DYNAMICS OF CHANGES IN CARBON DIOXIDE STORES

Leon E. Fama, M.D., and Hemans Rann, Ph.D.

The variations in carbon dioxide content of the body have been repeatedly investigated. There are good reasons for this continued interest since this information has become necessary to the physiologist who must decide the CO_{2} tolerance of man exposed to confined spaces in submarines or space velicles. To what extent does man act as a CO_{2} absorber? At what rate com he store his chief waste product. CO ? At what rate can he lose the stores which he normaily carries with him? What are the physiological limits of CO , store loss and $\mathrm{CO}_{\text {a }}$ store gain?? These are but a few of the questions yet to be answered.
While there are many approaches and problems which can be reviewed, our main objective is to discuss the factors which determine the speed of CO_{2} store accumulation or depletion. A vast amoment of data on this topic has accumulated, but the number of articles is less impressive than the divergent results.
In one of the first reports Adolph and associates ${ }^{1}$ commented on their own findings by sisying that they "did not feel confident that in 33 minutes saturation was completed." Many of the articles published since deal with procedures lasting only a few minutes, while others required several weeks. The results indicate that the CO_{2} storage capacity of the whole body mass may vary from 0.3 to 11.6 ml . of CO_{2} which can be stored per kilagram of body tissuc for 1 mm . change in $\mathrm{P}_{1} \mathrm{om}$ (ml . ${ }^{\text {. }}$ kg . body weight imm. CO_{3}).
One attempt to describe the behavior of CO_{2} store changes was presented earlier.: This model treated all the tissurs as a single compartment, described the experimental data obtained in anesthetized dogs, and yielded results essentially similar to those obtained by others in cats." More recently one of us 'suggested that the discrepancies of CO_{2}. storage noted above must be associated with the equilibration period and that the dymamics of CO_{2} store changes must consider the body as com-

[^0]posed of tarious compartnents wach with its own CO_{2} storage capacity and perfusion rate. Recent carceful experiments also indicate that CO. store changes in man doe not fit the single compartment concept.

This review will describe a model. crude as it is, which may provide a reasomable description of the CO. storage process and will compare its belavior with experimental results in the literature. Any moded system has its limitations; to recognize its weaknesses is paramount. Yet we believe that our model provides an explanation for the variance in experimental results. Above all, it has pointed out that equilibration following a change in CO. enviromment requires hours for completion, a period far beyond most of the previous studies.

Our medel is an electronic analugue stuperion to our previous mechanical models becanse its behavior can be presented for solution to a computer.:"
After comparing results of the amalogne with existing physiological data, we bave conduded that the amalugee is a grood representation of the problem, and we are justified in explaining the existing physiological data on the basis of our computer results. In view of the simplifying assumptions made, the quantitative results may be challenged, but we hope to point out the most critical physiohgical parameters in CO_{2} retention or CO_{2} loss.

A Mone Fon Changes m Cambor Dionme Stomis

Let us first comsider the simplest model which will demonstrate changes in CO_{2} stores. Here the whole body is considered as a common pool. where CO, is in plysical solution and in chemical combination. The total amount is a function of CO_{2} tension of the alveolar gas or of the arterial blood. Under steady state conditions the amount of CO_{z} produced by the body is equal to that expired, indicating that CO_{2} stores remain maltered. When alveolar ventilation is changed. a men alveolar tension is reached and the booly stores
radjust at a different level, the new steady tatte. This re-eguilibration of body stores will require an clevation in CO. content if the alveolar C:O temsion has increased (hypowentilation). Since the additional CO stored is part of the metalolic production, the expired CO, must be reduced by an equal anount. Hyperventilation will camse opposite changes.
A mechamical model of this simplified deacription similar to the one previonsly described * is given in figure 1. A barge reservoir represents the CO . content of body tissues. the flow of liguid inte this rescrvoir is the CO_{2} production and the outlow through a resistance, the $\mathrm{CO}_{\text {, output through alveolar ven- }}$ tilation. The height of the liguid in the reservir is the CO. pressure and the reservoir content represents the CO_{2} body stores. When the system is left undisturberl for at sufficient time the liquid level will stabilize at a height at which the hydrostatic pressure in the reservoir will force am amome equal to the inflow through the outlet tube. Under these conditions the level in the resersoir will not change aud a steady state will oltain. Varriations in alseolar ventiation will be represented by a change in resistance to the outhow. If this resistance is decreased by lalf its value (equivalent to doubling the alveolar ventilation), the level of liquid will decrease. This will finally stabilize at hadf it: original height, indicating that only half the pressure is neeessary to drive the same liquid fow through the decreased resistance. During the equibibration period (the unsteady state) the outfow will be larger than

Fic. 1. A single compartment model for CO , vores of the booly. The upper half represents the hydralie model, and the lower half an electronic analogue For details see text.

Fic. : The continuous line represents the CO disureciation curve of hlood. The dotted line is a straght lime having a slope of 45 vol. per cent/ mm . Pong. The error introduced by assuming this to be the constant slope of the blood curve between 30 and 80 mm . Pran is small compared to the variations in other biological parameters used.
during either initial or terminal steady state. the increment representing the decrease in content of the rescrooir.

The changes which oecur in the height of the reservoir ($\Delta \mathrm{h}$) correspond to changes in CO. pressure ($\Delta \mathrm{P}_{\mathrm{c}, \mathrm{H}_{2}}$), and changes in volume of the liguid (N^{\prime}) are equivalent to changes in the CO_{z} content of the stores ($\Delta \mathrm{C}_{6} \mathrm{ow}_{2}$).
 (which represents the cross-sectional area of the reservoir) describe the slope of the dissociation curve of the CO_{2} stores of the body: Only as long as the slope is constant (linear dissociation curve) the cross-sectional area of the reservoir is fixed. While we know that the dissociation curves of blood and tissues are not linear throughout, there is a tendency for linearity wer a ramge of 30 to $50 \mathrm{~mm} . \mathrm{P}_{\mathrm{cot}}$ (fig. 2). In all our subsequent considerations we hate assumed linearity in order to simplify. nur procedures.

With such a model. following a sudden change in outfow resistance (change in alvenlar ventilation) the changes in CO stores will be a simple exponential of time. When these changes are shown on a semilogarithmic plot as a fraction of the fimal change, versus time. a straight line is obtained. This type of behavior has been deseribed in detail previously:-

An electrical analogue can also be designed and appears in figure 1 under the hydraulic model. This analogue is identical in its opera-

Fic. 3. An electronic amalogue of CO, stores: the series model. In this the drop of $\mathrm{CO}^{\text {e }}$ tension from tissues (assumed to be at mixed venous blood tension) to the alveoli is insersely related to the cardiac output. The clrop in pressure between alveoli and atmosphere is inversely related to alveolar ventilation. Alveolar gas and arterial blood (right hand capacitance) are equilibrated at alveolar CO , ternion, the rest of the body at mixed venous pressure tension.
tion to the hydramlic model. Its advantage lies in the fact that it can be more easily modified in a subsequent step to represent more faithfully the biological system. The CO_{2} production of the body is now represented by the output of an electrical source (current intensity). the body compartments by a capacitor of capacitance C, and the alveolar ventilation by a resistance. R . The CO_{2}, tension is the potential. The total charge on the capacitor is the CO_{2} store, while the capacitance is now the slope of the dissociation curve. Again, charge and potential will be altered by changes in resistance and the response to a stepwise change will be exponential. The time course of the change is best expressed by the time constant, which is the time necessary to produce ($e-1$) e (approximately 63 per cent) of the total content change. As an example, if the total change is 4 liters, the time constant is the time
required to obtain a change of 63×4 or 2.52 liters. In a linear system this time comstant, T.C., is equal to $\mathrm{R} \times \mathrm{C}$.

Although either the hydramice or the chectronic moded allows a description of the problem, they are inadequate for aceurate estimation of changes. The models have assumed that the partial pressure of CO_{2} with which the whole body has equilibrated is the alveolar tension. This is mamifestly incorrect since a CO_{2} gradient from tissutes to alveolar gas is necessary in order to eliminate CO. To reproduce this in the model a double compartment has been described,: the assumption being made that the tension in mixed venous blood is a good estimate of the mean CO tension of tissues. The bulk of the stores was asstumed to be equilibrated at that particular tension, with only a minor fraction, representing arterial blood, equilibrated at $\mathrm{Pa}_{\mathrm{a}} \mathrm{an}_{\mathrm{E}}$. The electrical analogue appears in figure 3.

Our model appears more complex than the one previously described only until the appropriate figures are considered. The pressure decline from tissue to alveoli is of the order of 6 mm ., while the alveolar-itmospheric pressure difference is 40 mm ., which is to sity that the resistance added by introducing the circulation is small. Similarly, the fraction of stores equilibrated at alveolar pressure is only a minor one. The system should behave therefore very similarly to the single compartment system and under certain conditions has proved to dis. clarge accordingly:-

The Multiple Compartment Model. In the single compartment system the change in vol-

Author atal informer	Sturies	Duration of Vivpriment.	Slopr. til. k к. inm
A. Mithorfer (t)	Man	1-5	. 41
B. Klorke and Rahn (S)	Man	:8-8	. 40
C. Brocklehurst and Henderson (!)	M:11	\cdots	. 50
1). Sebaefer and Alvis (10)	Man	33	2.10
E. Lillehei and Balke (1)	Man	30	3.5
F. Vame and Fowler (5)	Man	20	1.30
(i. Vance and Fowler (5)	Man	60	2.05
H. Farhi and Rahn (2)	Dog	30-4;	1.50
I. Shaw (3)	Cat	30-90	1.60
J. Shaw and Messner (I2)	Cat	100	1.50
K. Freman and Fenn (13)	Rat	several weeks	up to 11.6

TABLI: 2

ume at any time is equal to $\mathrm{P} \times$ cross-sectional area. Therefore regardless of the duration of the experiment, the slope of the dissociation curve of the borly should be identical. This is also approximately correct for the simple two-compartment system described.

Table 1 reviews the data appearing in the literature. There seems to be a gross relationship between duration of the experiment and slope of the dissociation curve of the bods: The most significant data are probably those of Vance and Fowler on man." These authors comeluded that their results "demonstrate the different rates of exchange of alveolar gas, blood, and "tissues," and postulate that "there are probably multiple sites or pools with various rates of exchange." Rahn has also pointed ont that there must be a wide variation between organs in terms of time course of CO_{2} equi-
libration.' We decided therefore to modify: the electronic model (fig. 3) by breaking down the main capacitance. that of the tissues, into separate components, each one being connected to the alveoli independently of others. With this in mind the various organs of the body have heen tabulated separately (table 9). In this each major organ or tissue has been recognized as an individual equilibrating system. procided all the physiological parameters necessary were available. These included weight. CO_{2} production, blood flow. CO_{2}, content, and the dissociation curve of this orgam. From these data additional figures can be calculated. The electrical analogues are as before:

CO., production-current intensity
$\mathrm{P}_{\mathrm{CO}} \mathrm{O}_{2}$-potential
CO. , content-charge
Slope of CO. dissociation curve-capacitance.

Since uttr compulations, results and comelasions hinge on the values appearing in table 2 . a critical disenssion al these parameders appears in the appendix. We hope that in time more correct values may be obtatined and substituted.

Two lines in the table are incomplete. The first one is bone. Although bone is the major CO. reservoir there is no agreement on whether or not the CO. content is related to P_{1}.... ${ }^{12.1}$ It is accepted, however, that these changes are limited, if they exist at all, in experiments lasting only a few loours. Body fat CO, changes have also been excluted from our final calculations. The amount of CO . dissolved in fat is far from nexpligible since of for amimal fat is about 0.9 (nearly twice as large as for CO_{2} in water). ${ }^{5-}$ However, fat is poorly perfused and cannot contribute much to changes in stores unless considerable time is available. if perfusion to body fat could be assessed. the adipose tissue could have been included in the computations. Thus. whereas the "total" CO. content (bottom of column) indicates the total CO. content for the whole bods. "total" changes (sum of figures in colomm) are calculated to the exclusion of bonc and fat. Which are assumed to be so slow as to be negligible.

Resistance to CO. transport, the aceepted ratio of pressure differential to flow, is calculated by using the difference between venous and arterial Pro. as ΔP, and the amount of CO. transported per unit time (which is the C.O. production of the organ) as flow. This is also equal to the inverse of the product of organ flow times the slope of the $C O$, dissociation curve.

The product of the resistance and capaceitance determines the time constant. It is this parameter which determines in the last amalysis how effectively a compartment can use its storage capmeity. This is obvious when we consider that regardless of the dissociation curve of an organ. the CO , discharged from the stores (as would oceur in hyperventiation) must be discharged through the eirculation. A low perfusion (indicated by a high resistance) may become the limiting factor in stores displacement. Conversely, when perfusion is high, the total capacitance of an organ can be brought into play rapidy. Muscle is the largest of all the capacitances involved (table 2).

Becanse of this its time constant is extremeds. high. compared to other orgatns. Thims. elecetronically it became apparent that the proper. ties of the system mast be affected to at great extent by variations in the musele system. Whenever resistance of the muscle compartment is decreased, a similar decrease in time constant will ocen and the presence of musele capacitance will be more effective.

The physiological reasoming is as follows: the muscle mass, representing to per cont of the body weight, is the largest buffering pool of all orgams considered. It is therefore obvions that whenever the alveolar CO, tension will change, most of the changes in total body CO_{2} (charge) content will be dine to changes in muscle CO.. Ilowever, it is also evident that unless bood flow to muscle is proportionate to its storage capacity, perfusion becomes the limiting factor. Wheol this perfusion is low. chames in muscle C.O. will be slow. If perfusion is increased, CO, can be moved more cessily from or into the mascle. Blood flow to muscle was therefore one of the parameters we chose to alter thos changing the time constant. An athalogue designed according to values in table 2 was ansembled with some modifications. The electronic characteristics of the computer used have been deseribed by Spangler and Sncll." On this amagne we conducted three series of determinations, ome with a muscle bleod flow of 850 ml . minute. Which is the basal flow ${ }^{13}$: a second one in which this was reduced to 25 per cent of this value. which might indicate what would be expected if bleod flowe to masele decreased (shock, anesthesia) : and a third one with a blood flow of musele of 2500 ml. minute, which would be comparable to the result of moderate musele. activity.

In cath series the following experiments were presented to the computer and compared with data from the literature: (a) hyperventilation, doubling the alveolar ventilation: (1) bypoventilation, decreasing alveolar ventilation to. 50 per cent of initial value; (c) breath holding; (d) rebreathing in a lo-liter bag; (e) rebreathing in a 20 -liter bag; (f) rebreathing in a 40 -liter bag: (g) rebreathing in an 80 -liter bag.

In each case the time changes in potential in the separate compartments were recorded.

Fic. 4. Electronic madel of CO . stores-multiple comparment andosue. This differs from the prewether morlel by the fact that the bulk of the bedy hos been divided into separate compartments, all divelarging in paralle into the alseolar space. The figures appearing in each compartment refer to the parameter apearine at the same lught on the left (physiological terms) or at the right (electronic (cquivalent).

By multiphying the change in potential (partial pressure) by the slope of the "total CO_{z} diswhiation curce" of the compartment (eapacitance), the danges in CO , content of the compartment (charge) could be calculated. Adding the changes in all the compartments at any given time gives the change in body CO_{2}, coment at that instant.

Rescets

Leffects of Changes in Mascle Perfusion. Figure 5 shows the ressults of a fixed degree of hapowentilation under two of the conditions stulied (a-basal perfusion to muscle; b-muscle perfusion decrease). In either case the Wveolar ventiation has suddenly been reduced to one-lalf its normal salue the CO_{2} proluction remaining constant. This will eventually double Pacou. In each half of the figure there are two curves. The continuous line represents the changes in Pacoge going from 40 to 80 . while the dashed line represents the changes in stores.

The initial and final points are the same in the two halves of the figure. However, the time course of the events varies greatly. Un-
der basal conditions there is a rise in $P_{\text {co. }}$. with slower changes in content. The right hall of the figure shows gross deviations. The change in alveolar CO is abrupt at first. and tails off with a slowly ascending platean. This sthape is typical of any record obtaned when discharging a system in which two components with dissimilar time constants are set in paral-

Fr. 5. Hypoventilation experiment. The left figure a describes the time course with basal blood flew to muscle. The right figure b, drawn at the same scale, slows the effects of reduced perfusion to muscle: In each figure the contimuous line represents the Pario changes, and the dashed line, the stores $\mathrm{CO}_{\text {: }}$ increase. For details see text.

Fig. 6. Changes in slope of the body $\mathrm{CO}_{\text {, dis- }}$ sociation curve with time. The middle line is the expected change with basal muscle perfusion, the one albove it the expected change with increased muscle perfusion, and the lower one the changes with decreased muscele perfusion. Letters designate the experimental data from table 1 .
lel. The first part represents essentially the fast component, while the second refiects the slow compartment. Relatively few readers may be familiar with "COz washout curves" or "CO2 wash-in curves" (as the ones presented). However, nitrogen washout curves are more customarily seen. They represent essentially the same situation. When all alveoli are similar in their properties a miform washout eurve is to be expected. When there are gross differences between various elements, the multicompartment curve with its initial rapid drop and subsequent platemu is encountered. This is what occurs to $\mathrm{Pa}_{\mathrm{A}} \mathrm{coz}$, when the time constant of the muscle mass is grossly disproportionate to that of the other elements. In this case the CO_{2}, content of the body (CO_{2} retained by stores) rises at a slower rate than before. The discrepancy in time changes between the two parameters becomes evident.

The data reported in the literature are usually expressed in its final form as changes in CO_{2} stores $/ \mathrm{kg}$. body weight $/ \mathrm{mm}$. Pa_{A} (w. This information can be calculated from the curves appearing in figure 5 . At any given time the change in stores CO_{2} ean be measured, divided by 70, to give the change per kilogram, and then divided again by the concomitant change in $\mathrm{P}_{\mathrm{ron}}$. A curve showing the change in calculated values versus time can be constructed from cach of figures $5 a$, and $5 b$, as well as
from hypoventilation with increased musch perfusion. These curves are shown in figur 6 , in which the "storage eapacity" is photer: versus time. This figure shows that if onmodel is an adequate reflection of the experimental conditions, the storage capacity of the body slowld indeed vary with time. Thes variations are due to the lag in store change versus alveolar CO , tension changes. A large. resistance to blood flow in the muscle (de creased flow and large time constant) will in crease this lag and therefore the time needed to obtain true equilibrium.
The letters appearing in figure 6 represem: some of the data from table 1 and show that the discrepancies between experimental results c:an be explained by differences in equilibrating period and in masele blood flow: It is interesting to note that points H . I and J pertain to animals anesthetized with barbiturates and are in agreement with a decreased blood flow to the muscle. On the other hand the data on unamesthetized humans are compatible with a muscle blood fiow equal to or highor thatu basal value.
Figure 6 has an even greater significance when analyzed in conjunction with figure 5 . Alveolar ventilation is a calculated value; in physiological experiments there is no method which will produce an exactly predetermined change in alveolar ventilation: therefore the final $\mathrm{Pa}_{\mathrm{a}} \mathrm{me}$ e cannot be predicted. Thus the decision to assume that a new steady state has been achieved must be reached solely on the basis of the fact that the alveolar CO_{z} tension remains steady. Figure 5 will show that at low blood flow to the muscle the CO . tensiom will tend to plateau carly. This is obvious when we bear in mind that this is the condition in which CO_{2} coming from musele is just "trickling" to the alveoli and does not affect measurably the P_{A} o.e. As an example, if in an experiment the new steady state wals defined a priori as the condition at which PA_{A}.W: varies by 1 mm . or less over at 15 -minute period, experiment 5 a would have been terminated at 135 minutes, while experiment 5 would have been stopped at 60 minutes, the respective storage capacities being 2.2 and 1.6 $\mathrm{ml} . / \mathrm{kg} . / 1 \mathrm{~mm} . \mathrm{P}_{\text {co. }}$.

Effect of Alveolar Ventilation. In the overall amalysis CO_{2} has to be carried from musele

Fic. 8. Effect of rebreathing on alveolar Pres The eontinuous lines represent computer calculations, the dashed lines are the results of Mithoefer's experiments on man, rebreathing oxygen from a bag. The bag volume is 10 liters for the first pair of curves from the left. 20 for the second, 40 for the third, and 80 for the lant.
the elimination of labeled carbon dioxide through the lungs. When their data are plotted on a semilogarithmic scale, a rapid linear decrease is evident for the first 80 minutes. The slower phase appearing at that time is probably due to elimination from other body compartments which had retained $\mathrm{C}^{\prime \prime} \mathrm{O}$. which had passer through the lungs. A similar record is obtaned from the analogue when an additional charge is added to one of the capacitances.

Nichols ${ }^{2:}$ has studied equilibration of some of the body CO, stores in rats. The data for muscle CO., is essentially similar to that obtained on the computer and indicate that in the unanesthetized rat several hours are required for equitibration.

Vance and Fowler" studied serially changes in stores and in P_{o}, following a stepwise change in alveolar ventilation. Figure 7 shows their data on CO . stores changes versus time. with the appropriate curves from the computer added.

Mithoefer : has conducted experiments on rebreathing oxygen from bags containing various volumes of oxygen. The alveolar ventilation was inereased about tenfold at the beginning of the experiment and maintained throughout the rebreathing period. Figure 8 shows the time changes in $\mathrm{Pa}_{\mathrm{A}} \mathrm{O}$, in Mithoefer's experiments and those obtained from the computer data under simulated decrease in muscle perfusion.

It womd appear therefore that the amalogue is a fair reproduction of the phosiological experiments and that the condusions from the computer datat catn be applied to amimal experiments, within the limiting frame of our assumptions.

A good example of the limiting value of our assumptions maty be found in the excellent work of Lillehei and Batke " which disagrees with our calculated curves. The discrepancy is large (3.8 ml . kg . mm. $\mathrm{P}_{4} \mathrm{on}_{2}$) and not unexpected sinee in the experiment the final P_{4} ore was about 15 mm . where the slope of the dissociation curse is higher than . 45 vol. per cent, mm . The difference between actual and ealculated results can be explained on this basis.

Effects of Direction of Change, When ventilation is decreased, additional CO_{2} most be retained by the stores. This $C O$ must either be produced locally or brought in by blood. If perfusion is low, metabolism will be the only possible source of CO_{2} and may become a limiting factor in the speed of stores readjustment. Obviously, the same problem does not arise during an increase in ventilation when there is loss of previonsly stored CO .

Conclasions

The analogne computer has allowed us to single out a certain number of parameters which must influence CO . stores equilibration. The crucial point appears to be the effect of musele perfusion on the "functional" storage capacity of the body. It is this perfusion which changes potential storage capacity into an actual buffering system. If this perfusion differs between two experiments or changes during an experiment. an entirely new set of conditions will prevail and the results must be viewed accordingly.

Even under the most favorable conditions the body CO. stores must require several hours to adjust. With few exeeptions all the data in the literature must be accepted as representing incomplete experiments in which time limitations did not allow full equilibration of the body stores.

There are large evelic variations in alvedar CO, tension. In the light of our previous diseussion we would postulate that since it takes the CO. stores several hours to readjust, there is a continoms change in stores, the steady
state-if it ever oecors-heing the exception rather thatn the rule.

The question which must be answered mex. is obvious: how long should re-equilibration be carried on? The dangers of relatisely shor experiments are clear. However, prolongex experiments suffer from driwbacks which are not less serious. Excopt in sacrifice experi ments, where the whole animal is or parts $1: 1$. are actually amalyed for CO , contents, the stores changes are calculated as the differener between actual CO , output and metabolic CO outpot. The assumption of a basal CO. output over a period of several hours may be dangerons.

An entirely different objection for lone: equilibration is the fact that any change in CO. will alter the acid-base balance of the body and bring into play compensatory mechamisms. Nichols data ${ }^{1:}$ show that after $\overline{3}$ hours of exposure to high $C O$. the muscle CO. has readjusted and remains practically. unchanged. There is a questionable change in bran C.O. but a significant, steady increase in blood CO. This mast represent cation retention, as is ustally fomed in respiratory acidosis. Extrapolation of the bood CO_{O}. content curce between 5 hours and 50 lours to time o reveals values measurably lower than at 5 hours, indicating that even during this time readjustment is already taking place.

Thes the investigation of the body CO . stores presents a real dilemmat. Whether it is better to rom the risk of terminating the experiment too soon, before complete equilibration, or chance the alternate danger of modifying the biologieal system will depend greatly on the investigator and the specific problem at hamel.

Scamair

The wide scatter in reported CO. storage capacity of the body most reside in a factor or factors which have not sulficiently been taken into account. In order to determine what these factors may be, data for the CO storage capacity of various organs and their perfusion were collected. Using these data an electronic amalogue was constructed. By simulating varions procedures and varying the parameters, several experimental conditions were reproduced. Since most of the CO_{2}
surage capacity resides in the muscle, perasion of the muscle mass will determine the ite at which this storage capaeity may be Gought into phay: At rest, reecquilibration is ..'sways a lengthy process, requiring several binars. Under these conditions it should be - meduded that most of the data in the literatire were obtained fom experiments where not though time had been allowed for equilibration.

Abrimin

Comstruction of table 2 and of the amatogue were limited by the lack of specific information " ancerning certain organs or tiwnes of the body. Seneral issumptions were required and some amplifiations lave been made. Under theoe "moditions it lecomes evident that the table repreants more a method of thinking than a cumpiation of finalizad datat.

The first columes in the table indicates the perameter studied and the mit in which this parmater is Liven. In the leqeond either the vurce or the method of ohtaining the parameter i, uisem. Basie information was takern from two curces ${ }^{2}$. 4 and all other values were caltahated trom these according to the formula shown. When any data were wed in the amalogue the - puivalents appear umber the parameter. All the wher rows represent compartments, i.e.. tivnore "r orgams.

Exclusion of bone abd fat from the table divtorts considerably calculations of total body CO. content. Howerer, it is probable that only a aimimal error is introduced in the calculation of 1 hamber in CO. content (see text).
The simplification inherent to a chawification of the whole boxly (exempt bone and fat) in five compartments is probably mare damaging. Every ampartment is asoumed to be uaiform, which is probably erromeons. In order to be able to iodate dements the bavic data for each mast bewailable. The error rewulting from "illealizing" - ompartments by assuminer miformity camot be :redieterl.
The first four paramethe comidered present an aroblem. Since the body is dealt with as separate mopartments, the blood returning from each is mosidered separately. This "equilibrated blood olume" appars in lime t. Its calcalation is mased on the assmmption that each compartm:nt ontributes to the venous blowd wolume in propersom to its perfusion. The venous blood is asumed to be 75 per cont of the total volame, or $: 5(0) \mathrm{ml}$.
Wing the Fick principle, the CO. outpat of sery organ and its perfusion and the CO. content " the weons blood can be calculated, assuming II arterial coment of 45 vol. per cent.
The partial presure of CO. (line V'H) is bised In the assumption of an arterial Pow of 40 . a lope of the bood CO. diwociation curve of
.45 sol. per cent/mm. Proz, and on the venous CO, content calculated above. The partial pressure of CO_{2} in the tissuc is not kown. Recent studies 10 , $:$ show that lymph las a Prom higher than that of the venous blood drainine the same areat. If lymph gives a good indication of tissue temion, a large error in organ CO content is probibly introduced when one assumes tissta temion to be that of venous blood. However, if the difference in CO, tension between a compartment and the blood draining it remains constant (which is the assumption made), then changes in tiwate CO , content com be calculated using venous Po., values. The slope of the dissociation curve of the varions tissutes does not introduce any additional assumption. However, as better analytioal methods become awailable. some of the fisures will have to be revised.

If CO . is stored in the tisumes as bicarbonate. this will necessitate hodration and the latek of earbonic amblase in a given tissue maty prove a limiting factor in the storage capacity of an orgam.

The slope of the diserciation carse of any tisule is asumed to be consant. This is not necessarily correct and may be alfected by one of the following: (a) owerall change in buffering capacity, as ocems doriag compensation of respiratory acidosis. (b) tramsfer of electrolytes from one compartment to another. (c) production of metalonlites (such as lactic acid) which can displace CO . from bicarbonate, and (d) change. in compartment volume.

Calculations for the alveolar crmpartment are slightly different. The equilibrated blood volume is assumed to be the lotal arterialized blood whume.

The kidness have been cexluded from the "other" compartment since their perfasion is extremely high (very low resistaner) and their capacitane is necessarily small. Thes their time constant is practically nil. The erpacitance of this system (which is mostly in the equilibrated blowd volume) has therefore been added to that of the alveolar compariment.
Since the time constants of the heart, brain and "other" compartments are ensentially similar, it is possible to replace thene three compartments by an "equivalent compartment" without change, in the results or conclusioms.

This insentigation was supported le the Wright Air Development Command, Wright-Patterson Air Force Base, Ohios. We are indebted to Dr. Frew Snedl and Dr. lobert Spangler of the Department of Biophysies for the use of their analogue computer and help in programming.

REFERENCES

1. Adolph. E. F.. Nance. F. D.. and Shiling. M. S.: Carkm dioxitle capracity of human body and progressiue effect of earlon dioxide upon hreathing. Amer. J. Plysiol. 87: $539,199$.
2. Farhi, L. E., and Rahn, H.: Gas stores of body and unsteady state, J. Appl. Physiol. 7: 472, 1955.
3. Shaw, L. A.: Comparative capacity of blood and of tissues to absorb carbonic acid, Amer. J. Physiol. 79: 91, 1926.
4. Rahn, H.: Gas stores of body, with partieular reference to carbon dioxide, First Intemational Symposium on Submarine and Space Medicine, New London, Conn. (in press).
5. Vance, J. W., and Fowler, W. S.: Adjustment of stores of carion dioxide during voluntary hyperventilation, Dis. Chest 37: 304,1960 .
G. Spangler, R. A., and Snell, F. M.: Analogue system for sequential reactions, Biophysical Society Meetimgs, Febmary 1960, p. D.
6. Mithoefer, J. C.: Personal commonication quoted in reference 4 .
s. Klocke, F. J., and Ratm, H.: Breath hodding after normal breathing and heperventilation on oxygen. Physiologist 1: 41, 1958.
7. Brocklehurst, R. J., and Henderson, J.: Buflering of tissues as indicated by the CO . capacity of body; J. Biol. Chem. 72: 665, 1927.
8. Schaefer, K. E., ame Alvis, H. J.: Effect of inhalation of bow oxygen concentration ($10.5 \mathrm{r}_{6} \mathrm{O}_{2}$ in N_{2}) over a period of 33 minutes on respiration, pulse rate, arterial oxygen saturation and oxygen uptake, Naval Medical Research Laboratory Report No. 175, 10: 76, 1051.
9. Lillehej, J. P., and Balke, B.: Studies of hyperventilation, USAF School of Aviation Medicine Reports No. 55-62, 1955.
10. Shaw, L. A., and Messner, A. C.: Carbor dioxide capheity of body and rate at whic the body comes into equilibrium wit, changes in alveolar carbon dioxide temsion, Amer. J. Physiol. 93: 422, 1930.
11. Freeman, F. II., and Fenn, W. O.: Changes ia carbon diovide stores of rats due to atmopheres low in oxygen or high in carlon: dioxide, Amer. J. Physiol. 174: 422, 1953.
12. Spector, W. S., Editor: Handbook of Biologice? Data. Philadelphia, W. B. Saunders Conspany, 1956, p. 283.
13. Nichols, G., Jr.: Serial changes in tisune eatbon dioxide content daring acute respitatory acidosis. J. Clin. Invest. 37: 1111, 195s.
14. Nichoks, (:., Jr.: Solubility of carbon dionid. in body fat. Science 126: 1244, 1057.
15. Bemimolin, J., Brull, L., Covalerts, J. Guillaume, M., and Milet, A.: Fite of ${ }^{14} \mathrm{CO}$, introdaced into rectum and blood of dog. Arch. Int. Mhysiol. 67: 54, 1059.
16. Bergofsky, E. II., Jacobom, J. H., II. and Fishman, A. P.: Po., and Pore of lymph, Fed. Proc. 19: 381, 1960.
17. Carlsten, A., and Suderholm, B.: Carbon dioxide tension and pht of lymph and arteria! blood in aneothetized dors, Aeta Physiol. Scamd. 48: 29, 1960.

[^0]: The athors are in Department of Phesiolosy, The University of Buffalo School of Decdicine. Buffalo 14, New York.

