Systemic and Regional Blood Flow Changes during Halothane Anesthesia in the Rhesus Monkey

David W. Amory, M.D., Ph.D.,* John L. Steffenson, Cdr. (MC) USN, \boldsymbol{T} Ralph P. Forsyth, Ph.D. \ddagger

Abstract

The radionctive microsphere technique was used to determine regional blood How concurrently with other hemodynamic measurements before and during halothane anesthesia in monkeys. Eleven monkeys were studied during both spontancous and controlled respiration at 0.8 and 1.2 per cent end-tidal halothane concentrations; seven other monkeys served as controls. Halothane caused a significant decrease in arterial blood pressure due to decrease in both cardiac output and total peripheral resistance; pulse rate was also significantly decreased. At both Ievels of halothane anesthesia, significantly increased percentages of the cardiac output were delivered to the kidneys, lungs (bronchial artery), adrenals, and bone at the expense of the heart, skeletal muscle, chest wall, pancreas, and fat. There was little change in calculated resistance or proportions of the cardiae output delivered to the brain and skin at 0.8 per cent halothane, but at 1.2 per cent the vasculature of the brain dilated while that of the skin constricted. Relatively few hemodynamic differences between spontaneous and controlled respiration were observed. Four of the eleven experimental monkeys, whose body temperatures

[^0]were not maintained, had more severe decreases in arterial pressure and cardiac output; regional values in the hypothermic monkeys were similar to those in the monkeys whose temperatures were maintained, except that cutaneous vessels in the former showed marked vasoconstriction at both halothane concentrations. (Key words: Circulatory effects of anesthesia; Halothane; Radioactive microspheres; Cardiac output; Blood pressure; Regional blood flow; Peripheral resistance.)

Measurements of blood flow to an organ or tissue of the body usually necessitate placement of a flowmeter, plethysmograph, or similar device around the organ or a major blood vessel supplying it, or the determination of the arteriovenous difference for oxygen, dye, or another tracer using the Fick principle. Measurement of clearance rates of injected indicators has also been a useful technique. These methods have the disadvantage of mealsuring blood flow to a few areas of the body only.

A relatively new technique for measuring blood flow in many organs and tissues simultaneously has been reported. ${ }^{1 .}=$ It has the limitation of being restricted to use in experimental animals, and only intermittent, rather than continuous, measurements can be obtained. The technique consists of injecting nonrecirculating plastic microspheres labeled with different gamma-emitting radionctive nuclides into the left ventricle of the heart and, later, measuring the radionctivity in various organs and tissues. Using different isotopic labels at various intervals permits repeated measurements of regional blood flow in the same animal, uncomplicated by recent surgery or anesthesia. Recent studies by Forsyth ct al. ${ }^{5}$ and Hoffbrand and Forsyth "have validated these methods in the umanesthetized rhests monkey.

This investigation examines the effects of two concentrations of halothane-axygen anesthesia and compares the effects of spontaneous and mechanically controlled ventilation on the regional distribution of the blood flow and other cardiovascular variables in the monkey.

Methods

Subjects of the study were 18 male monkeys (Macaca mulatta) weighing 3.7 to 8.8 kg . Using sodium pentobarbital anesthesia (30 mg / kg iv), polyvinyl catheters were placed aseptically into the inferior vena cava and abdominal aorta via the left iliac vessels, and into the left ventricle through the left common carotid artery: All catheters were brought out through the skin near the umbilicus, and were continuously flushed ($0.5 \mathrm{ml} / \mathrm{hr}$) with heparinized (5 units $/ \mathrm{ml}$) 0.9 per cent NaCl solution to maintain patency. After recovery the monkeys were placed in primate-restraining chairs, modified to allow tilting to the supine position, inside sound-protected booths. Three to seven days were allowed for recovery from surgery, and during this period the 11 experimental animals were placed supine for several hours each day with their heads enclosed in a plexiglass box through which room air was pumped. This procedure was followed by a food reward, and by the day of the experiment the animals had adapted to this manipulation without undue excitement.

One hour before the experiment, each monkey was tilted to a supine position in the chair. The catheters were connected to P 23 Gb Statham strain gauges placed at the midthoracic level outside the booth; thus, all measurements, infusions, and blood sampling could be performed without disturbing the animal. Arterial, central venous and left ventricular enddiastolic pressures were continuously recorded on a Beckman type R recorder. Heart rate was also recorded with a cardiotachometer couple. Cardiac outputs were determined in duplicate by the dye-dilution technique of Hamilton. Indocyanine green was injected into the left ventricle and blood withdrawn at a constant rate with a Harvard pump from the catheter in the abdominal aorta and passed through a Waters $\mathrm{X}-302$ densitometer. All blood was returned after the dye curve had been obtained. Immediately before each cardiac output determination and microsphere in-
jection, arterial blood samples were analyzed for $p \mathrm{H}, \mathrm{P}_{\mathrm{CO}_{2}}$, and $\mathrm{P}_{\mathrm{O}_{2}}$ with Radiometer electrodes. Blood withdrawn was replaced with 0.9 per cent NaCl. Rectal temperature was monitored continuously with a Yellow Springs thermistor probe.

After baseline measurements had been obtained, 3 to 4 per cent halothane in oxygen was passed through the plexiglass box enclosing the monkey's head. A Foregger anesthesia machine utilizing a Copper Kettle for vaporization of halothane was used. When a sufficient depth of anesthesia had been achieved, the box was removed; the trachea intubated and the endotracheal tube was connected to a Summers T nonrebreathing system. Heating pads were placed under the backs of seven of the monkeys (average weight 5.7 kg) to maintain rectal temperatures of 37.5 C ; the other four experimental monkeys (average weight 4.4 kg) were not heated.

End-expired halothane concentration was continuously monitored with a Beckman LB-1 infrared analyzer. All experimental measurements were taken 45 minutes after the desired alveolar halothane concentrations had been achieved to insure that steady states had been reached. The second series of measurements followed the maintenance of 0.8 per cent endtidal halothane during spontaneous ventilation. During the next experimental period, ventilation was controlled with a Harvard animal ventilator. The volume was adjusted to main$\operatorname{tain} \mathrm{Pa}_{\mathrm{CO}_{2}}$ close to 40 mm Hg . Following the third set of regional blood flow measurements, anesthesia was increased to 1.2 per cent endtidal halothane; mechanical ventilation was continued. After the fourth series of regional measurements, each monkey was allowed to breathe spontaneously at 1.2 per cent halothane, and then the last set of measurements was made (see table 1).
Identical control studies were performed using seven monkeys (average weight 4.4 kg), with the animals supine. Four or five injections of microspheres were made, cardiac outputs were determined, and blood samples were taken at similar time intervals as with the II experimental monkeys, without any other manipulations.

The distribution of blood flow was determined by injecting a suspension of nuclide-labeled microspheres (50μ in diameter) through

Tanke 1. Hemodynamic Values before Each of Five Microsphere Injections of the
Seven Control und Seven Antisthetized Monkeys

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} \& \multicolumn{5}{|c|}{Spontaneous Ventilation} \& \multicolumn{4}{|c|}{Controlled Ventilation} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\substack{\text { Spontaneous } \\
\text { Yentilation }}\)
\begin{tabular}{c}
Fifth \\
(1.icrupphere \\
halothanent
\end{tabular}}} \\
\hline \& \multirow[t]{2}{*}{Gruap*} \& \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Firsat } \\
\text { Microsphere } \\
\text { (Baseline) }
\end{gathered}
\]} \& \multicolumn{2}{|l|}{Second Mincrosphere (0.5 per cent halothane)} \& \multicolumn{2}{|l|}{Third Nicromphere (0.S per cent halothane)} \& \multicolumn{2}{|l|}{Fourth Microsphere (1.2 per cent halothane)} \& \& \\
\hline \& \& Mean \& SD \& Mean \& SD \& Mean \& SD \& Mean \& so \& Mean \& SD \\
\hline Mean arterial pressure (mm Hg) \& \[
\begin{gathered}
\mathrm{C} \\
\mathrm{H}
\end{gathered}
\] \& \[
\begin{aligned}
\& 114 \\
\& 103
\end{aligned}
\] \& 16
14 \& \[
\begin{aligned}
\& 121 \\
\& 675
\end{aligned}
\] \& 17 \& 124
685 \& 21 \& \[
\begin{gathered}
11 S \\
52 \S
\end{gathered}
\] \& 21 \& 545 \& 15 \\
\hline Heart rate (beats/min) \& \[
\begin{aligned}
\& \mathrm{C} \\
\& \mathrm{H}
\end{aligned}
\] \& \[
\begin{aligned}
\& 182 \\
\& 170
\end{aligned}
\] \& 10 \& \(\underline{191}{ }^{157}\) \& 21
10 \& 197
1615 \& 11 \& \[
\begin{aligned}
\& 18 S \\
\& 146 \S
\end{aligned}
\] \& 24 \& 144§ \& 18 \\
\hline \[
\begin{gathered}
\text { Cardiac output (ml/ } \\
\min ^{-1} \mathrm{~kg}^{-1} \text { body weight) }
\end{gathered}
\] \& \[
\begin{gathered}
\mathrm{C} \\
\mathrm{H}
\end{gathered}
\] \& 316
354 \& 70
90 \& 301
246 \& 64 \& 312
\(236 \pm\) \& 65
44 \& \[
\begin{aligned}
\& 283 \\
\& 191 \ddagger
\end{aligned}
\] \& 73
58 \& 190* \& 31 \\
\hline Stroke volume (\(\mathrm{ml} / \mathrm{kg}\) body weight) \& \[
\begin{gathered}
\mathbf{C} \\
\mathbf{H}
\end{gathered}
\] \& 1.7
2.1 \& 0.4 \& 1.6 \& 0.4
0.3 \& 1.6
1.5 \& 0.3
0.2 \& 1.6
\(1.3 \ddagger\) \& 0.4
0.3 \& 1.3s \& 0.1 \\
\hline Total peripheral resistance (\(\mathrm{mmHg} / \mathrm{l}^{-1} / \mathrm{min} / \mathrm{kg}\) body weight) \& \[
\begin{gathered}
\mathrm{C} \\
\mathrm{H}
\end{gathered}
\] \& 377
312

36 \& 101
110

10 \& 417
$284 \ddagger$
37 \& 98
80

11 \& 409
$99.4 \ddagger$

39 \& 93
76
13 \& 436
$281 \ddagger$

$\mathbf{3 5}$ \& 105
65
15 \& 289 \& 84

\hline Left ventricular work $\left(\mathrm{mmHg} / 1 / \mathrm{min}^{-1} \mathrm{~kg}^{-1}\right.$) \& \[
$$
\begin{aligned}
& \mathrm{C} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 36 \\
& 36
\end{aligned}
$$
\] \& 10

8 \& 37
$16 §$ \& 11 \& 39
165 \& 13
4 \& 115 \& 15
5 \& 105 \& 4

\hline Arterial $\mathrm{P}_{\mathrm{O}}(\mathrm{mm} \mathrm{Hg})$ \& \[
$$
\begin{aligned}
& \mathrm{C} \\
& \mathrm{H}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 95 \\
& 93
\end{aligned}
$$
\] \& 11 \& 91

3385 \& 12

163 \& $$
\begin{gathered}
90 \\
2905
\end{gathered}
$$ \& \[

$$
\begin{array}{r}
6 \\
141
\end{array}
$$

\] \& \[

$$
\begin{gathered}
93 \\
3178
\end{gathered}
$$
\] \& 8

152 \& $307 \S$ \& 137

\hline
\end{tabular}

[^1]the left ventricular catheter. The suspensions, containing 5,000 to 15,000 microspheres ($1-3$ $\times 10^{\circ}$ counts $/ \mathrm{min}$ of isotope) are mixed with blood in the left ventricle and are distributed to each organ and tissue in direct proportion to its blood How. The microspheres are trapped in the organ arterioles. Recent studies by Hoffbrand and Forsyth * have verified the sensitivity and reliability of this technique, and have estimated that only about 0.1 per cent of the arteriolar tree of the monkey is embolized per infusion. The following nuclidelabeled microspheres were used: ${ }^{235} \mathrm{I},{ }^{1+1} \mathrm{Ce}$, ${ }^{51} \mathrm{Cr},{ }^{25} \mathrm{Nb}$, and ${ }^{85} \mathrm{Sr}$, thus enabling five separate blood flow determinations in the same animal. Cardiac output was measured before each microsphere injection, so that absolute determinations of regional blood flow and resistance could be calculated.

At the end of each experiment the animal was sacrificed with an injection of sodium
pentobarbital and 26 organs and tissues were removed, weighed, and placed in glass vials. The radioactivity of each vial was counted for four minutes using a Nuclear Chicago welltype scintillation counter. The radioactivity present in all of the tissues of major organs was counted, but only that in portions (20 to 25 per cent of total weight) of skeletal muscle, limb bone, skin, chest wall, skull, and spine was counted. The remaining tissues (about 2 per cent of the total body weight) were also counted, so that total-body radioactivity could be calculated. The amounts of calculated total-body radioactivity agreed well (± 10 per cent) with the measured amounts injected.

Energy distribution patterns were recorded on a pulse-height analyzer set to divide the output of the scintillation counter into 100 channels of 10 kev each. Since each of the nuclides used has a gamma emission spectrum
with a characteristic peak within the $0-1,000$ kev range, the amount of radioactivity for each organ could be determined. The counts from each chamel were recorded on paper punch tape and subsequently transferred to magnetic tape to enable the calculations of the amounts of each nuclide in each tissue to be performed with an IBM 360 computer. Corrections were made for those isotopes that have known "spillover" into other chamnels. The percentage of cardiae output to each organ was calculated as the amount of each nuelide's radioactivity in that organ, divided by the total body count of that nuclide. Flow to each organ was the percentage of the cardiac output times the cardiac output calculated from dye-dilution curves.

Organ resistance was calculated as the mean driving pressure (mean systemic arterial pressure minus central venous pressure) divided by the flow (liters $/ \mathrm{min}$) to that organ. Thus, the calculations of organ resistance assume that the arterial-venous pressure gradient in each organ is similar to that of the systemic measurements. While this assumption should be valid in most organs, the calculated resistance values in the coronary bed and in those organs contributing to portal-vein flow will be less valid.

The baseline regional values in the experimental and control groups were very similar to those previously reported by Hoffbrand and Forsyth, ${ }^{4}$ and are not repeated here. Changes in the proportion of the cardiac output, blood flow, and resistance/ 100 g tissue in each organ for each monkey during halothane anesthesia were expressed as percentages of the baseline values. These changes were compared with similarly calculated changes in the control group with the nomparametric MannWhitney U test.: The mean values of the systemic measurements before each microsphere infusion were compared directly with those of the control group using the t test.

Results

The hemodynamic values in the seven control and seven normothermic experimental monkeys are shown in table 1 . There were no significant changes in central venous and left ventricular end-diastolic pressures during anesthesia. Hematocrit values in both experimental and control groups were lower than
normal, ranging from 25 to 35 per cent. However, there was no significant difference between the two groups. Arterial $\mathrm{P}_{\mathrm{con}, \mathrm{p}}, \mathrm{pH}$, and body temperature were maintained at values comparable to the animals' baseline values, thereby eliminating any influences of these variables on blood flow. Mean values of $\mathrm{P}_{\mathrm{CO}_{2}}$ ranged from 36 to 40 mm Hg , while arterial $p \mathrm{H}$ values were between 7.42 and 7.46 in both control and experimental groups. There was a nonsignificant decrease in spontaneous respiratory rate, from a mean baseline value of $32 / \mathrm{min}$ to $27 / \mathrm{min}$ during 1.2 per cent halothane.

The regional blood flow values, expressed as percentages of the values obtained at the first microsphere injection, are shown for those major organs that had significant changes in the proportions of cardiac output delivered to them (table 2). The eyes and stomach received significantly less of the cardiac output and had increased resistance throughout anesthesia. The mesentery showed little change at 0.8 per cent halothane but received a significantly smaller proportion of cardiac output during both spontaneous and controlled ventilation at 1.2 per cent halothane. The other 11 organs had no significant changes in the proportions of cardiac output they received or their resistances, so their blood flows decreased in proportion to the decrease in cardiac output. These organs were the duodenum, jejunum, ileum, large intestine, cecum, spleen, liver (hepatic artery), spine, diaphragm, thyroid, and samples of lymph nodes.

At both levels of halothane anesthesia there were parallel decreases in percentages of cardiac output and blood flow to the heart and increases in coronary resistance. Subdivisions of the heart (atria, left and right ventricles, and septum) showed similar distributional alterations and, therefore, blood low and resistance changes. Different subdivisions of limb, bone, skin, and skeletal muscle were similarly affected. However, in the brain the proportions of cardiac output and blood flow to the cerebellum and brain stem were consistently higher (and never significantly less than baseline values) throughout anesthesia, compared with the right and left hemispheres and the diencephalon. Although insertion of the left ventricular catheter through the left carotid artery necessitated tying off the latter, no

Tante 2. Mean Regional Cirenlatory Changes in Organs Showing Most Significant Changes in Seven Monkeys Compared with Baseline Values during Italothate Anesthesia*

	Groupt	Cardiac Output (I'er Cent)		Fluw/mi/100 5		Resistance/100 2	
		Mean	sD	Mean	SD	Mean	sD
Heart	0.SS	718	15	:718	15	143	64
	0.S C	\% 0 S	17	495	19	$147 \ddagger$	50
	1.2 C	615	$\underline{3}$	378	$\underline{2}$	$171+$	66
	1.2S	6.58	63	305	17	14S \ddagger	45
Brain	0.5s	92	16	GH5	9	10.5	97
	0.5 C	95	16	6iss	IS	104	21
	1.2 C	1515	25	89	40	$6+5$	20
	1.2 S	123	27	715	15	765	14
Kidney	0.SS	1465	25	106	33	6s \ddagger	31
	0.5 C	14:38	35	101	44	7-8	24
	1.2 C	162§	35	98	46	605	19
	1.2 S	$144 \$$	38	S7	40	67 \%	21
Skin	0.85	115	23	S6	$\underline{10}$	90	53
	0.5 C	110	21	76	19	94	41
	1.2 C	6:5	$\underline{24}$	388	\cdots	16.	77
	1.2S	5 S	27	51§	21	113	$\underline{-3}$
Skeletal mustle	0.85	$4!3$	12	345	19	2085	74
	0.5 C	455	19	335	17	2335	102
	1.2 C	475	12	235	11	2115	57
	1.2 S	50§	12	345	10	1545	30
Limb lone	0.58	$170+$	(6)	124	57	$64 \pm$	34
	0.5 C	1 i 3	67	107	50	76	38
	1.2 C	144	63	8:3	49	76	31
	1.2 S	1.805	5	10.5	32	$0 \cdot 35$	1.5
Lutugs (bronchial artery)	0.5s	3 l 48	216	$\underline{2938}$	129	40s	30
	0.5 C	$491 \$$	52\%	3005	259	415	35
	1.2 C	4045	$\bigcirc 16$	291\%	125	315	23
	1.2 S	3598	275	$\underline{202+}$	130	湤荗	20
Pancreas	0.5 S	715	9	495	6	134	97
	0.S C	675	11	4.5	7	146	23
	1.2 C	5-5	11	$\stackrel{205}{ }$	12	186 ${ }^{+}$	51
	1.2 S	: NS	11	34	10	$1 \mathrm{SN}+$	21
Adrenals	0.55	141+	62	10.9	38	83	53
	0.5 C	159+	76	136	7 S	7-	63
	1.2 C	237\%	115	1.6	112	50\%	50
	1.2S	194	99	117	68	65_{+}	35
Chest wall	0.58	415	13	29§	9	2505	111
	0.5 C	478	11	323	7	21.25	37
	1.2 C	378	9	208	5	2615	56
	1.2 S	455	17	2S5	9	2005	24
Skull	0.85	2 L	110	155	80	515	20
	0.5 C	2018	SS	135	53	56	21
	1.2 C	145	77	S ${ }^{2}$	48	S0+	42
	1.2 S	20:3	s6	117	44	515	21
Fit	0.SS	515	9	35	5	1865	35
	0.5 C	465	19	318	14	2:3s	St
	1.2 C	27 §	11	15§	7	3895	147
	1.2 s	378	15	215	S	$\underline{295}$	13.5

* Values are percentages of baseline values.
\dagger © $0 . S$ and $1.2=$ per cent end-expired halothate $; S=$ spontaneous ventilation $; \mathrm{C}=$ cont rolled ventilation.
${ }_{+}+$Significuntly different (${ }^{\prime}<\mathbf{0 . 0 5}$, Mann-Whitney U test) from control group changes.
SSignifuanty different (${ }^{\prime}<\mathbf{0} 0.01$, Mam-Whitney U test) from control group changes.
preferential flow to the right hemisphere, compared with the left hemisphere was observed.
The data from four monkeys (not included in table 1) indicated that when rectal temperature was not maintained, the average decrease was $0.75 \mathrm{C} / \mathrm{hour}$, resulting in more than a $9-C$ decrease by the end of the experiment. These monkeys had initial values similar to those in the temperature-maintained group, but arterial pressure and cardiac output progressively decreased, compared with the temperature-maintained group, during the course of the experiment. At 1.2 per cent halothane mean arterial pressures averaged 24 mm Hg , cardiac output values $89 \mathrm{ml} / \mathrm{min} / \mathrm{kg}$, and heart rates 75 beats $/ \mathrm{min}$ in the hypothermic animals. The very severe decrease in systemic pressure and cardiac output in these monkeys indicate the necessity of maintaining body temperature, especially during deeper halothane anesthesia. There were similar changes in the redistribution of cardiac output. However, because output decreased much more drastically, particularly at 1.2 per cent halothane in this group, the reductions in regional blood flow were correspondingly greater. In contrast to the temperature-maintained group, in the hypothermic group proportion of output to skin decreased to 45 per cent of the baseline value at the second microsphere infusion and remained at 41 to 57 per cent of baseline throughout anesthesia.

There were no significant changes in the distribution of cardiac output in the control group during the course of the experiment. The largest change in distribution to the organs receiving more than 1 per cent of the cardiac output was an increase of 14 per cent to limb bone at the third microsphere injection. For those organs receiving less than 1 per cent of the cardiac output, the largest change was a 27 per cent increase to the adrenals at the fourth microsphere injection. These changes have been reported previously.

Absolute values of blood flow/ 100 g tissue in some of the major organs at the first and second (0.8 per cent halothane, spontaneous ventilation) microsphere injections of the seven control and seven normothermic monkeys are shown in table 3. The values for the halothane group tended to start at higher levels, due to the initially higher cardiac output.

Discussion

The radioactive microsphere method used in this report has the advantage of permitting quantitative serial determinations of blood flow to organs and tissues simultaneously in awake as well as anesthetized animals. This method, however, does not allow continuous measurements in any one organ, as do electromagnetic flowneters and plethysmography. Thus, the data in this study do not measure any early or fluctuating changes that may occur during anesthesia.

The duration of anesthesia, which in this study lasted three hours, may also affect the interpretation of results, since the anesthetic levels were administered in a fixed order. Several studies ${ }^{c-8}$ have indicated that there are time-dependent hemodynamic changes during halothane-oxygen anesthesia. One of these studies - noted that major time-dependent changes occurred only after five hours of anesthesia; thus, it seems unlikely these influences were a major factor in our results.
Although arterial $\mathrm{P}_{\mathrm{CO}_{2}}$ and pH values were not significantly affected by halothane, the very high $\mathrm{P}_{\mathrm{O}_{2}}$ levels resulting from the oxygen administered cannot be completely dissociated from the changes produced by halothane. The inhalation of 100 per cent O, has no effect on hepatic flow,' but does reduce renal blood flow somewhat. ${ }^{10}$ Cerebral circulation is not affected by the inhalation of 100 per cent O_{2} provided $\mathrm{Pa}_{\mathrm{CO}_{2}}$ remains normal. Reivich ${ }^{11}$ saw no effect on cerebral blood flow in monkeys over a wide $\mathrm{Pa}_{\mathrm{O}_{2}}$ range $(60-380 \mathrm{~mm}$ Hg). Similar results were obtained by Lambertsen in man. ${ }^{1:}$ The concentrations of halothane employed in most studies are inspired concentrations, whereas we measured end-expired halothane concentrations. The latter method is believed to reflect more accurately a constant depth of anesthesia, ${ }^{13}$ but introduces another variable in attempts to compare the results of this study with those of other studies.

The various hemodynamic effects of halothane compiled in table 1 have been well established and have been the subject of a recent review. ${ }^{14}$ The decreases in systemic blood pressure, cardiac output, and total peripheral resistance, as well as a negative chronotropic effect, have been observed in

Tanle 3. Absolute Values of Blood Flow ($\mathrm{ml} / 100 \mathrm{~g}$) in Some Organs in Response to U.S Per Cent Halothane during Spontaneous Ventilation

	Group*	Haveline		Halothane, 0.s Per Cent	
		Mean	SD	Mean	SD
Heart	C	366	142	310	195
	II	477	174	245	129)
Brain	C	75	19	74	19
	H	98	16	63	13
Kidney	C	1.121	544	1,129	526
	II	1,731	374	1,770	473
Skin	C	25	5	23	4
	H	27	9	22	9
Skeletal muscle	C	29	10	27	9
	II	19	5	6	2
Gastrointestinal tract \dagger	C	7S	30	76	32
	II	93	24	59	1:
Total splanchnie bed \ddagger	C	134	32	130	23
	H	142	45	98	-
Liver (hepatic artery)	C	41	37	52	34
	H	60	14	44	19
Lung (bronchial artery)	C	34	31	33	26
	H	25	12	49	20
Adrenals	C	267	104	30 S	37
	H	222	86	225	157
Chest wall	C	28	9	95	10
	H	- 5	6	9	4

* $\mathrm{C}=$ Seven control monkeys; II = Seven monkeys anesthetized with halothane.
\dagger Includes stomach, small intestine, large intestine, and cecum.
\ddagger Includes gastrointestinal organs, spleen, pancreas, and mesentery.
both man and animals. That left-ventricular end-diastolic pressure is not altered by halothane has also been observed by Hamilton ct al. ${ }^{15}$ in dogs. Our findings in the monkey are consistent with these previous studies.

In studies of the effects of halothane upon myocardial perfusion, ${ }^{16, \text { it }}$ there is general agreement that coronary blood flow is reduced. Our results concur with these findings. At all levels of anesthesia, regardless of the type of ventilation employed, consistent significant decreases in the proportion of cardiac output and coronary flow were observed, along with an increase in coronary resistance. The percentage decrease in coronary blood flow at each level of anesthesia was very simi-
lar to the percentage decrease in left ventricular work.

At 0.8 per cent halothane there was little change in the proportion of the cardiac output received by the brain; thus, blood flow decreased in proportion to the decrease in cardiac output. The decrease in cerebral blood flow was most marked at the lower (0.8 per cent) halothane concentration. This finding is in agreement with the work of Wollman ct al., ${ }^{18}$ which showed a consistent pattern of decreased cerebral blood flow in man during light anesthesia and increasing cerebral perfusion as anesthesia deepens. Cerebral vascular resistance decreased at 1.2 per cent halothane. It is unclear whether this resulted from auto-
regulatory mechanisms or from a direct vasodilating effect of halothame. ${ }^{14,15-21}$ When blood flow to the brain was decreased, the cerebral hemispheres and the diencephalon were affected most, while the brain stem and the cerebellum continued to be perfused normally. In humans, a decrease in hemispheric blood flow with a concurrent decrease in vascular resistance has been shown.:
Deutsch et al., ${ }^{3}$ using a para-aminohippurate clearance method, found a 35 per cent reduction in effective renal blood flow and a calculated 69 per cent increase in resistance when 1.5 per cent (inspired) halothane was administered to healthy men. Their results suggested that some vasoconstriction occurred in the efferent arterioles. Westermark and Wahlen ${ }^{z}$ measured renal venous flow in the cat by means of a drop-recording technique. With few exceptions, halothane caused a reduction of renal vascular resistance during increasing anesthetic depth, and they ascribe this to autoregulation and depression of sympathetic activity. Our results, similarly, showed renal blood flow to be well maintained as a result of decreased vascular resistance and a marked increase in the proportion of cardiac output received. Hoffbrand and Forsyth + recently slowed that microspheres in the descending aorta do not preferentially stream past the orifices of the renal artery, since after left ventricular injection there were very similar concentrations of microspheres in renal and femoral arterial blood.
Total hepatic blood flow (hepatic artery and portal vein) in humans $=50$ and in animals $=-=0$ is reduced by halothane. In this study splanchnic blood flow (portal vein) was decreased without a significant change in calculated vascular resistance. From similar findings in humans, Epstein and co-workers $:=$ concluded that the reduction in the blood flow is due to a decline in perfusion pressure secondary to arterial hypotension. These investigators also found that controlled respiration caused a significant reduction in flow and an increase in vascular resistance. This phenomenon was not manifested in the monkey. Dogs under halothane anesthesia and monitored by electromagnetic flowmeters have shown reduced hepatic arterial flow and resistance. $=s=3$ However, we found reductions
in blood flow which were proportional to the decreases in cardiac output and, thus, resistance remained unchanged.

We found little change in blood flow to the skin at the lower halothane concentration and a marked decrease in flow at the higher concentration. This finding is somewhat in agreement with results reported by Westermark,"" who recorded an initial increase in cutaneous flow in the cat, which decreased to below the control level as depth of anesthesia was increased. As might be expected, we found that core temperature plays an important role in regulation of blood flow to the skin. The four monkeys in which body temperatures were allowed to fall had significant vasoconstriction and decreased flow with 0.5 per cent halothane; further vasoconstriction occurred with a 1.2 per cent concentration.

Westermark ${ }^{* 0}$ also found increased resistance and decreased blood flow in muscle at every level of anesthesia. He proposed that the increased vascular resistance in muscle is possibly a reflevly-induced compensation for falling blood pressure. Lindgren et al. ${ }^{31}$ and Ngai and Bolme ${ }^{3 n}$ also found increased vascular resistance in cat and dog limbs, respectively. Brody and co-workers 33,34 demonstrated, in the dog, that the halothane-induced increase in vascular resistance in muscles resulted indirectly from liberation of the antidiuretic hormone, vasopressin. Two studies in man 35.3 using plethysmographic measurements on intact limbs disagree as to the direction of the change in blood flow. Our study indicates there are decreases in blood flow and increases in vascular resistance in all skeletal muscle, and in the chest wall, at both levels of anesthesia.
No previous studies of the influence of halothane on bronchial arterial flow have been reported. Silber ${ }^{57}$ noted an increase in regional pulmonary blood flow during spontaneous respiration with ether and nitrous oxide anesthesia; the flow decreased during controlled respiration. A change from spontaneous to controlled respiration caused no alteration in bronchial arterial blood flow in our study. Halothane has been shown to produce an increased blood flow in the pulmonary circulation. ${ }^{35}$ In the monkey there was an increase in bronchial arterial flow to the lungs and a
13. Eger EI II, Guadagni NP: IValothane uptake in man at constant alveolar concentration. Anesthesiolocy $\mathbf{2 H}: \mathbf{2 9 9 - 3 0 4 ,} 1963$
14. Coldberg AH: Cirdiovasenlar function and halothane: Halothane, Clinical Anesthesia. Edited by NiM Green. Philadelphia, F. A. Davis Co., 1968, pp 24-32
15. Hamilton WK, Lirson CP Jr, Bristow JD, at al.: Effect of cyclopropane and halothane on ventricular mechanics: A change in ventricular diastolic pressure-volume relationships. J Pharmacol Exp Ther 154:566-574, 1966
16. Alper MiI, Gillis RA, Flacke W: Actions of halothane and ether on coronary flow in the dog. Pharmacologist 9:186, 1967
17. Bagwell WW: Effects of halothane on coronary flow and myocardial metabolism in dogs. Pharmacologist $7: 177,1965$
18. Wollman H, Smith AL, Alexander SC: Effects of general anesthetics in man on the ratio of cerebral blood flow to cerebral oxygen consumption, Cereloral Blood Flow. Edited by M Brock, C Fieschi, DH Ingvar, et al. Berlin, Springer-Verlag, 1969, pp 249-243
19. Christensen MS, Hyedt-Rasmussen K, Lassen NA: Cerebral vasodiatation by halothane anesthesia in man and its potentiation by hypotension and hypercapnia. Brit J Anaesth 39:927-934, 1967
20. McDowall, DC: The effects of clinical concentrations of halothane on blood flow and oxygen uptake of the cerebral cortex. Brit J Anaesth 39:186-196, 1967
21. Wollman H, Alexander SC, Cohen PJ, et al.: Cerebral circulation of man during halothane anesthesia. Effects of hypocarbia and d-tubocururine. Anestilesiology $95: 180-$ 184, 1964
20. Christensen MS, Hyedt-Rasmussen K, Lassen NA: The cerebral blood flow during halothane anesthesia. Acta Neurol Scand 41 (suppl 14):152-155, 1965
23. Deutsch S, Goldberg M, Steve CW, et al.: Effects of halothane anesthesia on renal function in normal man. Anestiesiology 27:793-804, 1966
24. Westermark L, Wahlen A: Blood cirenlation in the kidney of the cat under halothane anesthesin. Acta Anaesth Scand 13:185208, 1969
25. Epstein RMI, Deutsch S, Cooperman LH, et al.: Splanchnic circulation during halothane anesthesia and hypercapnia in normal man. Anesthestolocy 27:654-661, 1966
26. Price HL, Dentsch S, Davidson IA, et al.: Can general anestheties produce splanchnic visceral hypoxia by reducing regional blood flow? Anesthesiology 27:24-32, 1966
27. Ahlgren K, Aronsen F, Ericsson B, et al.: Hepatic blood flow during different depths of aesth Scand 11:91-96, 1967
28. Calindo A: Ilepatic circulation and hepatic function during anesthesia and surgery. II. The effect of various anesthetic agents. Canad Anaesth Soc J 12:337-348, 1965
29. Galindo A, Brindle GF, Gilbert RGB: Hepatic circulation and hepatic function during anesthesia and surgery: IV. Halothane anesthesia. Canad Anaesth Soc J 13:328341, 1966
30. Westermark L: Haemodynamies during halothane anesthesia in the cat. Acta Anaesth Scand 35 suppl:20-25, 1969
31. Lindgren \mathbf{P}, Westermark L, Wahlen A: Blood circulation in skeletal muscles under halothane anesthesia in the cat. Acta Amaesth Scand 9:83-9t, 1965
32. Ngai SH, Bolme P: Effects of anesthetios on circulatory mechanisms in the dog. J Pharmacol Exp Ther 153:495-504, 1966
33. Akester JM, Brody MJ: Mechanism of vascular resistance changes produced in skin and
muscle by hatothatme. J Phannacol Exp Ther 170:257-293, 1969
34. Cristoforo MD, Brody MJ: Non-adrenergic vasoconstriction produced by halothane and cyclopropane anesthesia. Anesthesiology 29:44-56, 1968
35. Black GW, McArdle L: The effects of halothane on the peripheral circulation in man. Brit J Anaesth 34:2-10, 1962
36. Pauca A, Sykes MK: Upper limb blood-flow during thiopentone-halothane anesthesia. Brit J Annesth 39:758-765, 1967
37. Silber AP: Blood flow through lung and skeletal muscle in connection with anesthesia and controlled respiration. Acta Anaesth Scand 23 suppl:657-662, 1966
38. Litarczek G, Ionesau T, Litarczek D, et al.: Haemodynamic changes in the pulmonary and renal circulation during halothane and methoxyflurane anesthesia. Acta Anaesth Scand 23:643-648, 1966

Obstetrics

HYDRALAZINE, MATERNAL BLOOD PRESSURE AND FETAL CIRCULATION Hydralazine (Apresoline) is used therapeutically in toxemia of pregnancy to lower arterial blood pressure. The hypotensive effect has been reported to be associated with increases in cardiac output and in renal, cephalic, femoral, and splanchnic blood flows. The effects on uteroplacental and fetal circulations of hydralazine injected either into the mother or into the fetus or the neonate were investigated in near-term normotensive pregnant sheep. Intravenous doses of $0.2-$ $0.5 \mathrm{mg} / \mathrm{kg}$ given to the mother decreased maternal arterial pressure and uterine blood flow to equivalent degrees; uterine vascular resistance did not change. Although fetal cardiovascular function was not appreciably affected, fetal blood $\mathrm{P}_{\mathbf{0}_{2}}$ decreased significantly in the face of no change in maternal arterial $P_{o_{0 .}}$. When injected directly into the fetal circulation, hydralazine reduced fetal arterial pressure only after the administration of a dose 10 to 15 times that given to the mother; no alterations occurred in the fetal blood flow measured in the ascending aorta, the ductus, or the main pulmonary artery; fetal blood gases and $p \mathrm{H}$ remained unchanged. The lack of responsiveness of the fetus at term to direct administration of hydralazine suggests that the receptors acted upon by this drug may be incompletely developed (at least in the sheep) or that the magnitude of the placental circulation (a lowresistance system which contains the major portion of fetal blood volume) masks the magnitude of the vascular response within the fetus proper. Evidence for this is suggested by the fact that injection of hydralazine into the fetal circulation after the cord is clamped does produce a modest, albeit measurable, rise in blood pressure. (Lamer, C. N., Weston, P. V., Brinkman, C. R., III, and Assali, N. S.: Effects of Hydralazine on Uteroplacental and Fetal Circulation, Amer. J. Obstet Gynec. 108: 375-381 (Oct.) 1970.) Editor's comment: This represents a valuable study toward a fundamental understanding of differences between the responses of maternal and fetal circulations to hypotensive drugs. Caution must be exercised when transferring these data obtained in normotensive animals to the hypertensive pregnant subject. The authors do indicate that such studies in hypertensive animals and patients are presently under way. We look forward to these data with great interest.

[^0]: - Presently Second Year Resident, Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington 98105.
 \dagger Presently Assistant Chief of Anesthesiology. Department of Anesthesiology, Oak Knoll Navai Hospital, Oakland, Califormia $9+6627$.
 \ddagger Assistant Research Psychologist, Cardiovaseular Research Institute, Úniversity of California, San Francisco.

 Received from the Division of Clinical Pharmacology, ${ }^{\circ}$ Cardiovascular Researeh Institute, t and Department of Anesthesiology, f University of Califormia, San Francisco, San Francisco, California $941 \geq 9$. Accepted for publication March 24, 1971. Supported in part by National Institutes of Health Grints CM-01791, CMI-16496 and HE09964 , National Institutes of Health Program Project Grant HE-06285, and Public Health Service Research Career Development Avard 5-K3-HE-12, 974-05 (R. Forsyth). Presented at the American Society. of Anesthesiologists Ammal Meeting in New York, October $20,1970$.

 This paper was awarded conjoint First Prize in the Residents Research Essay Contest of the Americam Society of Anesthesiologists.

[^1]: * $\mathrm{C}=$ Seven control monkeys; $\mathrm{H}=$ seven halothane-treated monkeys.
 \dagger Values compared with those of the fourth microsphere infusion of the control group for signifieance tests.
 \ddagger Significantly different ($P<0.05, t$ test) from the control group.
 § Significantly different ($P^{\prime}<0.01, t$ test) from the control group.

