \cdot \mathrm{mir}^{-1}\right)$, i.e... there was a less marked increase in CBF than in normothermic amimals at comparable arterial T_{02} values (from $114=6$ to $516=41 \mathrm{ml} \cdot(100 \mathrm{~g})^{-1} \cdot \mathrm{minin}^{-1}$. see Jöhamsson and Siesjö'i). In itself, this does not prove that hypothermia is associated with less marked tissue hyposia. Thus, hypothermia might well limit the circubatory response to hypoxia, e.g., be its influence on blood viscosity, and the low venous blood P_{0} values obtained suggest that tissue hypoxia might have been present. However, the tissue analyses demonstrate that the hypothermic animals had metabolic changes

	Numbers Hf HaN	6111	1.1	1')	1.01's	$I^{\prime}(t$	C 1	NT'	A1)	A.11'
Normothermia-nomosoxa	6	$\begin{array}{r} 5.6 .4 \\ \pm 0.1 .1 \end{array}$	$\begin{array}{r} 1.86 \\ \pm 0.08 \end{array}$	$\begin{array}{r} 0.137 \\ \pm 0.00 .1 \end{array}$	$\begin{array}{r} 13.19 \\ \pm 0.5 \end{array}$	$\begin{array}{r} 1.86 \\ \pm \\ \hline 0.0 .4 \end{array}$	5.89 ± 0.12	$\begin{array}{r} 3.06 \\ \pm 0.020 \end{array}$	$\begin{array}{r} 0.2 .10 \\ \pm 0.003 \end{array}$	$\begin{array}{r} 0.032 \\ \pm 0.001 \end{array}$
Ilygotbermia-nommoxia	($\begin{array}{r} 5.07 \\ \pm 0.16 \end{array}$	$\begin{array}{r} 1.69 \\ \pm 0.09 \end{array}$	$\begin{array}{r} 0.101 \\ \pm 0.005 \end{array}$	$\begin{array}{r} 15.6 \\ \pm 0.9 \end{array}$	5.23 $\pm(0.0)(3$	5.54 ± 0.16	3.15 ± 0.02	$\begin{array}{r} 0.2 \cdot 45 \\ \pm 0.00 .4 \end{array}$	$\begin{array}{r} 0.031 \\ \pm \\ \pm 0.001 \end{array}$
Hypothermia-lypoxin $P^{3}: 43,202.1$ turr $1 \mathrm{l}_{\mathrm{h}_{4}} \Rightarrow 12$ torr	6 6	$\begin{gathered} 4.08 \\ \pm 0.12 \\ 1.588^{*} \\ \pm 0.16 \end{gathered}$	$\begin{aligned} & 1.00 \\ \pm & 0.04 \\ & 4.0761 \\ \pm & 0.08 \end{aligned}$	$\begin{aligned} & 0.135 \\ \pm & 0.00 .4 \\ & 0.1981 \\ \pm & 0.003 \end{aligned}$	$\begin{gathered} 1 \cdot 1.1 \\ \pm 0.3 \\ 20.51 \\ \pm 0.3 \end{gathered}$	$\begin{array}{r} 5.1 .1 \\ \pm 0.05 \\ \quad 1.711 \\ \pm 0.0 .4 \end{array}$	$\begin{aligned} & 5.55 \\ & \pm 0.05 \\ & 5.971 \\ & \pm 0.099 \end{aligned}$	$\begin{array}{r} 3.02 \\ \pm 0.0 .1 \\ 2.198 \\ \pm 0.013 \end{array}$	$\begin{array}{r} 0.974 \\ \pm 0.020 \\ 0.855 \\ \pm 0.003 \end{array}$	$\begin{array}{r} 0.035 \\ \pm 0.000 \\ 0.032 \\ \pm 0.001 \end{array}$
af al. ${ }^{22}$ Statistical diflerences were calcolated hetween the two hyposie gromps (see text). $\begin{aligned} & * P<0.05 \\ & 1 P<0.01 \end{aligned}$ 										

that were decidedly less pronounced than those observed at normothermia. This was evident in that, in hypothermia, only about half as much lactate accumulated as in normothermia, the decrease in phosphocreatine concentration was smaller, and no increase in ADP was observed. Therefore, it must be conchuded that the smaller increase in CBF reflects more moderate tissue hypoxia, rather than imability for further dilatation. This conclusion is supported by the fact that during hypercapnia hypothermic animals show increases in CBF to higher values than those presently observed. ${ }^{3 t}$

It should be emphasized that the present results were obtained in amimals anesthetized with 70 per cent nitrous oxide. Although there is the theoretical possiblity that the anesthetic may influence the response of the normothennic or hepothermic animal to hypoxia, two observations indicate that the effect, if any; should be small. Thus, 70 per cent $\mathrm{N}_{2} \mathrm{O}$ does not significantly decrease CMR_{02} in the rat (Carlsson, Hägerdal and Siesjö, 1975, in pres ${ }^{32}$). Furthermore, at 29 C the presence of 70 per cent $\mathrm{N}_{2} \mathrm{O}$ does not significantly alter the changes in intermediary metabolites induced by the hypothermia.:

In conclusion, the present results show that hypothermia exerts a pronounced protective effect on the brain in hypoxic hypoxia. This effect seems to involve two mechanisms. First, since hypothermia shifts the oxyhemoglobindissociation curve towards the left, and prevents or minimizes a rightward shift due to acidosis, it maintains a high total oxygen content in arterial blood at a given Pion. Second, by reducing CMR_{0}, and thereby presumably also cellular energy requirements, hypothermia exerts a protective effect at the cellular level.

References

1. Hirsch H, Bolte A, Schaudig A, et al: Uber die Wiederbelebung des Gehims bei Hypothermie. Pfluegers Arch 265:328-336, 1957
2. Anablawi IN, Brockman Sk: Protective effect of hypothermia on total occlusion of the cerebral circulation. Ann Surg 155:312-315, 1962
3. Boyd RJ, Connolly JE: Tolerance of anoxia of the dog's brain at various temperature. Surg Forum 12:405-410, 1961
4. White RJ: Preservation of cerebral function
during circulatory arrest and resuscitation: Hypothennic protective considerations. Resuscitation 1:107-115, 1972
5. Goldstein A Jr. Wells BA, Keats AS: Lnereased tolerance to cerebral anovia be pentobarbitalo Arch Int Pharmacodyn Ther 161:138-1+30 1966
6. Swith AL, Hoff JT, Nielsen SL, et all Barat biturate protection in acute focal cerebruly ischemia. Stroke 5:1-7. 1974
7. Gurdjian ES, Stone WE, Webster JE: Cerebrof metalolism in hepoxia. Arch Neurol Psyö chiatry 51:472-477, 1944
8. Kety SS, Schmidt CF: The effects of altered arterial tensions of carbon dioxide ande. oxygen on cerebril blood fow and cerebrat oxygen consumption of nonnal young meriत J Clin Invest 27:484-492, 1948
9. Sehmal FW. Betz E, Dettinger E. et als Energiestoffwechsel der Grosshirnrinde und Elektroencephalogramm bei Sauerstoffinan? gel. Pfluegers Arch 292:46-59, 1966
10. Cohen PJ. Alexander SC, Smith TC, et ald Effects of hypoxia and nommecarbia on cere $\stackrel{\rightharpoonup}{\sigma}$ bral hlood fow and metabolism in conscious. man. J Appl Physiol 23:183-159, 1967
11. Siesjö BK. Nilsson L. The influence of arteriad inypoxemia upon labile phosphates and uporno extra- and intracellular lactate and pyruatt concentrations in the rat brain. Scand J Clino Lab Invest 97:83-96, 1971
12. Duffy TE, Nelson SR, Lowry OH: Cerebra carbohydrate metabolism during acute hypoxia and recovery. J Neurochem 19:959-977 1972
13. MacMillan V. Siesjō BK: Brain energy metabon lism in hypoxemia. Scand J Clin Lab Investo 30:127̄-136, 1972
14. Bachelard HS, Lewis LD, Pontén U, et al:ồ Mechanisms activating glycolysis in the braing in arterial hypoxia J Neurochem 22:395-O 401, 1974
15. Norberg K, Siesjo BK: Cerebral metabolism in hypoxic hypoxia. 1. Pattern of activation oro glycolysis; a re-evaluation. Brain Res 86:31-ơ 44, 1975
16. Jöhannsson H, Siesjö BK: Blood fow and oxy-응 gen consumption of the rat brain in profoundo hypoxia. Acta Physiol Scand 90:281-2820 1974
17. Jöhannsson H, Siesjō BK: Cerebral bloodo flow and oxygen consumption in the rat ino hypoxic hypoxia. Acta Physiol Scand $93=$ ob 269-276, 1975
18. Borgström L, Jöhannsson H, Siesjō BK: The relationship between arterial P_{oz} and cerebralo blood flow in hypoxic hypoxia Acta Physiolo Scand 93:423-432, 1975
19. Salford LG, Plum F, Siesjö bk: Graded® hypoxia-oligemia in rat brain. I. Biochemicald alterations and their implications. Arch Neurod. 29:297-233, 1973
20. Salford LC, Siesjō BK: The influence of arterial hypoxia and unilateral carotid artery ${ }^{+}$
oechusion upon regional blood flow and metabolism in the rat brain．Acta Physiol Scand 9ㄹ：130－141，197．4
21．Hagerdal M．Harp J，Nilsson L，et al：The effect of induced hypothennia upon oxygen consumption in the rat brain．J Neurochem － $4: 311-316,1975$
29．Haycerdal M，Harp J，Siesjo BK：Effect of hypo－ thermia upon organic phosphates，klycolstic metaholites，citric acid eycle intermediates and associated amino acids in rat cercbal cortex．J Neurochem 2．4：743－7．49，1975
23．Norberg K．Siesjo BK：Quantitative measure－ ment of blood flow and onygen consmption in the rat brain．Acta Physiol Scand 91：15－1－ 164．1974
2．4．Ponten U．Rateheson RA．Salford LG．et al： Optimal freczing conditions for cerebral metabolites in rats．J Nurochem 21：11ロー 1135， 1973
25．Fabel II，Lübbers DW：Eine Schmelle Micro－ methode zur seriemminsigen Bestimmung der O_{2}－Konzentration im Blut．Pfuegers Arch $\mathbf{2 8 1}$ ： 32－33，1964
26．Borgström L．Hatuerdal M，Lewis L，et al： Polarographic detemination of total oxygen
content in small blowd samples．Scand J Clin Lab，Invest 34：375－380，1974
27．Kety SS，Schmidt CF：The nitrous oxide methode for the guantitative detemmanation of cerebris blood flow in man：Theory，procedure and nommal values．J Clim Invest $97.46-48$ ？ 1945
25．Welch BL：The generalization of＇Students ${ }^{\circ}$ problem when several different popmation
 19.47

29．Salford LC．Plam F，Brierly JB：Graded by poxia－oligemia in rat bram．II．Neuropathiow logical alterations and their implications N Arch Neurol 29：23－4－238， 1973
30．Brown WEL，Hill AV：The oxygen－dissociation curve of blood and its themodymamice basis．Proc Roy Soc Lond［Biol］94： $997 \frac{1}{2}$ 334，1923
31．Higerdal M，Harp J．Siesjo BK：Influence of changes in arterial $\mathrm{P}_{\mathrm{cos}}$ on cerebmal blood How and cerebral energy state during hopeo thermia in the rat．Acta Anaesthesiol Semon suppl 57：25－33， 1975
32．Carlsson C，Hagerdal M，Siesjo BK：The effec of nitrous oxide on oxygen consumption and blood flow in the cerebral cortex of the rap Acta Anaesthesiol Scand（in press，1975）

Alpha－adrenergic Blockade

PHENTOLAMINE AND MYOCARDLAL IN－ FARCTION Acute myocardial ischemia was produced by ligation of the left anterior descending coronary artery in 19 dogs．After the development of sustained ST segment elevation and arterial hypotension（systolic pressure less than 80 torr for 30 minutes）， phentolamine（ $2 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min}$ ）was administered intravenously for 20 minutes．Data were ob－ tained after myocardial infarction and 15 min － utes after phentolamine administration．Com－ parison was made with 11 dogs with similarly produced myocardial ischemia receiving only saline treatment．Acute myocardial ischemia resulted in reductions of heart rate，stroke index，cardiac index，stroke work inder，ar－ terial blood pressure， $\mathrm{dP} / \mathrm{dt}$ ，coronary－artery blood flow，coronary vascular resistance，and myocardial oxygen uptake．Left ventricular end－diastolic pressure（LVEDP），systemic vas－ cular resistance，and myocardial $A-V O_{2}$ dif－ ference increased．Phentolamine administra－ tion was accompanied by an increased mean cardiac index without change in LVEDP
or heart rate．Mean systemic vascular re sistance decreased while mean arterial pres每 sure increased．With improved cardiac per fonnance，coronary blood flow increased bso 41 per cent and myocardial oxygen uptakes by 21 per cent．Similar changes were not observed in control animals．The authors sugłt gest that phentolamine decreased myocardiab oxygen requirements by：1）decreasing syso temic vascular resistance and afterload； 25 antagonizing venous constriction，thereby deo creasing left ventricular end－diastolic volume （a decrease in heart size reduces myocardiab oxygen needs）．The authors suggest that the cautious use of alpha－adrenergic blockade can increase cardiac output without decreas ${ }^{5}$ ing arterial pressure．They further indicate that the enhanced coronary blood flow and decreased oxygen requirements may be ad응 vantageous elinically．（Nagasatia K，Vydeno JK，et al：Effect of Phentolamine on Cardiact Performance and Energetics in Acute Myo－ cardial Infarction．Circ Shock 2：5－11，1975．总

[^0]: * Senior Resident in Anaesthesia, Department of Anaesthesia, University Hospital, Lund.
 † M.R.C. Professor in Brain Metabolism; Head of Brain Research Laborator:, University Hospital, Lund.

 Received from the Brain Research Laborator: E-blocket, and the Department of Anaesthesia, University Hospital, Lund. Sweden. Accepted for publication August 25,1975 . Supported by grants from the Swedish Medical Research Council (project No $14 \mathrm{~N}-263$ and $1-1 \mathrm{~N}-2179$) and from the Swedish Bank Tercentenary Fund, and by USPHS Grant ROI NSO 7838-06 from NIH.

 Address reprint requests to Dr. Siesjö: Research Department 4, E-blcoket, University Hospital, S-2으, 85 Lund, Sweden.

