Components of the Alveolar-Arterial Oxygen Tension Difference in Anesthetized Man

Norman A. Bergman, M.D.*

Alveolar-arterial oxygen tension difference was measured in twelve anesthetized, paralyzed, artificially ventilated subjects when the inspired gas was halothane in oxygen, and again using $23-30$ per cent oxygen, 70-77 per cent nitrous oxide, and halothane as the inspired mixture. During breathing of the high oxygen mixture, mean $\mathrm{AaD}_{\mathrm{O}_{2}}$ was 196 mm . of mercury and calculated shunt was 11.0 per cent of cardiac output. When inspired oxygen concentration was in the region of 25 per cent, mean $\mathrm{AaD}_{\mathrm{o}_{2}}$ was 49 mm . of mercury and corresponding calculated shunt was 10.4 per cent of cardiac output. These results indicate that the predominant change responsible for the increase in $\mathrm{AaD}_{\mathrm{o}_{2}}$ exhibited by anesthetized patients is a significant increase in venous admixture with no detectable change in ventilation-perfusion relations. Values for physiological dead space, oxygen consumption, carbon dioxide production and respiratory exchange ratio during anesthesia obtained in the present study are in good agreement with previously published values for these parameters. Some possible explanations for observed changes in pulmonary gas exchange during anesthesia are considered.

Several groups of investigators have shown that anesthetized subjects exhibit a marked increase in magnitude of alveolar-arterial oxygen difference (hereafter abbreviated $\mathrm{AaD}_{\mathrm{O}_{2}}$) and calculated total shunt when compared with conscious, spontaneously breathing individuals. ${ }^{1-6}$ Table 1 summarizes these observations and includes for comparison selected studies on conscious subjects. The $\mathrm{AaD}_{\mathrm{O}_{2}}$ in conscious

[^0]subjects may be attributed to additive effects of diffusion limitation, ventilation-perfusion abnormalities and venous admixture. ${ }^{10}$ It seems quite unlikely that diffusion limitation would contribute appreciably to the $\mathrm{AaD}_{\mathrm{O}_{2}}$ at inspired oxygen tensions customarily used during anesthesia. ${ }^{11}$ Increase in $\mathrm{AaD}_{\mathrm{O}_{2}}$ during anesthesia is therefore due to an increase in ventilationperfusion abnormalities, to an increase in venous admixture, or to both. Individual contributions of these two parameters to the total $\mathrm{AaD}_{\mathrm{O}_{2}}$ may be estimated by studying a subject at two levels of oxygenation. ${ }^{12}$

Although inspired oxygen concentrations have been varied in previous measurements of $\mathrm{AaD}_{\mathrm{O}_{2}}$ during anesthesia, any given subject has been studied at only one inspired oxygen concentration. Large variation in $\mathrm{AaD}_{\mathrm{O}_{2}}$ among subjects has obscured effects of altering inspired oxygen concentration on magnitude of calculated shunt. The present study was designed to assess relative contributions of venti-lation-perfusion abnormalities and of venous admixture to the $\mathrm{AaD}_{\mathrm{O}_{2}}$ during anesthesia by measurement of $\mathrm{AaD}_{\mathrm{O}_{2}}$ and calculation of shunt during breathing of both 99 per cent oxygen and $20-30$ per cent oxygen in nitrous oxide in the same subject.

Methods

Details of subjects of the study are presented in table 2. Each patient was premedicated and subsequently managed by an anesthesiologist who was not involved in conduct of the study. Patients were anesthetized, paralyzed and artificially ventilated through a tightly fitting cuffed endotracheal tube. Two gas mixtures were used sequentially in each patient: halothane in oxygen and halothane, $70-80$ per cent nitrous oxide with $20-30$ per cent oxygen, and the order in which the mix-

Table 1．Representative Studies from the Literature Illustrating Magnitude of Alveolar－Arterial Oxygen Difference and Total Shunt in Conscious and Anesthetized Man at Different Inspired Oxygen Concentrations

tures were used was varied．Inspired concen－ tration of halothane was adjusted according to clinical requirements and sufficient d－tubocura－ rine or gallamine was administered to prevent spontaneous respiratory efforts．Following ini－ tial adjustment of the ventilator no further changes in the controls were made and no hyperinflations of the lung were performed during the study．

The experimental apparatus is illustrated in figure 1 and is a modification of the system devised by Nunn for measurement of gas ex－ change during anesthesia．${ }^{13}$ The desired gas mixture from an anesthesia machine was satu－ rated with water vapor at room temperature by bubbling through two humidifier bottles and then was introduced into the box of a box－ bag system．A pump removed gas from the box and delivered it to the Manley Ventilator． The Manley Ventilator（Blease Anesthetic Equipment Company of England）has a non－ rebreathing circuit which permits quantitative collection of uncontaminated exhaled gas，and the minute volume of the patient is the flow
of gas delivered to the respirator．A 10 －litger waterless spirometer（＂Wedge＂Spiromet衰， Med Science Electronics，St．Louis）commu ioi－ cated with the box．During the period oof equilibration flow of fresh gas into the hax was in excess of that from box to ventilat $\vec{\theta}_{6} \mathrm{r}$ ． The spirometer therefore filled，and wheno preset volume was achieved was periodicafly emptied to atmosphere by the Spirometer 麘e－ cycling Device（Med Science Electronicesg ）． In this manner the spirometer－box system was
 gradually attained the desired compositiog n． During the equilibration period the bag was empty and exhaled gases escaped to atmes phere．Pressure in the airway was detec禺d with a Statham PM5TC Pressure Transducer which was calibrated against a water manom－ eter．Output of this transducer and also out－ put of the volume transducer of the Wedge spirometer were recorded with a Minneapolis－ Honeywell Visicorder．Expired tidal volume was measured with a Wright Respirometer． Since reading of this instrument is known to

Table 2. Details of Patients Studied

Patient	Age	Sex	Height (cm.)	Weight (kg.)	$\begin{gathered} \text { BSA } \\ \text { (sq. m.) } \end{gathered}$	Premedication	Operation	Medical Status	Control	
									PaO_{2}	PaCo_{2}
,	69	M	178	90	2.08	A, H				
$\stackrel{1}{2}$	62	M	163	62	1.67	A, H	Aortic graft	Chronic bronchitis		
3	44	F	152	67	1.64	A, H, P	Cholecystectomy	Hypertension		
4	49	M	180	91 71	2.11 1.88	A. ${ }_{\text {A }}^{H}, \mathrm{M}, \mathrm{P}$	Small bowel Resection	Asthma, inactive	64	33.9
5	34 52	M	178 174	71	1.88 1.90	A, H, M, P	Vagotomy, pyloroplasty	Healthy		
6 7	52 43	M	174 168	76 75	1.90 1.84	A, ${ }_{\text {A, }}^{\mathrm{M}, \mathrm{M}} \mathrm{P}$	Vein ligation	Healthy Healthy		
8	31	M	173	68	1.81	A, H, M	Vagotomy, pyloroplasty	Healthy	74.8	36.5
9	48	M	173	72	1.85	A, H, P	Vagotomy, pyloroplasty	Diabetes		
10	45	M	165	55	1.60	A, H, P	Vagotomy, pyloroplasty	Remote pneumonitis		
11	41	M	160	54	1.54	A, H, P	Vagotomy, pyloroplasty	Healthy	82.4	37.0
12	58	M	170	64	1.74	A, H, P	Vein ligation	Hypertension	66.4	37.8

Premedication: $\mathrm{A}=$ Atropine, $\mathrm{H}=$ Hydroxyzine, $\mathrm{M}=$ Meperidine, $\mathrm{P}=$ Pentobarbital.
vary with minute volume, gas composition and respiratory pattern, the respirometer was calibrated against a spirometer after each study using conditions which prevailed during the experiment. ${ }^{14}$ Respiratory frequency was measured by timing ten respiratory cycles with a stopwatch.
Measurements were made after a $30-45$ minute period of equilibration and when respiratory frequency and exhaled tidal volume had become constant. Temperature in the box was noted and the two three-way taps were simultaneously rotated stopping delivery of fresh gas to the box and diverting exhaled gas into the bag. Thus, a closed box-bag system was attained. Inspired gas flowed from box through pump to ventilator and patient and
exhaled gas was returned to the bag. Any change in volume of the system was recorded by the spirometer. At the end of the measurement period, the three-way taps were returned to their original positions and box temperature was again noted.

Concentration of oxygen in inspired and exhaled gas was determined on samples collected from the box and bag, respectively, using a Servomex DCL 101 paramagnetic analyzer. In a previous evaluation sensitivity, reproducibility, and probable accuracy of this device was found to be comparable to that obtainable with the Haldane apparatus. ${ }^{15}$ During the period of measurement, blood samples were withdrawn from a needle in the brachial or radial artery and were analyzed for oxygen

Fig. 1. Diagram of experimental apparatus. (See text for explanation.)

and carbon dioxide tensions using an Instru－ mentation Laboratory System．Electrodes were calibrated both before and after each determination．The oxygen electrode was calibrated with oxygen－free nitrogen，room air or commercial oxygen（assumed to be 99.8 per cent oxygen）．The carbon dioxide elec－ trode was calibrated with carbon dioxide－air mixtures whose exact composition had been determined by Scholander analysis．Instru－ ment readings were corrected for metabolic changes in blood on standing（Nunn and Capel，unpublished observations），and for dif－ ferences between patients＇esophageal tem－ perature and electrode temperature．${ }^{16}$ In ad－ dition，oxygen tension readings were corrected for the 5 per cent difference in reading of blood and gas of identical oxygen tension pre－ viously established by tonometric studies in our laboratory．Blood analyses were started immediately after obtaining the sample and were completed within $10-12$ minutes．He－ moglobin concentration was determined on each subject using the cyanmethemoglobin method．．${ }^{17}$ Carbon dioxide tension of mixed exhaled gas collected from the bag was meas－ ured with the carbon dioxide electrode．

Exhaled minute volume was calculated by multiplying exhaled tidal volume，obtained from the respirometer，by respiratory fre－ quency．Differences between inspired and expired minute volume was calculated from rate of change of volume in the box－bag－ spirometer system during the period of meas－ urement．Rate of change of volume was cor－ rected for changes of temperature in the sys－ tem during the run and also for small leaks which were usually present．Magnitude of leaks was evaluated at the end of each study by artificially ventilating a ten gallon steel drum at a pressure equal to that used during the study．Inspired minute volume was then calculated by adding the corrected change per minute in volume of the system to the exhaled minute volume．All ventilation volumes were corrected to BTPS．

Oxygen consumption was calculated by sub－ tracting the volume of oxygen exhaled（ex－ haled oxygen concentration x exhaled minute volume）from the volume of oxygen inspired （inspired oxygen concentration \times inspired mi－
nute volume），and was also expressed as per－ centage of predicted normal basal oxygen con－ sumption．${ }^{18}$ Carbon dioxide production was calculated from exhaled minute volume and concentration of carbon dioxide in exhaled gas． Respiratory exchange ratio（ R ）was calculated as the ratio of carbon dioxide production to oxygen consumption．Inert gas exchange was that portion of the difference between inspiyed and expired minute volume which was not egue to the difference between oxygen consumption and carbon dioxide production，and under varying circumstances represented nitrog̈en elimination and／or uptake or elimination of nitrous oxide and halothane．All gas exchaŷ̀ge volumes were corrected to STPD．

Ideal alveolar oxygen tension was calcula by substituting appropriate values for insp ${ }^{3}$ ed and exhaled oxygen tension and expired ${ }^{\text {gnnd }}$ arterial carbon dioxide tension into an alve8lar air equation．${ }^{19}$ Total shunt was calculated from alveolar and arterial oxygen tensions ${ }_{\mathrm{a}}^{\mathrm{a}} \mathrm{i}$ d hemoglobin concentrations using a shunt eceana－ tion ${ }^{20}$ and the following assumptions：（1）${ }_{\frac{j}{0}} \mathrm{No}$ alveolar－end capillary diffusion gradient $\stackrel{\stackrel{\circ}{\mathrm{D}}}{\mathrm{D}} \mathrm{ex}-$ isted．（2）Arterial－mixed venous oxygen $\underset{\infty}{\infty} \mathrm{n}-$ tent difference was 5 vol．per cent．${ }^{21}$（3）憲he form of the oxygen dissociation curve is presented by Severinghaus in the＂Blood $\vec{E}_{\mathbf{W}}$ as Calculator＂slide rule ${ }^{22}$ and base excess intoll patients was 0 ．（4）Each gram of hemogl憲in when fully saturated carried 1.34 ml ．oxygen
 was 0.0031 vol ．per cent $/ \mathrm{mm}$ ．of mercury

Physiological dead space was calculatediby substituting appropriate values for exh島发ed tidal volume，arterial and mixed exhaled bon dioxide tensions in Bohr＇s equation．© paratus dead space of 20 ml ．was subtra屯̆ from the resulting value to obtain patient space．Ratio of physiological dead space to tidal volume $\left(\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{T}}\right)$ was also calculated

Results

Experimental results are presented in table 3 for ventilation with $23-30$ per cent oxygen and in table 4 for ventilation with 95－97 per cent oxygen．Elevation of our laboratory is 4,780 feet above sea level and average total barometric pressure is 640 mm ．of mercury．

Subj.	Time	(Br./min.)	${ }_{\left(\mathrm{V}_{\mathrm{p}} \mathrm{m} .\right)}$	$\stackrel{\stackrel{\rightharpoonup}{*}}{\text { (mil/min. }}$)					(\% ${ }_{\text {Shunt }}$ (0)			(\% basal)		R	
${ }_{2}^{1}$	135	9.7	840	8,148	168	139	76	64	10.4	28.5	33.6	84	169	0.786	131
	75	10.2	828	8,448	156	117	71	46	8.9	27.0	37.2	128	159	0.600	36
	245	10.7	788	8,433	142	119	53	66	19.5	29.1	44.5	79	150	0.920	160
3	105	12.7	603	7,661	143	123	63	60	15.0	26.2	27.5	88	161	0.920	213
${ }_{5}^{4}$	70	9.6	851	8,167	137	111	49	62	27.7	31.5	44.3	60	159	0.975	140
	45	10.1	903	9,120	176	150	109	41	4.2	30.0	38.8	78	187	0.930	132
	140	10.6	837	8,863	176	150	128	23	2.2	25.6	37.8	76	157	0.801	92
6	115	8.1	664	5,380	160	125	73	52	11.2	36.7	35.7	70	140	0.828	161
7	45	11.5	701	8,058	145	127	74	54	12.9	28.9	30.8	70	179	1.05	263
8	75	10.2	768	7,831	143	112	81	31	6.7	29.4	40.1	96	158	0.666	216
10	120	9.0	849	7,641	145	121	68	53	10.9	25.7	37.2	75	147	0.817	129
	45	10.2	896	9,136	179	142	90	51	8.3	31.1	45.1	118	174	0.710	58
	150	10.4	878	9,134	173	144	100	44	5.8	28.8	40.8	92	174	0.906	52
1112	125	10.0	710	7,098	149	121	97	24	3.7	25.0	-33.5	92	131	0.693	112
	90	10.6	840	8,907	171	144	79	65	9.4	25.5	47.0				
	195	11.0	830	9,135	168	145	85	61	8.9	25.2	50.8	66	125	0.862	97
$\begin{aligned} & \text { Mean } \\ & \text { S.D. } \\ & \text { S. } \end{aligned}$		10.3	799	8,199	158	129	81	$\begin{aligned} & 49 \\ & 14.0 \end{aligned}$	$\begin{array}{r} 10.4 \\ 6.4 \end{array}$	28.4	$\begin{array}{r} 39.0 \\ 6.2 \end{array}$	$\begin{gathered} 84 \\ 18.6 \\ 4.8 \end{gathered}$	156	0.831 0.125 0.032	133

Table 4．Experimental Results During Breathing of $95-97$ Per Cent Oxygen

\sim	介000000 0000000000
$\begin{aligned} & \text { of } \\ & \text { "d } \\ & \text { 京 } \end{aligned}$	
$\begin{aligned} & 40 \\ & 8 \\ & 80 \end{aligned}$	
	か．
$\begin{gathered} \text { ix } \\ \text { sin } \\ \text { sid } \end{gathered}$	
-	
紜	®\％\％¢
$\begin{aligned} & \text { ì } \\ & \text { en } \\ & \text { en } \end{aligned}$	
道路菏	
宮	

Mean minute volume was $8,390 \mathrm{ml}$./minute. Minute volume, respiratory rate and tidal volume were identical during breathing of both high and intermediate oxygen mixtures. This level of ventilation resulted in moderate hyperventilation of patients in this series; mean arterial carbon dioxide tension was 27.9 mm . of mercury, and did not vary significantly with inspired oxygen concentration. Inflating pressure remained constant throughout the duration of each study, and there was no tendency for tidal volume to decrease during the period of constant pressure ventilation.

Mean dead space to tidal volume ratio $\left(\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{T}}\right)$ was 38.0 during breathing of high oxygen and 39.0 during administration of intermediate oxygen concentrations. This difference is not significant. There was no recognizable change of $\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{T}}$ with time.

In some subjects arterial blood was obtained after premedication and before induction of anesthesia. Results of analysis of these samples for oxygen and carbon dioxide tension are included in table 2.

When halothane in oxygen was administered, inspired oxygen concentration varied from 95.4 to 97.4 per cent. Mean alveolar oxygen tension was 544 mm . of mercury, mean arterial oxygen tension was 347 mm . of mercury and mean $\mathrm{AaD}_{\mathrm{O}_{2}}$ was 196 mm . of mercury (range 52 mm . to 304 mm .). Corresponding calculated total shunt was 11.0 per cent of cardiac output (range $3.3-16.6$ per cent). At intermediate levels of oxygen, inspired oxygen concentration ranged from 23.0 to 30.1 per cent. Mean alveolar oxygen tension was 129 mm . of mercury, mean arterial oxygen tension was 81 mm . of mercury and mean $\mathrm{AaD}_{\mathrm{O}_{2}}$ was 49 mm . of mercury (range $23-66 \mathrm{~mm}$. of mercury). Corresponding calculated total shunt was 10.4 per cent of cardiac output (range 2.2-27.7 per cent). There was no correlation between magnitude of calculated shunt and $\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{T}}$ at either inspired oxygen level. There was also no systematic tendency for either $\mathrm{AaD}_{\mathrm{O}_{2}}$ or shunt to change with time (fig. 2).

Mean carbon dioxide production was 158 $\mathrm{ml} . /$ minute and did not vary with changes in inspired gas composition. Oxygen consumption during high oxygen administration was 95

Fig. 2. Changes in total calculated shunt with time.
per cent of predicted basal value while at the intermediate concentration of oxygen the value was 84 per cent. This difference does not approach the customary level of significance ($0.2<P<0.1$). Mean respiratory exchange ratio was 0.784 . Due to the variation in sequence of administration of the different gas mixtures values for inert gas exchange cannot be interpreted precisely. Measurements made during administration of nitrous oxide-halo-thane-oxygen mixtures showed that significant volumes of anesthetic gas were being taken up while those made during administration of halothane and oxygen generally indicated elimination of inert and anesthetic gases from the body.

Discussion

Magnitude of alveolar-arterial oxygen differences and calculated shunts in the present report are in good agreement with those of previous studies in anesthetized man summarized in table 1. It is emphasized that in the absence of measurements of mixed venous oxygen content, calculation of total shunt merely offers an expedient method for comparing different individuals and different experimental conditions but can only indicate orders of magnitude and not precise values.

Shunt calculated during breathing of 25 per cent oxygen is attributable to both ventilation-
perfusion abnormalities and venous admixture， shunt calculated during breathing of high con－ centrations of oxygen is caused by true venous admixture only，and difference between shunts calculated during these two conditions is the ＂relative＂or＂virtual＂shunt and is an estimate of the contribution of ventilation－perfusion ab－ normalities to the total $\mathrm{AaD}_{\mathrm{O}_{2}}$ ．Average cal－ culated shunt of 11 per cent of cardiac output during breathing of 95－97 per cent oxygen in the present study indicates the presence of an abnormally high degree of venous admixture in anesthetized patients．The average calcu－ lated shunt of 10.4 per cent of cardiac output during administration of $23-30$ per cent oxy－ gen is not significantly different from that dur－ ing breathing of high concentrations of oxygen． Absence of a detectable virtual shunt in the present study，however，does not necessarily indicate absence of ventilation－perfusion ab－ normalities and uniform distribution of in－ spired gas with respect to pulmonary capil－ lary blood in anesthetized patients．Measure－ ments of inert gas exchange showed that at the time experimental observations were made during nitrous oxide administration appreci－ able amounts of anesthetic gas were being taken up，and in some subjects uptake of ni－ trous oxide equaled or exceeded oxygen up－ take．Each volume of nitrous oxide taken into pulmonary capillary blood is replaced in the alveolus not by pure nitrous oxide but by a volume of the inspired mixture of nitrous oxide and oxygen．Hence，in alveoli which are perfused in excess of their ventilation，the fall in oxygen tension will be minimized by inward diffusion of inspired gas to replace nitrous oxide which is taken up by blood，and the distribution component of the $\mathrm{AaD}_{\mathrm{O}_{2}}$ will be minimal．This is a＂second gas effect＂pro－ duced by nitrous oxide．${ }^{23}$ Under these condi－ tions this phenomenon might be called＂diffu－ sion hyperoxia．＂It has been previously dem－ onstrated by Heller and Watson ${ }^{24}$ and is ex－ actly the reverse process of＂diffusion anoxia＂ described by Fink as occurring on emergence from nitrous oxide anesthesia．${ }^{25}$ In addition， theoretical considerations indicate that contri－ bution of ventilation－perfusion abnormalities to total shunt is maximum when alveolar oxygen tension is about 80 mm ．of mercury and be－
comes less as alveolar oxygen tension in－ creases．${ }^{12}$ Because of the second gas effect of nitrous oxide and because mean alveolar oxygen tension was 129 mm ．of mercury small degrees of ventilation－perfusion abnormality were not detected in the present study．

Results of the present study indicate that as a group，anesthetized patients exhibit a marked increase in true venous admixture and no de－ tectable increase in nonuniformity of distribu－ tion of pulmonary capillary blood flow relative to inspired gas．Nunn and co－workers terita－ tively offered the same conclusions on file basis of measurements of $\mathrm{AaD}_{\mathrm{O}_{2}}$ at two le le els of oxygenation in two different groups of 長a－ tients．${ }^{6}$ Inspection of data for individual tients，however，indicates that although the majority of subjects have an abnormally lagge degree of venous admixture，an occasional a－ tient has a small total shunt which would gbe considered in the normal range for a conscieg̀ us individual．Also，occasionally suggestion of a significant distribution component contribut屯ّing to a large total shunt is encountered．
Pulmonary atelectasis is the most obvi俞us and simple explanation for the large degre ${ }^{巾}$ of venous admixture in anesthetized patiests． Bendixen and associates have demonstrafised progressive increases in veno－arterial shunting and decreases in thoracic compliance du，${ }_{\text {ging }}$ anesthesia with normal tidal ventilation l l $\mathrm{m}_{\mathrm{\circ}} \mathrm{k}$－ ing in periodic deep breaths．${ }^{26}$ ．Incidencę of these changes was minimal if large tidal fol－ umes were used and changes were reversto by hyperinflation of the lung imitating the spontaneous deep breath．These changes weiere attributed to progressive atelectasis duging anesthesia．Although there is no doubt that atelectasis does occur during anesthesia tligere are several facts that lend support to the thens that atelectasis is not the fundamental ab⿴⿱冂一⿰丨丨丁口内正－ mality responsible for increased venous adn $\overrightarrow{\text { tix－}}$ ture in the anesthetized patient．Both in 를．the present study and in that of Nunn et ala minority of patients exhibited progressive in－ crease of shunting or fall in effective compli－ ance with time，and in those in whom these phenomena were demonstrated，changes were most frequently not dramatic．In addition， spontaneous decreases in shunt during con－ stant pressure ventilation also occurred．High
in oxygen consumption during light halothane anesthesia. ${ }^{31}$

Salient findings of the present study in anesthetized patients are a marked increase in true venous admixture without evidence of increase in ventilation-perfusion abnormalities and an increase in physiological dead space. These observations are consistent with the hypothesis that during anesthesia in most subjects pulmonary blood flow is diverted away from some alveoli, which remain open and ventilated, and is shunted through or across the lungs by way of some as yet undefined channel. Previous demonstration that no detectable change in distribution of inspired gas occurred 'following induction of anesthesia with artificial ventilation supports this conclusion. ${ }^{32}$ The undefined shunt pathway does not include Thebesian veins, since flow through these channels has been shown to change very little with anesthesia. ${ }^{33}$

Although the increase in magnitude of $\mathrm{AaD}_{\mathrm{O}_{2}}$ during anesthesia in the present study has been attributed entirely to increase in true shunt, other possible causes for increases in $\mathrm{AaD}_{\mathrm{O}_{2}}$ should be considered. The equation used for calculating shunt in the present study was ${ }^{20}$:

$$
\frac{\mathrm{Q}_{0}}{\mathrm{Q}_{\mathrm{t}}}=\frac{\mathrm{C}_{\mathrm{c}} \mathrm{O}_{2}-\mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}}{\mathrm{C}_{\mathrm{c}} \mathrm{O}_{2}-\mathrm{C} \overline{\mathrm{v}} \mathrm{O}_{2}}
$$

Where Q_{s} / Q_{t} is the ratio of quantity of blood flowing through the shunt to total quantity of blood flow (cardiac output) and $\mathrm{Cc}_{\mathrm{O}_{2}}, \mathrm{Ca}_{\mathrm{O}_{2}}$ and $\mathrm{C}_{\mathrm{v}_{\mathrm{O}_{2}}}$ are oxygen contents of pulmonary capillary, arterial and mixed venous blood, respectively. When oxygen is breathed and arterial hemoglobin is fully saturated the following simplified form of the shunt equation is applicable:

$$
\left.\frac{\mathrm{Q}_{\mathrm{s}}}{\mathrm{Q}_{\mathrm{t}}}=\frac{0.0031 \mathrm{AaDo}_{2}}{0.0031 \mathrm{AaDo}_{2}+\left(\mathrm{CaO}_{2}-\mathrm{C}_{\overline{\mathrm{r}}}^{2}\right.} \mathbf{)}\right)
$$

The Fick equation relates cardiac output, oxygen consumption, and arterio-venous oxygen difference:

$$
\text { C.O. }(\mathrm{I} . / \mathrm{min} .)=\frac{\dot{\mathrm{V}}_{2}(\mathrm{ml} . / \mathrm{min} .)}{\mathrm{CaO}_{2}-\mathrm{CV}_{2}(\mathrm{ml} . / \mathrm{I} .)}
$$

When the Fick equation is solved for arteriovenous oxygen difference and the result substi-
tuted into the simplified shunt equation the following expression is obtained：

$$
\frac{Q_{\mathrm{s}}}{Q_{\mathrm{t}}}=\frac{0.0031 \mathrm{AaDo}_{2}}{0.0031 \mathrm{AaDo}_{2}+\left(\dot{\mathrm{Vo}}_{2} / \mathrm{C} . \mathrm{O} .\right) \times 0.1}
$$

Solving this expression for $\mathrm{AaD}_{\mathrm{O}_{2}}$ results in the following equation：

$$
\mathrm{AaDo}_{2}=\frac{0.1 \times \dot{\mathrm{V}} \mathrm{O}_{2} \times \mathrm{Q}_{\mathrm{s}}}{0.0031 \times \mathrm{C} . \mathrm{O} . \times\left(\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{s}}\right)}
$$

Thus，magnitude of $\mathrm{AaD}_{\mathrm{O}_{2}}$ varies not only with ratio of blood shunted to blood not shunted，but also varies directly with oxygen consumption and inversely with cardiac out－ put．Possible contribution to the large $\mathrm{AaD}_{\mathrm{O}_{2}}$ in the present study by increases in oxygen consumption is excluded by the observation that in these patients oxygen consumption was slightly below predicted basal value．The role of decreases in cardiac output and in－ creases in arterio－venous oxygen differences is more difficult to assess since neither was meas－ ured．Possibly a portion of the abnormally large $\mathrm{AaD}_{\mathrm{O}_{2}}$ is attributable to decrease in car－ diac output with anesthesia，and probably much of the variation of $\mathrm{AaD}_{\mathrm{O}_{2}}$ with time in individual patients may be explained by vari－ ation in cardiac output．However，as a group， patients in the present study exhibited an $\mathrm{AaD}_{\mathrm{O}_{2}}$ four to six times greater than that antici－ pated in a comparable group of conscious sub－ jects．If this magnitude of $\mathrm{AaD}_{\mathrm{O}_{2}}$ is to be ex－ plained by decrease in cardiac output，it must be postulated that cardiac output fell to less than one quarter of its preanesthetic value．A fall in cardiac output of this magnitude was not consistent with the clinical status of the patients，and is not compatible with previ－ ously published studies on hemodynamics dur－ ing halothane anesthesia．${ }^{35}$ It is therefore be－ lieved that the greatest portion of the large $\mathrm{AaD}_{\mathrm{O}_{2}}$ observed in the present study may be attributed to increase in true shunt．

Summary and Conclusions

Average alveolar－arterial oxygen tension dif－ ference in twelve anesthetized，paralyzed sub－ jects was 196 mm ．of mercury during artificial ventilation with $95-97$ per cent oxygen，and total calculated shunt was 11.0 per cent of cardiac output．In these same subjects when
inspired gas contained $23-30$ per cent oxygen， mean alveolar－arterial oxygen tension differ－ ence was 49 mm ．of mercury and correspond－ ing calculated total shunt was 10.4 per cent of cardiac output．These results indicate that the predominant cause for the abnormally large alveolar－arterial oxygen difference ex－ hibited by most anesthetized subjects is in－ crease in true shunt（venous admixture）with－ out detectable change in relative distributiog of inspired gas and pulmonary capillary bloo勇 flow．Observed changes in pulmonary gas eig change during anesthesia are consistent witio the hypothesis that in most subjects durin 盡 anesthesia，pulmonary blood flow is diverte away from some alveoli，which subsequent ${ }^{\text {W }}$ remain open and ventilated，and is shunte through or across the lungs by way of some as yet undefined channel．

References

1．Campbell，E．J．M．，Nunn，J．F．，and Peckee， B．W．：A comparison of artificial ventilation and spontaneous respiration with particul reference to ventilation－bloodflow relatio $\frac{\underset{5}{5}}{}$ ships，Brit．J．Anaesth．30：166， 1958.
2．Frumin，M．J．，Bergman，N．A．，Holaday，䯩 A．，Rackow，W．，and Salanitre，E．：Alveola arterial O_{2} differences during artificial rest piration in man，J．Appl．Physiol．14：692， 1959.

3．Stark，D．C．C．，and Smith，H．：Pulmona vascular changes during anaesthesia，Brit．क्षि． Anaesth．32：460， 1960.
4．Nunn，J．F．：Factors influencing the arteriall oxygen tension during halothane anaesthes ${ }_{\text {g }}^{\text {g }}$ with spontaneous respiration，Brit． Anaesth．36：327， 1964.
5．Sykes，M．K．，Young，W．E．，and Robinso思， B．E．：Oxygenation during anaesthesia wi量 controlled ventilation，Brit．J．Anaesth． 3 高： 314， 1965.
6．Nunn，J．F．，Bergman，N．A．，and Colemain， A．J．：Factors influencing the arterial oxg－ gen tension during anaesthesia with artificial ventilation，Brit．J．Anaesth．37：898，19\％．
7．Ayres，S．M．，Criscitiello，A．，and Grabovsl录， E．：Components of alveolar－arterial O_{2} d ${ }_{\text {d }}$－ ference in normal man，J．Appl．Physiol．19： 43， 1964.
8．Said，S．I．，and Banerjee，C．M．：Venous ad－ mixture to the pulmonary circulation in hu－ man subjects breathing 100 per cent oxygen， J．Clin．Invest．42：507， 1963.
9．Nunn，J．F．，and Bergman，N．A．：The effect of atropine on pulmonary gas exchange，Brit． J．Anaesth．36：68， 1964.
10. Fenn, W. O., and Rahn, H. (Editors) : Handbook of Physiology, Section 3, Respiration, Washington, D. C., American Physiological Society, 1964, Vol. 1, Ch. 30 by Rahn, H. and Farhi, L. E., pp. 749-751.
11. Staub, N. C.: Alveolar-arterial oxygen tension gradient due to diffusion, J. Appl. Physiol. 18: 673, 1963.
12. Farhi, L. E., and Rahn, H.: A theoretical analysis of the alveolar-arterial O_{2} difference with special reference to the distribution effect, J. Appl. Physiol. 7: 699, 1955.
13. Nunn, J. F., and Pouliot, J .C.: The measurement of gaseous exchange during nitrous oxide anaesthesia, Brit. J. Anaesth. 34: 752, 1962.
14. Nunn, J. F., and Ezi-Ashi, T. I.: The accuracy of the respirometer and ventigrator, Brit. J. Anaesth. 34: 422, 1962.
15. Nunn, J. F., Bergman, N. A., Coleman, A. J., and Casselle, D. C.: Evaluation of the Servomex paramagnetic analyzer, Brit. J. Anaesth. 36: 666, 1964.
16. Nunn, J. F., Bergman, N. A., Buntyan, A., and Coleman, A. J.: Temperature coefficients for $\mathrm{P}_{\mathrm{CO}_{2}}$ and $\mathrm{P}_{\mathrm{O}_{2}}$ of blood in vitro, J. Appl. Physiol. 20: 23, 1965.
17. Henry, R. J.: Clinical Chemistry, Principles and Techniques. New York, Hoeber Medical Div., Harper and Row, 1964, pp. 742744.
18. Boothby, W. M., and Sandiford, I.: Normal values for basal or standard metabolism: A modification of the DuBois standards. Amer. J. Physiol. 90: 291, 1929.
19. Nunn, J. F.: Indirect determination of the ideal alveolar oxygen tension during and after nitrous oxide anaesthesia, Brit. J. Anaesth. 35: 8, 1963.
20. Comroe, J. H., Forster, R. E., DuBois, A. B., Briscoe, W. A., and Carlsen, E.: The Lung, Clinical Physiology and Pulmonary Function Tests, ed. 2. Chicago, Year Book Medical Publishers, Inc., 1962, pp. 343-345.
21. Theye, R. A., and Tuohy, G. F.: The value of venous oxygen levels during general anesthesia, Anesthesiology 26: 49, 1965.
22. Severinghaus, J. W.: Blood gas calculator, J. Appl. Physiol. 21: 1108, 1966.
23. Epstein, R. M., Rackow, H., Salanitre, E., and Wolf, G. L.: Influence of the concentra-
tion effect on the uptake of anesthetic mixtures: The second gas effect, AnesthesiolOGY 25: 364, 1964.
24. Heller, M. L., and Watson, T. R.: The role of preliminary oxygenation prior to induction with high nitrous oxide mixtures, Anesthesiology 23: 219, 1962.
25. Fink, B. R.: Diffusion anoxia, AnesthesiolOGY 16: 511, 1955.
26. Bendixen, H. H., Hedley-Whyte, J., and Laver, M. B.: Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation, New Eng. J. Med. 269: 991, 1963.
27. Klocke, F. J., and Rahn, H.: Breath-holding after breathing of oxygen, J. Appl. Physiol. 14: 689, 1959.
28. Griffo, Z. J., and Roos, A.: Effect of O_{2} breathing on pulmonary compliance, J. Appl. Physiol. 17: 233, 1962.
29. Bendixen, H. H., Bullwinkel, B., HedleyWhyte, J., and Laver, M. B.: Atelectasis and shunting during spontaneous ventilation in anesthetized patients, Anesthesiology 25: 297, 1964.
30. Askrog, V. F., Pender, J. W., Smith, T. C., and Eckenhoff, J. E.: Changes in respiratory dead space during halothane, cyclopropane, and nitrous oxide anesthesia, AnesthesiolOGY 25: 342, 1964.
31. Theye, R. A., and Tuohy, G. F.: Oxygen uptake during light halothane anesthesia in man, Anesthesiology 25: 627, 1964.
32. Bergman, N. A.: Distribution of inspired gas during anesthesia and artificial ventilation, J. Appl. Physiol. 18: 1085, 1963.
33. Ravin, M. B., Epstein, R. M., and Malm, J. R.: Contribution of Thebesian veins to the physiologic shunt in anesthetized man, J. Appl. Physiol. 20: 1148, 1965.
34. Pappenheimer, J. R.: Comroe, J. H., Cournand, A., Ferguson, J. K. W., Filley, G. F., Fowler, W. S., Gray, J. S., Helmholtz, H. F., Otis, A. B., Rahn, H., and Riley, R. L.: Report of the committee for the standardization of definitions and symbols in respiratory physiology, Fed. Proc. 9: 602, 1950.
35. Deutsch, S., Linde, H. W., Dripps, R. D., and Price, H. L.: Circulatory and respiratory actions of halothane in normal men, Anesthesiology 23: 631, 1962.

[^0]: * Associate Professor of Anesthesiology.

 Received from the Division of Anesthesiology, University of Utah College of Medicine and Veterans Administration Hospital, Salt Lake City, Utah. Presented at the Annual Meeting of the American Society of Anesthesiologists, Philadelphia, October 4, 1966. Accepted for publication November 7, 1966. Supported by Grant HE 08543 from the National Heart Institute, National Institutes of Health.

