Myocardial Metabolism in Patients Having Aortic-valve Replacement

Emerson A. Moffitt, M.D.,* John W. Rosevear, M.D., \boldsymbol{i} Clary H. Townsend, M.D., \ddagger Dwight C. McGoon, M.D.S

Concentrations of metabolites and electrolytes in arterial and coronary sinus blood were studied in ten patients undergoing whole-body perfusion for aortic valve replacement. The study continued through three postoperative days. A comparison was made between five patients whose hearts were beating during perfusion and five whose hearts fibrillated. Oxygen consumption of the myocardium was reduced during hypothermic coronary perfusion; the reduction was greater in the beating hearts. Significant arterial-coronary sinus differences in electrolytes and osmolality were not seen. Arterial concentrations of energy metabolites utilized by the myocardium were elevated throughout operation, and all except glucose were utilized by the heart. Ketosis persisted after operation in the presence of abovenormal glucose levels. Other than greater consumption of oxygen during perfusion, no consistent difference was seen between the performances of hearts that fibrillated and those that continued to beat. (Key words: Myocardial metabolism, Aortic valve replacement, ElectroIytes, Oxygenation.)

Sunival after open-heart surgery depends ultimately on the continuing ability of the myocardium to maintain cellular function and

[^0]to do adequate work. Documentation of the response of myocardial metabolism to the stresses of whole-body perfusion and the post operative period may help to provide better ${ }_{-1}^{\circ}$ care and survival. Previous studies demon $\frac{n}{\overline{1}}$. strated the arterial concentrations of metabolites presented to the myocardium. ${ }^{1}$ The present study examines arterial and coronary sinuss levels of oxygen, acid-base parameters, elec $-\frac{\rho}{5}$ trolytes, and metabolites in ten patients during operation for aortic valve replacement and $\frac{0}{\circ}$ during the following three days.

Material

Patients

Two groups of five patients each, in whom Starr-Edwards aortic prostheses were inserted $\underset{\omega}{\stackrel{\rightharpoonup}{\omega}}$ for aortic stenosis or insufficiency, underwent identical studies. The heart continued to beatio during perfusion in one group and was elec-trically fibrillated in the other. The "beating" group included three women and two men, whose mean age was 44 years (range 24 to 68), mean weight 136 lb (range 103 to 187), , and mean surface area 1.65 sq m (range $1.4 \stackrel{\rightharpoonup}{\circ}$ to 2.0). Three patients had been taking digi-talis and two patients diuretics. Mean time of whole-body perfusion was 82 minutes (rangeo 70 to 94). The "fibrillating" group included two women and three men whose mean ageo was 56 years (46 to 65 years), mean weight t^{7} 162 lb (125 to 190), and mean surface area웅 1.83 sq m (1.54 to 2.04). Four patients had耳 been given digitalis and diuretics. Mean dura응 tion of whole-body perfusion was 91 minutess (range 80 to 101).
Clinically manifest low cardiac output did $\stackrel{\circ}{\circ}$ not develop in any patient, and no patient re- $\frac{-}{2}$ ceived assisted ventilation or catecholamine in fusion after operation. All patients survived. N

Methods

Anesthesta

As in the previous study, ${ }^{1}$ nitrous oxide, oxygen, and halothane were used, with halothane administration continued during perfusion. The tracheas were extubated at the end of operation.

Perfusion

The priming solution consisted of diluted acid-citrate-dextrose (ACD) blood, as noted in a previous paper. ${ }^{2}$ The mean rates of whole-body perfusion were 2.26 (beating group) and 2.20 (fibrillating group) $1 / \mathrm{min} / \mathrm{sq}$ m at 30 C . Both coronary arteries were perfused by separate pumps through plastic catheters while the aorta was open. Only the left coronary flow was considered for calculation of left ventricular oxygen consumption, since 80 to 90 per cent of the blood appearing in the coronary sinus drains the left ventricular myocardium. ${ }^{\text {? }}$ The left coronary pump and the arterial pump supplying the whole-body perfusion were calibrated volumetrically after each perfusion.

Sampling Schedule

Arterial blood was taken from the patient, or pump oxygenator (during perfusion), as shown in table 1. Samples were drawn simultaneously from the coronary sinus via a small catheter placed by the surgeon after thoracotomy. The catheter was brought out through the chest wall and used for postoperative sampling. Arterial samples were obtnined after operation from a left atrial catheter emerging through the chest wall, or from a peripheral artery.

Avalyses

Methods of analysis of the arterial and coronary sinus blood have been reported in a previous study. ${ }^{1}$ Tensions of oxygen and carbon dioxide, as well as pH , were determined, and temperature was corrected when lower than 36 C. Concentrations of calcium, sodium, and potassium were measured, and osmolality was determined by freezing-point depression (Fiske Osmometer, Model G). The energyproducing metabolites measured were nonesterified fatty acids (NEFA), total ketone

Table 1. Schedule of Obtaining Samples in
Patients with Aortic-valve Replacement during Open-heart Surgery

Event	Fiog_{2}	Temperature of patient.
Before perfusion*:		
Patient	0.40	35.5
Prime	0.97	25.5
5 min of left comnary peritision	0.98	31.3
Before rewarming	0.98	30.1
End of leit coronary periusion	0.98	34.4
30 min after perfusion	0.40	36
5 min after extubation	1.0	-
2 hours after operation	$0.4 \dagger$	
Day 2 , S:00 m	$0.4 \dagger$	-
:3:00 pa	$0.4 \dagger$	-
Diy 3, S:00 .m	$0.4 \dagger$	-
3:00 rm	$0.4 \dagger$	-
Day 4, S:00 ma	$0 . t \dagger$	-
\%:00 rm	$0.4 \dagger$	-

* Arterial sample only was drawn before induction, breathing air. Coronary sinus samples were also drawn at all other titnes.
\dagger Approximate.
bodies, glucose, lactate, and pyruvate. Levels of blood glucose were determined in an AutoAnalyzer (Technicon Instruments). Ratios of lactate to pyruvate were calculated, as were coefficients of extraction or production ${ }^{\text {a }}$ of oxygen, NEFA, and lactate. Oxygen content was obtained by multiplying the values for hemoglobin by 1.34 and by oxygen saturation of the hemoglobin.

Statistical analyses were done by use of Student's t test, with $P<0.05$ as the level of significance. Paired data for each parameter in each of the two groups were compared: (1) arterial and coronary sinus blood levels at each sampling time, and (2) each subsequent arterial level compared to preinduction level. Analyses of unpaired data, comparing arterial levels of the two groups at each sampling time, also were done.

Results

Mean values (with the standard errors) for all parameters in the "beating" group are given in table 2 (during operation) and table

[^1]

Pharameter	Infore Anuнthesi	Hefute P'esfunion		Prifuntur			Mfter Perfunimin		
		Patiunt	Iriming Brom	Eurly	Infore Hewntmane	Nant	:30 min	Eind al nimerition	
I'O2 (thth H_{1})	75		$\stackrel{310}{-1}$	(18:19 6102	3190	$2!11 \pm 11$	180	$\begin{array}{ll} 2801 \\ 25 \end{array} \pm 70$	
Oatentent ($\mathrm{mal} / 100 \mathrm{ml}$)	$\underline{17.7}$	17.1	11.K	14.4	18, 11	15.8	16.8	$\begin{array}{r} 111.97 \\ 7 \end{array}$	
	\cdots	20 ± 1	11	$\frac{21}{27} \pm 1$: 310 ± 9	雚 业:	$\operatorname{lin}_{61} \pm: 1$	
$p \\|$	7.12	7.1010 ± 0.7	$\underbrace{7.1711}$	7.65 ± 0.101	7.51 ± 0.01	7.17 ± 0.101	$\begin{aligned} & 7.50 \\ & 7.41 \\ & \hline 0.012 \end{aligned}$	$\begin{gathered} 7.37 \\ 8,32 \\ \hline 12 \end{gathered} 11.01$	
13nfor hano (mial/)	411	4 ± 1	: 1	418 ± 1	fill 1101	1015	1110	17 ± 1	
$\mathrm{K}^{+}(1 \mathrm{mba} / \mathrm{l})$	$\stackrel{4.1}{-}$		$\underline{10.2}$	50.1 ± 0.05	1.7 6.0	8.2 \% 810.07	40 ± 0	$3,1,7 \pm 0.117$	
$\mathrm{Nan}^{+}\left(\mathrm{miN} \mathrm{m}_{1} / 1\right)$	110	$1: 878 \pm 0.4$	113	${ }_{130}^{130} \pm 00$	${ }^{1388} 137810.0$	1:81 1310.5	$1: 183$	$\underset{1: 38}{1: 38} \times 1.1$	
$\left[\mathrm{a}^{++}(\mathrm{mas} / \mathrm{log}) \mathrm{ml}\right)^{\prime}$	11.7		$\underline{-15}$	$1.4 .15 \pm 0.4$	13.13: 5 : 0.1	13.4 ± 0.1	${ }^{12.0} 10 \pm 0.1$	18.0 13.0	
	283		:363		2183 ± 1	2012 218		$\frac{2173}{2160}:: 2$	
(ilneose (mim/100 min)	87	1414 10	1,4.10		1198 ± 11	:183	-107 : 810	$\begin{aligned} & 188 \\ & 181 \end{aligned}= \pm \quad 1$	
	012	2,8812	127	1,620	1,473 1780		1185 1187		
Total ketone luentiex ($\mu \mathrm{L} / \mathrm{mal}$)	$\stackrel{15.8}{-}$	17.711 ± 1.3	7.1	98.8 20.72 .2			${ }_{1,10}^{18.8} \pm 00.10$	11.7 ± 1.4	
1,actuta (mumber/3)	$\stackrel{1.01}{ }$	2.01 ± 0.17	$\underline{\square} .10$	$: 1,427 \pm 0.1: 1$	$10,38 \pm 0,21$	3.48 ± 0.74	$1.80 \pm=0.16$	$: 1.10 \pm 0.18$	
1'sruvate (mmanders/)	$\xrightarrow{0.12}$	$\begin{aligned} & 0,17 \\ & 0,1,1 \\ & 0,10.02 \end{aligned}$	$\underline{18.11}$	$0.22: \pm 0.01$	$\begin{aligned} & 0.96 \pm \\ & 0.23 \end{aligned} 0.01$		0.41 ± 0.013	$\begin{aligned} & 0.38 \pm 0.02 \\ & 0,1010 \\ & 0,02 \end{aligned}$	
	8.8	12, 2	$\underline{6.1}$	20.7	14.4 15.4	14.15	12.8	114.7	
* Atean \pm Bl: for arterial hiowe (tors limu fir enela black). \& Nestereterlied futty nelde.									

Volume 31 MYOCARDIAL METABOLISM AND AORTIC VALVE REPLACEMENT

Tamle 3. Postoperative Data for Group with Beating Hearts during Open-heart
Surgery for Aortic-valve Replacement

Parameter	Day 1	Day -		Day 3		Day 4
	2 haurs gostap.	8:00.x	3:00 1-8	8:00 A 4	3:00 ru	8:00 am
Po: (thtu Hf)	$\underset{24 i}{199} \pm 33^{*}$	$\stackrel{-10}{25} \pm 73$	$\underset{27}{121} \pm 55$	$\stackrel{193}{30} \pm 48$	$\underset{168}{168} \pm$	$\underline{119} 5 \pm 18$
$\underset{(: 11 / 100 \mathrm{ml})}{0: \text { content }}$	18.0 8.7	18.3 8.5	18.4 10.1	16,	${ }_{16.8}^{7.6}$	14.5
Pcos (mm In)	39 ± 2	${ }_{45}^{34} \pm 2$	3 ± 1	3 ± 1	33 ± 1	$33 \pm \pm$
$\boldsymbol{p H}$	$\frac{7.41}{4.16}$	7.45 ± 0.01 7.40	$\frac{7.46 \pm 0.01}{6.42}$	$\frac{7.4}{4}=0.0 t$	$\begin{aligned} & 7.48 \pm 0.01 \\ & 7.44 \end{aligned}$	$\frac{7.45}{7.4 i} \pm 0.0 t$
Huffer lase (mE EL . J)	${ }_{50}^{17}=0.25$	$\frac{85}{15} \pm 1$	$\frac{40}{50} \pm 1$	$48 \pm$	${ }_{61}^{17}$ 士	it ${ }_{17} \pm 1$
	3.7 ± 0.05	${ }_{4.0}^{3.9} \pm 0.05$	$4.1=0.0 .5$	3.8 ± 0.02	3.7 3.8	$\frac{3.4}{3.4} \pm 0.0 .$
$\mathrm{Na}+(\mathrm{mEst}, \mathrm{l})$	$\begin{aligned} & 137 \\ & 108 \end{aligned} 0.4$	$\frac{135}{136} \pm 0.2$	$\frac{134}{13} \pm 0.7$	1331 ± 0.3	131000.2	13:3 13.30 .2
$\mathrm{Ca}^{++}\left(\mathrm{trar}{ }^{\prime} 100 \mathrm{ml}\right)$	12.3	${ }_{10.5}^{10.5} \pm 0.1$	10.1 10.2	4.1 ± 0.2	9.1 ± 0.2	$\frac{9.0}{8.9}=0.1$
Osmulality H:O)	$\underline{2810}$	$\underset{280}{280}$	$\underline{294}$	\cdots	269	$\underline{208} \pm 1$
$\begin{aligned} & \text { Gtucose } \\ & (\text { (102R } 100 \mathrm{ml}) \end{aligned}$	$163=4$	$\underset{\operatorname{t03}}{\mathrm{t} 10} \pm \mathrm{s}$	$117 \pm \bar{j}$	109	$111 \pm$	$\underset{5 \pi}{8 S} \pm 6$
NEFS: $(\mu \mathrm{Eq} .7)$	919 ± 93	1.431	1.198 5	1.210 ± 121	1,110	$\begin{array}{r} 1.1 \overline{98} \\ 988 \end{array} \pm 109$
Total ketone bundies (az', mi)	$13 . \frac{2}{12.0} \div 1.1$	$\frac{45.4}{51.5} \pm 3.6$	${ }_{48.1}^{48.2}$ 土 3.4	${ }_{20.8}^{20.6} \pm 7.5$	23. 15.9 ± 10.7	$\begin{aligned} & 48.7 \\ & \geq 6.0 \end{aligned}$
Jartate (1mmoles. 1)	$3.3: 6=0.0 ;$	$\text { 1.titi } 0.15$	$\frac{1.60}{1.60} \pm 0.15$	$\begin{aligned} & 1.82 \pm \pm 0.10 \\ & 1.26 \end{aligned}$	$\begin{aligned} & 1.00 \pm 0.24 \\ & 1.14 \end{aligned}$	0.90 ± 0.7
Pyrumate (manclea, 7)	0.21 ± 0.03	$\begin{aligned} & 0.2: 3 \pm 0.0: 3 \\ & 0.16 i \end{aligned}$	$\frac{0.20}{0.2} \pm 0.03$	$\frac{0.11}{0.10} \pm 0.01$	0.11 ± 0.02	$0.1 \ddot{4} \pm 0.19$
Ratio of tactate to jurisate	$\begin{aligned} & 16 i . \overline{4} \\ & 1 \overline{i n . S} \end{aligned}$	$\begin{array}{r} 8.5 \\ 10.1 \end{array}$	10.7 10.3	12.1	9.8	5.7

* Mean \perp SE for arterial blow (topline in encla block)
* Walue for coronare sinus blomd (botom tine in each biock)-
* Nonesteritied fatiy acids.

3 (after operation). Significant differences of arterial levels and arterio-coronary sinus concentrations between the beating and fibrillating groups were few and did not follow any consistent patterns; therefore detailed data for the fibrillating group are not presented. Table 4 shows the details of left coronary fow and left ventricular oxygen consumption during direct coronary perfusion in the beating and fibrillating groups. Only statistically significant differences will be discussed specifically.

Acid-Base Balance (Fic. 1)

Buffer base did not change across the heart or in arterial levels except in a few instances. Arterial pH was higher than before induction at each sample time, except for the period
from the end of perfusion through two hours after operation. Coronary sinus pH was lower than arterial $p \mathrm{H}$, and $\mathrm{P}_{\mathrm{CO}_{2}}$ increased across the heart, except during perfusion. Respiratory alkalosis was present throughout operation and for the three postoperative days.

Electrolites (Fic. 2)

No differences in levels of potassium, calcium, or osmolality were found across the heart. Coronary sinus levels of sodium were higher than arterial levels in the "beating" group on the third postoperative day. Arterial sodium levels were lower than before induction throughout operation, and this hypo-N natremia recurred after operation in the "beating group. Arterial potassium levels were elevated during perfusion, and decreased to

Table 4. Myocardial Oxygen Consumption during Cononary Perfusion in Patients Undergoing Open-heart Surgery for Aortic-valve Replacement

Mean levela	Beating leart			Fibrillating heart		
	Early	Before Rewarmink	End	Early	Hefore Rewarming:	End
Left coronary flow, ml/min	219	207	203	197	192	19.3
	O.S	1.1	3.3	2.7	4.5	6.8
$\mathrm{O}=$ consumption, mi/min	1.5	$\underline{-3}$	6.7	5.4	S. 5	12.5
Body temperature, C	31.5)	30:3	34.3	31.3	:30.1	34.4

* Arterial and coronary sinus blood.
below preinduction levels in the "beating" group on the fourth operative day. Calcium levels were elevated above preinduction levels from the beginning of perfusion through two hours after operation.

Metabolites (Figs. 3 and 4)

Total ketone body levels were above normal before induction of anesthesia. Arterial levels were elevated sporadically throughout the study except at midperfusion and shortly after
perfusion. Extraction by the myocardium was seen at most sample times when arterid concentration was high.

Glucose levels did not show any arteriom venous differences at any time. The large amount in the priming fluid resulted i遗. higher-than-preinduction concentrations in a $\frac{0}{0}$ terial blood throughout the day of surgery Similarly elevated levels of blood glucose were. seen for all patients at all times except on the list postoperative day.

Fic. 2. Arterial and coronary-sinus mean levels of sodium, osmolality, potassium, and calcium. Significant arteriovenous differences were almost never seen at any time. Levels of Ca, K, and osmolality were elevated during operation, and level of Na was below normal. Levels of all parameters but Ca were below normal after surgery.

Levels of NEFA were highest before perfusion but did not decrease to preinduction levels until after perfusion. Postoperative arterial levels were generally not above those before anesthesia, but extraction by the myocardium was more consistent.

Arterial lactate levels increased before perfusion, rose steadily during perfusion, and were highest shortly after perfusion. Levels on the subsequent postoperative days were not different from preinduction levels. Myocardial extraction of lactate was evident when arterial levels were high for several hours after perfusion.

In the "beating" group, pyruvate values increased over preinduction levels, before perfusion and throughout operation. This increase was seen from midperfusion through two hours after operation in the "ibrillating"
group. Extraction of pyruvate by the heart was significant for several hours after perfusion.

Mean levels of oxygen tension in the coronary sinus were less than 30 mm Hg in both groups at all times except during perfusion (fig. 4). Arterial mean levels were above 90 mm Hg at all times, although individual readings after operation were as low as 68 mm Hg during breathing of 40 per cent oxygen. Oxygen extraction by the myocardium was significant at all times.

Mean coefficients-of-extraction valucs, along with individual values for NEFA, oxygen, and lactate are shown in figure 5. NEFA decreased during hypothermic perfusion and increased gradually after operation toward the normal mean.4 Oxygen extraction was below the normal ranges s before perfusion, very low
during hypothermic perfusion, and remained below normal after operation.

Extraction of lactate of less than 10 per cent or frank production is considered abnormal or evidence of anaerobic metabolism. ${ }^{\text {B }}$ Mean lactate extraction remained in this zone throughout perfusion and sporadically after operation. The greatest extraction occurred while arterial levels were highest after perfusion.

Discussion

We have reported the arterial levels throughout operation ${ }^{1}$ and the arteriovenous differences of metabolites and electrolytes across the heart during perfusion. ${ }^{\text {b }}$ The present study examined cardiac metabolism throughout the operative day and for three postoperative days after aortic-valve replace-
ment. An additional aim was to find out whether the beating or the fibrillating hearg had different responses during the direct coros nary perfusion and afterward.

Omgenation:

Oxygen tension and content in the coro 3 nary sinus increased during hypothermic corog nary perfusion, compared with before perfu: cion, indicating that extraction of oxygen bed the heart was reduced. Reduced extraction was more striking in the hearts that continued to beat, the oxygen consumption being a thir ${\underset{\beta}{3}}_{3}^{\circ}$ that of the fibrillating heart. On rewarminge. oxygen consumption of the beating heart was half that of the fibrillating heart. However? it is also true that the patients whose heart㘶 were fibrillated were probably more severely ill, had larger hearts, and underwent mores.

Fic. 4. Arterial and coronary-sinus mean levels of Pos lactate, and pymuate during and after operation. Pcsoz was below $30 \mathrm{~mm} \mathrm{Hg} \mathrm{ex-}$ cept during hypothermic coronary perfusion. Lactate and pyruvate levels increased steadily throughout perfusion, with significant extraction when arterial levels were high.

prolonged coronary perfusion. Oxygen consumption by the myocardium increased in both groups as perfusion continued. Oxygen consumption of the dog (left ventricle) perfused at 38 C has been reported as 3.4 ml $/ 100 \mathrm{gm} / \mathrm{min}$ in the empty beating heart, and 3.8 ml in fibrillation. ${ }^{\text {B }}$ In the present study, the arterial oxygen content decreased late in the postoperative period, as hemoglobin values decreased, probably owing to hemodilution and destruction of erythrocytes. Coronary sinus content also decreased after operation, more so in the fibrillating group (larger patient, larger heart).
The "fibrillating" group had a higher percentage of oxygen extraction throughout the entire study, and only the fibrillating hearts reached the normal range of oxygen extractions for several hours after operation. Messer and coauthors ${ }^{5}$ found that the coeffcient of oxygen extraction was 70 per cent ± 6
(SD) for normal subjects; 66 per cent ± 8 for patients with coronary insufficiency, and 73 per cent ± 5 for patients in congestive heart failure. They found increased oxygen extraction in the group with congestive heart failure in the presence of low cardiac output. The lower-than-normal myocardial oxygen extraction in our patients after operation could result from (1) coronary flow in excess of need, because coronary arteriolar regulation had not adjusted to the lower requirements for work permitted by the competent aortic valve, or arteriolar control was influenced by some other effect of coronary perfusion; (2) coronary arteriovenous shunting, which is either anatomic or physiologic (that is, transport of oxygen from capillary to mitochondrion is impaired); and (3) reduced mitochondrial utilization of available oxygen. Frank production of lactate occurred in some hearts after operation, suggesting anaerobic

Fic. 5. Coefficiene of extraction of NEFA, oxygen, and lactate fer the myocardium. All id dividual values and the means for both grould are shown. Extraction of each of these metaber lites was below nomm for most of the periog studied. References fer normal means and ranges are given in the text. Herman and assof ciates ${ }^{3}$ consider a laes tate extraction of les than 10 per cent indicay tive of deficient aerob卷. metabolism.
energy production, which does not support the hypothesis that excessive coronary flow was the cause of the decreased oxygen extraction. Mueller and his co-workers ${ }^{9}$ similarly found a decrease in oxygen extraction after operation, along with reduction of cardiac output, mean arterial pressure, and left ventricular work. They suggested reduced oxygen requirements as the major cause.

Acid-Base Balance

The respiratory alkalosis that occurred during operation was produced purposely by hyperventilation. The only other deviation from normal was mild respiratory alkalosis in the days subsequent to operation. As expected, $p \mathrm{H}$ decreased and carbon dioxide increased 2cross the myocardium.

Electrolytes

All the electrolytes measured in this study $\dot{\text { y }}$ as well as the osmolality, were significantlip altered by the nature of the priming solution The value for sodium was reduced, whereas values for calcium, potassium, and osmolalito were increased. Homeostatic mechanisms ref sulted in the return of concentration to proig operative ranges by the end of operation, exter cept for calcium, which returned to normad by the next day.

Osmolality was measured to study the de e° gree of dilution of the blood. ${ }^{10}$ The hypo ${ }^{2}$ osmolality that developed after operation uns doubtedly was due to increased extracellulap. water volume, both intravascular and interich stitial. ${ }^{11}$ The significance of this abnormality and its relationship to disturbances of cardiac rhythm and cerebral aberrations warrant fur-
ther study. It has been demonstrated that the kidneys retain sodium and excrete potassium after open-heart surgery. ${ }^{\text {Iz }}$ It is likely that earlier promotion of diuresis by drugs may prevent hypo-osmolality of the serum and its probable adverse effects.

The significantly-higher levels of calcium, owing to recalcification of the ACD blood used in the priming solution, returned to normal by the next morning. Although most of the extra serum calcium seen on the day of surgery is probably bound to citrate or protein, if the level of the ionized calcium component is elevated, positive inotropic effects on the heart are likely. Characteristically, the cardiae output of our patients remained good during hypercalcemia.

We were unable to detect significant gains or losses of electrolytes by the heart. Exchanges at the cell membrane possibly were too small to be detected by the methods used.

Metabolites

Continued utilization by the myocardium of the usual fuels was demonstrated: fatty acids, ketone bodies, pyruvate, and lactate. Extraction of glucose was not detected, perhaps because the normal arteriovenous difference is only about $3 \mathrm{mg} / 100 \mathrm{ml} .^{8}$ It appeared that extraction of NEFA and lactate was slightly impaired to approximately the same degree that oxygen extraction was impaired, possibly for the same reasons.

A common alteration was the elevated concentration of all the metabolites in arterial blood. The high concentration of glucose came primarily from the prining solution and, later, from intravenous therapy. The continued mobilization of fat in the body is a known effect of elevated endogenous catecholamines, ${ }^{13}$ as is hyperglycemia and hyperlactatemia.

Another effect of catecholamines is to inhibit the release of insulin, ${ }^{14}$ causing decreased utilization of glucose and increased formation of ketone bodies. ${ }^{13}$ The normal balance between catecholamines and insulin seemed tipped toward inhibition of insulin activity throughout this entire period of stress.
Levels of arterial lactate increased before
perfusion, as seen previously, when cardiac output was low, ${ }^{15}$ probably indicating wholebody production of lactate. Other possible causes are respiratotry alkalosis and hyperglycemia. But the progressive steep rise during perfusion and aftervard was probably the combined effect of THAM converting glucose to lactate ${ }^{16}$ and of glucose itself, as observed after ingestion of glucose. ${ }^{27}$ Elevated levels of lactate have a glucose-sparing effect as well. ${ }^{3}$ Levels of arterial pyruvate were elevated for several hours after perfusion, as glucose was converted to it and then to lactate. Significant usage of pyruvate by the heart was seen at this time. Whether there exists a decreased ability of pyruvate to enter the Krebs cycle or a greatly increased production is not known. Ratios of lactate to pyruvate increased across the heart at almost all sampling times. Anaerobic metabolism in the myocardium would be indicated by higher levels of lactate in the coronary sinus than in arterial blood. This was seen in both beating and fibrillating hearts having coronary perfusion after reversal of hypothermia.

None of the metabolic aspects were different in the hearts that fibrillated and those that continued to beat other than a greater consumption of oxygen during perfusion in the fibrillating hearts.

The findings in this study that have contributed to better care and survival are several. (1) A priming solution that includes the organic buffer THAM results in metabolic alkalosis during and after open-heart surgery, which is preferable to acidosis. (2) Although some degree of hemodilution is used by most groups and has many advantages, intravascular and extravascular water retention occurs. Early administration of diuretics after operation should eliminate this accumulation. (3) The possible beneficial effects of an increased $\stackrel{\rightharpoonup}{0}$ level of serum calcium on cardiac output for ${ }^{\circ}{ }_{0}^{\circ}$ several hours after surgery suggest that cal- $\frac{\rho}{\infty}$ cium may be an effective drug for treating low ${ }^{\circ}$ cardiac output at any time. (4) The predomi- ${ }^{\circ}$ nance of lipid metabolism with resulting $\stackrel{\rightharpoonup}{\text { … }}$ ketosis raises the possible desirability of giv-N ing extra glucose plus insulin after operation도 to increase utilization of carbohydrate.

References

1. Moffitt, E. A., Rosevear, J. W., and McGoon, D. C.: Myocardial metabolism in open-heart surgery: Arterial levels of metabolites, electrolytes, oxygenation, and acid-base balance. Anesth. Analg. 48: 633, 1969.
-. Rayford, C. R., Khouri, E. M., Lewis, F. B., and Gregg, D. E.: Evaluation of use of left coronary artery inflow and O, content of coronary sinus blood as a measure of left ventricular metabolism, J. Appl. Physiol. 14: 817, 1959.
2. Hernan, M. V., Elliott, W. C., and Gorin, R.: An electrocardiographic, anatomic, and metabolic study of zonal myocardial ischemia in coronary heart disease, Circulation 35: 834, 1967.
3. Harris. P., Jones, J. H., Bateman, M., Chlouverakis, C., and Gloster, J.: Metabolism of the myocardium at rest and during exercise in patients with rheumatic heart disease, Clin. Sci. 26: 145, 1964.
4. Messer, J. V., Wagman, R. J., Levine, H. J., Neill, W. A., Krasnow, N., and Gorlin, R.: Patteras of human myocardial oxygen extraction during rest and exercise, J. Clin. Invest 41: 725, 1962.
5. Moffitt. E. A.. Rosevear, J. W., and McGoon, D. C.: Myocardial metabolism during hypothermic coronary perfusion in man, Acta, Anaesth. Scand., suppl. 23, 1966, pp. 696703.
6. McKever, W. P., Gregn, D. E., and Canney, P. C.: Oxygen uptake of the nonworking left ventricle, Circ. Res. 6: 612, 1958.
7. Leight, L., DeFazio, V., Talmers, F. N., Regan, T. J., and Hellems, H. K.: Coronary blood flow, myocardial oxygen consumption. and myocardial metabolism in normal
and hyperthyroid subjects, Circulation 54: 90, 1956.
8. Mueller, H., Giannelli, S., Jr., Ayres, S. 青., Conklin, E. F., and Gregory, J. J.: Eff?t of isoproterenol on ventricular work a\&ٔ myocardial metabolism in the postoperatire heart, Circulation 37 (suppl. 2): 146, 1988.
9. Moore, F. D.: Metabolic Care of the Surgieal Patient. Philadelphia, W. B. Saund\%fs Company, 1959, pp. 276-297.
10. Cleland, J., Pluth, J. R., Tauxe, W. N., amid Kirklin, J. W.: Blood volume and body hund compartment changes soon after closed aipl open intracardiac surgery, J. Thorac. Catdiov. Surg. 52: 698, 1966.
11. Mielke, J. E., Maher, F. T., Hunt, J. C., and Kirklin, J. W.: Renal perfornance in phtients undergoing replacement of the aore valve, Circulation 32: 394, 1965.
12. Havel, R. J.: The autonomic nervous syste ${ }^{\frac{\tilde{W}}{}}$ and intermediary carbolydrate and fay metabolism, Anestuesiology 29: 700, 1968.
13. Rieser, P.: Insulin, Membranes, and Metabe lism. Baltimore, Williams \& Wilkins Cono pany, 1967, p. 53.
14. Moffit, E. A., and McGoon, D. C.: Cardiat output during and after open-heart surgert (Unpublished data.)
15. Triner, L., Kypson, J., and Zicha, B.: Effeg of THAM on carbohydrate metabolisme Ann. Anesth. Franc. 7: 593, 1966.
16. Hills, O. W., Power, M. H., and Wilder, 虽 M.: Diabetes mellitus and Cushing's symb drome: Concentrations of lactate and pyruvo vate in blood after ingestion of glucosem Diabetes 1: 351, 1952.
1S. Issekutz, B., Jr., Miller, H. L., Paul, P., anđ Rodahl, K .: Effect of lactic acid on freo fatty acids and glucose oxidation in dogoz Amer. J. Physiol. 209: 1137. 1965.

Muscle

NEUROMUSCULAR BLOCKADE Specific characteristics enable one to determine which type of neuromuscular blockade is present. The normal untreated muscle will contract when an effective stimulus is applied. Repeat stimuli will cause appropriate muscle contraction under normal circumstances. Stimuli applied to the nerve in a rapid, repetitive fashion will cause tetanic contraction in a normal muscle. A depolarizing block is characterized by: 1) absence of fade, 2) absence of posttetanic facilitation, 3) well-sustained tetanus, and 4) potentiation by cholinesterase inhibitors. A nondepolarizing block is characterized by: 1) presence of fade, 2) presence of posttetanic facilitation, 3) poorly sustained tetanus, and 4) antagonism by cholinesterase inhibitors. (Way, W. L., and Miller, R. D.: Clinical Pharmacology of Neuromuscular Blocking Agents, Gen. Pract. 38: 100 (Nov.) 1968.)

[^0]: ${ }^{\circ}$ Consultant, Section of Anesthesiology, Mayo Clinic; Assistant Professor of Anesthesiology, Mayo Graduate School of Medicine.
 \ddagger Consultant, Section of Biochemistry, Mayo Clinic; Assistant Professor of Biochemistry, Mayo Graduate School of Medicine.
 \ddagger Resident in Anesthesiology, Mayo Graduate School of Medicine.
 § Consultant, Section of Surgery, Mayo Clinic; Associate Professor of Surgery, Mayo Graduate School of Medicine.
 Received from the Mayo Clinic and Mayo Foundation, and the Mayo Graduate School of Medicine (University of Minnesota), Rochester, Minnesota. Accepted for publication May 23. 1969. Supported in part by Research Grant GM 14919 from the National Institutes of Health, Public Health Service.

[^1]: - (Arterial-coronary sinus)/Arterial $\times 100$.

