CYCLOPROPANE ANESTHESIA．II．EPINEPHRINE AND NOREPINEPHRINE IN INITIATION OF VENTRICULAR arrhythmias by Carbon dioxide inhalation

II．L．Price，M．D．，A．A．Lume，M．D．，R．E．Jones，M．D．
M．I．Price，A．B．，I．W．Linde，Ph．D．

The fact that arrhythmic cardiac contractions may occur in normig men anesthetized with various drugs is well recognized．The factorg involved in their production，however，are not yet identified，and mand clinicians continue to refer to them as＂spontancous＂arrhythmias． Some anesthetists continue to refer to them as＂spontaneous＂and ex periments performed to determine their causes continue to he peğ formed almost exclusively in animals．

The principal reasons for studying cardine arrhytlmias in animan are two：their sporadic and unpredictahle occurrence in man，and tlog development of methods hy which arrhythmias ean be produced prex dictably in animals．The most frequently used animal method has beeif the intravenous injection，into dogs nnesthetized with cyclopropane，ơp quantities of epinephrine which may exceed the maximal secretory capacity of the animals＇own adrenal glands（1）．As a result of such studies in dogs，it has been suggested that eyclopropane reflexly＂senss？ tizes＂the myocardium to the effects of epinephrine by acting on mesenteric reecptors（2）．There is no evidence to suggest that tl⿺夂丶犬灬 same mechanism operates in man，or，if it does，whether this is the caus of＂spontancous＂arrhythmins occurring during anesthesin．The is evidence that the dog responds differently to epinephrine injectiof during cyelopropane anesthesia than do other species（3），and it hod been reported that intravenous infusions of norepinephrine in men ancsthetized with eyclopropane may not disturb cardine rlythm（ 49 An investigation of the mechanisms involved in the production of ＂spontaneous＂arrhythmias during anesthesia in man thercfore $\quad \mathbb{Q} \mathbb{Q}$ pears warranted．

Recent studies suggest that the coincident production of respirato acidosis may be the most frequent cause of cardine arrhythmias oo－ carring during the administration of a number of anesthetic agents buman beings（5， 6,7 ）．During cyclopropane ancsthesia it was found that arrhythmins could be produced in every ease by inducing mi ${ }^{6}$ l

[^0]hyperearbia．－This method has been utilized in the present study 后 produce cardiac arrhythmias in subjects anesthetized with cycle propane．The means by whieh carbon dioxide acts to produce aq̊－ rhythmias under these conditions has been investigated．

Methods

Twenty－eight adult female subjeets were studied who were phy离－ ieally normal except for complaints judged to necessitate dilatation of the cervix and curettage of the uterus．Age ranged from 22 to 54 yearg． No preanesthetic medication was given．

Anesthesia was indueed with eyelopropane in oxygen，using $\underset{\rightrightarrows}{\overrightarrow{3}}$ valved，undirectional，semielosed system eontaining a soda lime canister for carbon dioxide absorption．As soon as the depth of anesthesp permitted，the patient＇s trachen was intubated with a cuffed rubbew Magill tube，and the cuff inflated with air．The concentration of cyclo propane inspired thereafter ranged from 15 to 30 per eent，and ree－ mained constant（within one volume per cent）throughout the daratie⿻丷木⿴囗十灬 of eneh study，which lasted for approximately two hours．The surgican operations were deferred until the end of the period of study．Thit total gas flow averaged one liter per minute．Annlyses of ent expiratory gas samples for cyelopropane were made by absorption 亳 30N sulfuric acid，using a Scholander gas analyzer．The concentre tions measured varied within a range of plus or minus one volune per eent when the inspired concentration was lield constant．

The expired carbon dioxide tension was measured continuous危 with a Liston－Beeker＂breathe through＂analyzer placed as near db possible to the subject＇s face．The apparent $p \mathrm{CO}=$ recorded was cog rected for the presence of cyclopropane（7）．Respirations were ag sisted by intermittent manual compression of a 5 l．lareathing bag io an attempt to maintain the end－expiratory $p \mathrm{CO}_{2}$ between 30 and 40 mm ．of mercury during the control periods．The carbon dioxide tex sion was increased by shunting the soda lime canister totally dio partially out of the system．To attain the highest levels of $p \mathrm{CO}$ earbon dioxide was added to the system from a lighl－pressure cylindẹ̛ at rates up to 250 ml ／minute．

Arterial blood pressure was measured by means of a strain gaugio through an indwelling needle inserted in the brachial artery．Tha electrocardiogram（lead 2）was recorded continuously．Samples \mathscr{O}_{\circ} arterial blood were drawn at intervals，eentrifuged at 750 g for 20 minutes，and the plasma analyzed for epincphriue and norepineplirine by the trihydroxyindole method（8）．

In some eases parasympathetic blockade was attempted by a ministering 1.4 to 2.1 mg ．of atropine sulfate intravenously in divided doses at one minute intervals．In other instances blockade of some of the cardiac sympathetic nerves was produced by depositing a totif of 10 to 20 ml ．of one per cent lidocaine in the region of the stellate
ganglia. Criteria for blockade were the occurrence of miosis a a d axillary anhydrosis.

Intravenous infusions of l-epinephrine or l-norepinephrine bit\% trate were made in some subjects by means of a constant rate infusion pamp. All quantities and concentrations of these substances are expressed in terms of the bases.

Statistical analyses were performed by means of the Fisher t tert (9).

Results

 Norepinephrine to Cardiac Rhythm.-The concentrations of epinepherine and norepinephrine measured in arterial plasma before the indigetion of anesthesia in 6 of the subjects studied averaged $0.09 \mu \mathrm{~g} / \mathrm{l}$. eiginephrine and $0.21 \mu \mathrm{~g} . / \mathrm{l}$. norepinephrine, and ranged between zero aigd 0.22 epinephrine and zero to 0.62 norepinephrine. These concentegtions are in the normal range olserved using our modification of the trihydroxyindole method (8). The $p \mathrm{CO}=$ ranged from 34 to 46 m m. of mercury. Cardiac rhythm was of sinus nodal origin in all sabjeets except 2 and 7 in whom ventricular extrasystoles occurred with an average frequency of once in three minates.

The administration of cyclopropane was associated with an msignificant effect on plasma epineplrine concentration, but the concenttration of norepineplorine increased significantly. Data obtained in $\$ 3$ subjects are shown in table 1 under the liending "Control." The p C ${ }^{0}$. in samples of end-expired air was normal, slightly elevated, or slighlly reduced (range 25 to 51 mm . of mercary). Cardiac rhythm was normal in these subjects under these conditions.

When the pCO_{2} was deliberately increased, without changing te end-expiratory concentration of cyclopropane, ventricular extrasisstoles, bigeminal rlythm, or multifocal ventricular tachycardia was observed in each of the 28 cases. The pCO_{2} levels associated with (Re appearance of these arrhythmias (threshold level) in 13 cases are notéd in the section of table 1 titled "Hyperearbia." The threshold legel averaged 58 mm . of mercury and ranged from 44 to 72 mm . of merenty. In the 4 subjects tested the $p \mathrm{CO}_{2}$ threshold was reproducible withn 3 mm . of mercury provided that the concentration of cyclopropanean end-expired air remained constant. The catechol amine concentrations measured at the onset of the arrhytlimias produced by clevating $p \mathrm{CO}_{2}$ are also shown in table 1. With a single exception (subject 13), fhe concentrations of epinephrine, norepinephrine, or both exceeded thgse determined before the period of hypercarbia. Return of the elevated $p \mathrm{CO}_{2}$ to normal was associated with retnrn of cardiac rhythm to normal in these cases, and with a reduction in the plasma catechol amine ce $\overline{\mathrm{B}}$ centrations. Thas, the question arose whether the increased concegn-

[^1]TABLE 1

Subjeet	$\begin{gathered} \text { Cilis turg. } \\ \text { per rent } \\ \text { (eomplete } \\ \text { range during } \\ \text { sturls) } \end{gathered}$	Control During Anestlients (Tlegular Sinus Rhythim)			Threshod Levels for the Production of Ventricular Arrhythmias by:							
					Hyperearbia				Infusion of E and N			
		$\begin{gathered} \mathrm{pCO}_{\mathrm{t}} \\ \text { mercury of } \end{gathered}$	$\underset{(\mu \mathrm{R} \cdot / \mathrm{l} .)}{\mathrm{E}}$	$\underset{(\mu \mathrm{R} . \mathrm{A} .)}{\mathrm{N}}$	$\begin{gathered} \mathrm{pCO}_{2} \\ \text { (minn of } \\ \text { mercurs }) \end{gathered}$	$\underset{(\mu \mathrm{L} . / \mathrm{l} .)}{\mathrm{E}}$	$\underset{(\mu \mathrm{n} . / \mathrm{l} .)}{\mathrm{N}}$	Thythm*		$\underset{(a r k}{E} / f .)$	$\underset{(\mu \mathrm{F} . / \mathrm{L} .)}{\mathbf{N}_{1}}$	nhythm*
1	24-20	32	0.09	1.38	53	1.11	2.01	MFVT	-	-	-	\sim
2	2.1-25	33	(-)0.14	1.27	04	0.20	3.17	MFVT	-	-	-	-
1	17-18	35	0.04	1.12	56	0.18	1.40	Fr. VEX	-	-	-	-
5	10-17	3.1	0.02	0.12	53	0.00	0.87	Fr. VEX	\square	-	-	-
	21-23	32	0.10	0.88	41	0.22	1.24	Fr. VFA	-	-	-	-
6	1-1-18	28	0.03	0.48	66	0.15	0.39	Fr. VEX	30	0.00	5.04	Fr. VEX
7	17-18	3.1	-	-	50	0.11	0.05	Fr. VES	33	0.31	0.02	Rare VEX
	-	-	\square	-	-	-	-	-	3.4	4.02	0.69	Fr. VEX
8	15-18	3.1	0.10	0.58	03	0.26	1.24	Fr. VEX	30	2.73	0.78	RSR
9	1-1-15	35	0.18	0.16	5.1	0.08	1.18	Fr. VES	33	(-)0.05	12.11	Fr. VEX
	--1	-	-	-	58	0.24	0.02	MFVT	41	(-)0.00	14.40	Fr. YEX
10	17-18	51	0.21	0.66	72	-	-	-	50	0.14	11.75	RSR
	15-16	34	0.17	0.31	72	-	-	-	53	(-)0.05	12.50	RSR
11	13-15	30	0.00	1.14	60	0.28	$(-) 0.22$	Fr. VIEN	32	2.60	12.80	Nodal Ex. Trigen.
	13-15	50	0.27	0.38	\square	-	-	-	50	1.28	0.12	Bigem.
12	15-16	34	0.10	1.04	72	0.30	2.42	Fr. VEX	-	-	-	二
13	15-17	25	0.35	0.41	48	0.10	0.20	Bigem.	$52 \dagger$	2.06	4.76	Fr. VEX
1.4	12-14	34	0.12	0.23	68	0.06	0.84	Higem.	33	2.00	7.60	Fr. VEX
	12-14	-	-	-	二	-	-	-	$33 \dagger$	4.24	10.18	Fr. VEX
	-						-		74	2.16	7.02	Rare VEN
Averago .		35	0.13	0.72	68	0.23	1.10		41	1.60	8.22	

[^2]Bigem. = Bigeminal rhythm
M F
tration of plasma epinephrine and norepinephrine associated wifo hyperearbia caused the arrhythmias.

This problem was attacked by infusing epinephrine and/or norep $\frac{6}{6}$. uephrine intravenously in the same subjects while they were maintained at constant end-expiratory cyclopropane concentration, and at a steadey subthreshold level of end-expired $p \mathrm{CO}_{2}$ (see definition of "threshold ${ }_{7}$ above). The catechol infusion rate was donbled every three to sis minutes until an arrhythmia appeared, or until the maximum raw obtainable with our equipment ($20-30 \mu \mathrm{~g} . /$ minute) was reached.

Twelve observations were made, and are reported in table 1. 佂 tliree instances no arrhythmia was produced, while in the remainde9 the frequeney of ectopic rhythm was less or the type of arrhythme less "severe" than during liyperearbia in most instances (basis of grading $=$ nodal extrasystole $<$ ventricular extrasystole $<$ frequent sim gle focus ventricular extrasystoles < multifocal ventricular tach ${ }^{\text {为 }}$ cardia). In all eases the plasma concentration of catechol amine in fused was, at the onset of arrhythmia, ten or more times that mensurca when the arrhythmias were initiated in the same suhjects by hypegis carbia. Mixtures of epinephrine and norepinephrine were no mowe effective in producing arrhythmias than an equal amount of either drug separately. However, in several instances epinephrine appeared more potent than norepineplirine alone. The infusion rates of eple nephrime or norepineplirine producing arrhythmias ranged from 4 $26 \mu \mathrm{~g} /$ minute.

The possible explanations for these findings appeared to be at least two: carbon dioxide might enhance the effeets of eirculating enteeleg amines, so that an average increase in end-expired $p \mathrm{CO}_{2}$ from normed to 58 mm . of mercury (table 1) would eause a tenfold inerease in tiö ability of epinephrine or norepinephrine to produce arrhythmias of carbon dioxide might initiate arrlyythmias by a mechanism not dea pendent upon an inereased plasma epinephrine or norepinephrine con centration.

The first possibility was investigated by infusing epinephrine oo norepinephrine intravenously during varions steady subthreshold leve ${ }_{8}$ of end-expired pCO_{2} in order to discover whether the infusion ratio effective in producing cardiac arrhythmias depended upon the carbog dioxide tension. The results are included in table 1 . No dependence could be shown. Although the results are inconclusive bccause onl the subthreshold range of $p \mathrm{CO}_{2}$ could be examined, it is noteworthy that subject 10 , whose $p \mathrm{CO}_{2}$ threshold was sufficiently high to permitio infusion studies at a $p \mathrm{CO}_{2}$ of 53 mm . of mercury, failed to develop a O arrhythmia on two occasions of infnsion of norepinephrine at the rate of $26 \mu \mathrm{~g} /$ minute.

Effects of Stellatc Ganglion Blockade.-Support for the possibility that carbon dioxide could initiate cardiac arrhythmias independently of an increase in plasma catechol amine concentration was obtained by blocking the stellate ganglia bilaterally with lidocaine in subjects 3,12 ,

13 and 14. .Prior to blockade frequent ventricular extrasystoles hăd occurred in each subject when the $p \mathrm{CO}_{2}$ was elevated, the threshogid ranging from 48 to 72 mm . of mercury. During the blockade, however, the threshold for arrhythmia was 118 mm . of mercury in subject \mathbf{d}^{8}, 121 mm . of mercury in subjeet 14, and above 125 mm . of mercury in the other 2 eases. For technical reasons, $p \mathrm{CO}=$ levels greater than 185 mm . of mercury could not be accurately measured. In one subject (mo. 13) frequent ventricular extrasystoles suddenly occurred after $p \mathrm{C} \mathrm{Q}_{2}$ had been elevated for forty minutes. It was apparent from inspection of the pupils that the blockade of the right stellate ganglion was dimes.

TABLE 2
Plagna Epinephine and Nonepinepuine Concentmations Absociated witi Ventbicula Arehythaias Phoduced ar Hipercarbia and Catechol Anine Infubion Before and Apter Steldate Ganolion Blockade

Subject	$\stackrel{(1)}{\text { Hypertarbia }}$				Stellato Biock (2) And IIypercartia				$\stackrel{(7)}{\text { Infurion }}$			¢
	MABP	Rhythm	$\underset{(\operatorname{LE} . / 2 .)}{ }$	$\left(\begin{array}{c} \mathrm{N} \\ (\mathrm{~N} . / \mathrm{L}) \end{array}\right.$	MabP	Rhythrn	$\underset{(\mu \mathrm{m}-n .)}{\mathrm{E}}$	$\underset{(\mathrm{Ng} / \mathrm{L} . \mathrm{L}}{\mathrm{N}}$	Mabp	Ruythm	$\underset{(w e . / L)}{\mathrm{E}}$	$\left(\begin{array}{c} 0.0 \\ \left.\cos . \frac{14}{7}\right) \end{array}\right.$
7	01	(VIEX)	0.11	0.95			-	-	93	(VEX)	2.10	4.8
11	76	(VEX)	0.28	0.00			-	-	94	(VEX)	1.95	0.68
12	101	(VEX)	0.30	2.42	104	(RSR)	2.72	4.48			-	$\xrightarrow{-1}$
13	102	(VEX)	0.10	0.20	103	(RSR)	1.87	3.09	99*	(VEX)	2.96	4.72
14	03	(VEX)	0.06	0.84	94	(VEX)	1.20	2.88	03	(VEX)	2.00	7.09
									100*	(VEX)	3.20	8.08
Mean	05		0.17	0.88	102		2.18	4.12	06		2.45	$7.00{ }^{\circ}$
Significant difference compared to (1)$(p<0.05):$					+			$+$			$+$	O
					$+$				+			

$\mathrm{E}=$ Epinephrinc.
$\mathrm{N}=$ Norepinephrinc.
MABP = Mcan arterial blood preseure.

VEX $=$ Ventricular extrusystoles.
$\mathrm{RSR}=$ Regular sinus rhythm.

- Aiter stellato block.
ishing at this time. Injection of 5 ml . of one per cent lidocaine in the region of the ganglion was followed within one minute by reversion od normal sinus rlythm. Subeutaneous injections of 10 ml . of one por cent lidocaine did not elevate the arrhythmia threshold.

Table 2 compares the plasma epinephrine and norepinephrine coutcentrations measured when attempts were made to initiate ventriculler arrhythmias by (1) hypercarbia, (2) hypercarbia during stellafe ganglion blockade, and (3) catechol amine infusions. Data from the 6 subjects in whom two or more of these procedures were carried oư, and who received both epinephrine and norepinephrine infusions, comprise the table. The plasma concentrations of epinephrine and norepnephrine detected during condition 2 were great enough to suggest that after stellate ganglion blockade the arrhythmias were initiated either partly or entirely by an increase in the circulating catechol amine
level. Prior to blockade, the discharge of the cardiae sympathet nerves apparently could initiate arrhythmias without greatly elevating plasma epincphrine and norepinephrine concentrations.

Since deposition of a local anesthetic solution in the neck might conceivably block the vagus nerves, and since stellate ganglion blockade often resulted in tachycardia it was considered necessary to deci需e whether inadvertent vagal blockade could have influenced the resulf For this purpose the $p \mathrm{CO}_{2}$ threshold for arrhythmias was determing before and after the intravenous administration of 1.2 to 2.1 mg . atropine sulfate, in divided doses, in subjects 9,11 , and 15 . No cossistent difference in threshold was detected. The $p \mathrm{CO}_{2}$ levels at whied ventricular arrhythmias first appeared in these 3 subjects were (m order) 60, 67, and 55 mm . of mercury before the administration ${ }_{\mathrm{e}}^{\mathrm{f}} \mathrm{f}$ atropine, and 69, 64, and 58 mm . of mercury afterward.

The possibility that stellate ganglionic blockade might inhibit the production of cardiae arrhythmias by causing arterial hypotensiof (10) was next examined. In table 2 the levels of arterial blood pressupe at the onset of the arrhythmins caused by lypercarbia, catechol amie infusion, and hyperearbia during stellate ganglion blockade are cortypared. In each subject stellate ganglion blockade increased the meem arterial blood pressure at which an arrhythmia occurred during hypedcarbia, thus ruling out the possibility that the blockade inhibited the production of arrlyythmias by producing hypotension.

In the one subject in whom the possibility was.tested (subject 19 , table 2), blockade of the stellate ganglia did not appreciably alter ter arrhythmia threshold for catechol amine infusion. This fact made ${ }_{\&}^{\circ}$ interesting to re-examine the idea that carbon dioxide might increase the ability of circulating epinephrine or norepinephrine to cause afor rhythmias. For this pnrpose infusions of epinephrine and norepinepp rine were made in subjects 13 and 14 (tables 1 and 2) whose stellate ganglia had been blocked and whose end-expired $p \mathrm{CO}_{2}$ was maintained at a level above the threshold $p \mathrm{CO}_{2}$ determined before the block. Evegio ander these conditions the concentrations of epinephrine and norepob nephrine in arterial plasma were ten or more times as great whein arrhythmias were initiated by infusion (ganglia blocked) as wheer provoked by hypercarbia before ganglionic blockade.

Cardiac Arrhythmias Occurring During Reduclion of Elevato $p \mathrm{CO}_{2}$. - In 22 of 28 cases cardiac rhythm reverted to normal with the return toward normocarbia. In the remaining 6 cases, ventricnl $\frac{8}{\boldsymbol{\phi}}$. arrhythmias either appeared suddenly or increased in frequency whe the $p \mathrm{CO}_{2}$ was reduced from elevated levels. Data obtained just before or during this period in 24 subjects are shown in table 3, and are divided according to whether the arrhythmias were diminished or $\mathrm{e}^{\frac{5}{2}}$ acerbated by reducing $p^{2} \mathrm{CO}_{2}$. Incomplete data were obtained in $\frac{\mathrm{y}}{4}$ cases, and these have been omitted from the table. The subjects 筩 whom arrhythmias were exacerbated by reducing $p \mathrm{CO}_{2}$ were exposed to a greater $p \mathrm{CO}_{2}$ and cyclopropane level than the others, they were
exposed longer, the concentrations of epinephrine and norepinephri羔e in the arterial plasma were greater, and the rate of decrease of $p \mathrm{C} \bar{D}_{2}$ exceeded that in the other group. All of these differences, except thant in duration, were statistically significant ($p<0.05$). In 3 of the ${ }_{6} 6$ subjects exhibiting an exacerbation of arrlyytlimia when $p \mathrm{CO}_{z}$ wh reduced, the inspired cyclopropane concentration was inadvertenfy reduced at the same time. This fact may also have contributed to tje appearance of cardiac arrhytlmias in these cases (7).

TABLE 3
Cardiac Ruytim Duming Reductign af Elevatrd $p \mathrm{CO}_{2}$

$\mathrm{E}=$ Epinephrine.
$\mathrm{N}=$ Norepinephrine.

Discussion

The results presented suggest that liypercarbia initiates ventricular arrlytlimias during cyclopropane anesthesia in man by stimulatiop cardine sympathetic nervous discharge. An augmented release of catechol amines by the adrenal medullae probably also occurs, as in cated by an increase in plasma epinephrine concentration, but it ag. pears insufficient to cause cardiac arrhythmias at levels of alveoldr carbon dioxide tension which might be attained in clinical practice. It is an attractive inference that catechol amine (principally noregnephrine) liberation from sympathetic nerves terminating in the cofitracting synctium itself causes the arrhythmias observed, and that the relatively weak effect of adrenal discharge results from the lack ${ }_{8} \mathrm{~g} f$ proximity of its secretory elements to the myocardium. It is not u露reasonable to believe that the cardiac sympathetic nerves can liberafe norepinephrine at a rate exceeding the capacity of the myocardium to metabolize it, that it can accumulate in high concentration within tipe heart, and that a portion of the increase in plasma norcpinephrine comcentration observed during both cyclopropane anesthesia and hypescarbia results from the release of this substance from the heart (1A.

Carbon dioxide inhalation causes cardiac arrhythmias in consciotus men (12), as well as during general anesthesia produced by a variety
of substances $(6,7)$. The fact that carbon dioxide stimulates symp ${ }_{\text {an }}$ thetic nervous discharge (13), in part by means of an action on the hypothalamus (14), is well known. Hypothalamic stimulation in tugn can provoke cardiac arrhythmias similar to those observed durigg anesthesia ($15,16,17$), and this effect appears to be mediated via efferent sympathetic pathways (17).

Certain effects of cyclopropane itself (i.e. in the absence of hypeircarbia) on cardiac rhythm may be due to sympathetic stimalation. man, the production of ventricular extrasystoles by cyclopropane in the absence of hypercarbia is accompanied by tachycardia and lyypertensiôn (7). The classical description of progressive bradycardia followed fy "ventricular escape" is thus incomplete, for there appears to be $\overline{\text { In }}$ addition an increase in sympathetic discharge. Cyclopropane ancogthesia is associated with an increase in the concentration of nore ${ }^{\text {m }}-$ nephrine in arterial plasma, which could result from stimulation of the cardiac sympathetic nerves, and it appears from preliminary studiegs that blockade of the stellate ganglia will prevent the ventricular afrhythmias which can be initiated by deep cyclopropane anesthesia in tac absence of hypercarbia (18). It is of interest that A-V nodal rhythig, which occurs commonly during cyclopropane anesthesia, can also $\overrightarrow{\mathrm{P}}$ e prodaced by stimulation of cardiac sympathetic nerves (19).

Present evidence thus favors the view that cyclopropane itself stimulates sympathetic nervons discharge, that it does not block the ability of carbon dioxide to do so, and that these facts are basically responsibide for the occurrence of ventricular (and ecrtain other) arrhythmias duwing cyclopropane anesthesia. The increase in sympathetic activif may be reflexly mediated throngh stimulation of mesenteric receptorg, as suggested by Statzman et al. (2); the present studies shed no light on this problem. The efferent pathway for ventricular arrhythmiag, however, is apparently identical with that demonstrated in animalls $(2,17)$, except that in man adrenal medullary discharge appears ${ }_{8}$ minor importance compared with that of the cardiac sympathete nerves. A reinterpretation of the idea of cardiac "sensitization" by way of the cardiae sympathetic nerves would suggest that the mechid nism involved may be simply that of liberation of norepineplerine with the myocardium. Unfortunately, it is not yet clear whether there also occurs a direct "sensitization" of the myocardium by cyclopropane 右 normal levels of cardiac sympathetic discharge (20,21).

The theory claborated above predicts that drugs which primari度 antagonize the vascular effects of circulating catechol amines will ineffective in reducing the incidence of cardiac arrhythmias occurrirl during cyclopropane anesthesia in man. An apparent illustration this is found in the report (22) that phentolamine, which prevenf cyclopropane-epinephrine arrhythmias in dogs, does not reduce tim incidence of "spontancous" arrhythmias during cyclopropane ane thesia in man. An analysis of this failure suggests that although a have reduced the incidence of "spontaneous" arrhythmias, an adremlytic drug like phentolamine was ineffective because its action was 骨appropriate. On the other hand, the success of phentolamine in preventing cyclopropane-epinephrine arrhythmias in the dog suggests that the role of epinephrine in initiating these arrhythmias is not limitg to its action on myocardial receptors "sensitized" by some action of cyclopropane. It further suggests that the essential mechanism 橓volved in the production of cyclopropane-epinephrine arrhythmias on the dog may be different from that which results in "spontaneones, arrhythmias during cyclopropane anesthesia in man, and that caution must be exercised in transferring results obtained by this method ${ }_{6} 0$ man.

Cardiac vagal stimulation, combined with excitation of the cardige sympathetic nerves, may be more effective in producing cardiac aix rhythmias than either alone (23). The fact that cyclopropane may prob duce some degree of cardiac slowing in man is clear, but the degree $\frac{\omega}{\mathrm{of}}$ slowing is not remarkable, and it may be insignificant (7). Moreoveg, it has been found difficult to initiate ventricular arrhythmias duride cyclopropane anesthesia in man by stimulating the peripheral end ${ }_{\text {dif }} \mathrm{f}$ the divided vagus nerve (24). The administration of atropine did nit alter the arrhythmia threshold in the present studies. There afte reasons for believing that acetylcholine liberation by the vagus nerbe can suppress ventricular arrhythmias (25). Conversely, the adminiif tration of atropine during hypercarbia may precipitate ventricular tachycardia (26). Finally, the last supraventricular beats which occự before the onset of a ventricular arrhythmia during cyclopropane ane thesia in man are frequently rapid and originate in the sinus node ($7 \Phi^{\circ}$ This occurs even when the rhythm just preceding these events hag been slow and the pacemaker displaced. A high vagal tone thus does not appear essential for the initiation of ventricular arrhythmias dug ing cyclopropane anesthesia in man.

The exacerbation of arrhythmias which occurred in some cases whe elevated $p \mathrm{CO}_{2}$ was decreased is perhaps of no more than academe interest since it was noted only after $p \mathrm{CO}_{2}$ elevations to levels whiciog are almost unattainable in clinical practice (over 15 per cent), and only in some cases even under these conditions. It is interesting that the plasma concentrations of epinephrine and norepinephrine in the suf jects whose arrhythmias did become more frequent during "blow-of ${ }_{\sigma}^{\circ}$. were already in the range capable of producing arrhythmia before the $p \mathrm{CO}_{2}$ was decreased (table 3). Exacerbation of arrhythmia could theth result from removal of an inhibitory effect of carbon dioxide on mye cardial excitability, an action which has already been suggested (28 28). Alternatively, an "overshoot" of epinephrine and norepinephrin liberation synchronous with decrease of carbon dioxide could explaim this phenomenon. There is some evidence that this occurs in dogs ant cats (13), but the question has yet to receive stady in man.

Sumarary and Conclusions

An increase in alveolar carbon dioxide tension precipitated veib． tricular arrhythmia in each of twenty－eight human sabjects anesthetizid with cyclopropane．

Intravenous infusions of epinephrine and／or norepinephrine rates from 4 to $26 \mu \mathrm{~g}$ ．／minute produced similar arrhythmias in six ${ }_{\mathrm{w}} \mathrm{F}$ eight subjects．Ventricular arrhythmia could not be produced in ofie case by an infusion of epinephrine at the rate of $12 \mu \mathrm{~g} . /$ minute，nor in another when $26 \mu \mathrm{~g} . /$ minute of norepinephrine were administered．

The concentrations of epinephrine and norepinephrine in arter都 plasma during periods of arrhythmia were much greater when the ${ }^{3} \mathbf{s}$－ rhythmias were produced by infusion than when they were cansed by hypercarbia．This suggests that an increase in circulating catechol amines was not the cause of the arrhythmias．

The administration of atropine did not appreciably affect the abili䇩 of hypercarbia to initiate ventricular arrhythmias．

Bilateral blockade of the stellate ganglia with a local anesthe rendered hypercarbia practically ineffective in producing ventricula r arrhythmias，but did not significantly alter the ability of infused ep neplrine or norepinephrine to do so．

The effect of blockade of the stellate ganglia in preventing o rhythmias was not the result of coincident arterial hypotension，sys－ temic absorption of the local anesthetic drug，or inadvertent vagel blockade；presumably it resulted from interruption of sympathetic fibers supplying the heart．

Reduction of elevated alveolar carbon dioxide tension toward normois resulted in disappearance of ventricular arrhythmias except in t㕹 few instances when the concentrations of epinephrine and norepinep ${ }_{\text {g }}$－ rine in arterial plasma were in the range capable of producing a $\frac{\mathrm{e}}{\mathrm{s}}$ rhythmias before hypercarbia was corrected，and when the rate of pCO_{2} reduction exceeded 25 mm ．of mercury／minute．

The data indicate that hypercarbia increases the rate of liheratigg of catechol amines from sympathetic nerves terminating in the mye－ cardium，and that this causes ventricular arrhythmias．Amines libe ${ }^{\text {a }}$－ ated from the adrenal medullae or from other sources during hypeg－ carbia are relatively ineffective in producing arrhythmias，either big－ cause they do not easily penctrate the myocardium，or because the enter the coronary vessels only after dilution with a large volame of circulating blood．

[^3]3．Hutcheon，D．E．：Busecptibility to Ventricular Fibrillation During Chloroform and Cyc角－ propane Ȧnaesthesio，Brit．J．Pharmacol．6： 31 （Mnrch） 1951.
4．Burks，S．N．，and Luger，N．M．：Clinical Use of Lero－Arterenol During Cyclopropage Anesthesin，Surgery 35： 104 （Jan．） 1054.
5．Johnstone，Mr：Cyclopropane Anaesthesia and Yentricular Arrhythmias，Brit．Meart J．1才t： 239 （July） 1050.
6．Johnstone，X1．：Cardiology of Anacsthesin，Anes．and Analg．31： 325 （Sept．） 1952.
7．Lurie，A．A．，Jones，R．E．，Lindc，IL W．，Prico，M．L．，Dripps，R．D．，and Price，H．黄： Gyclopropane Anesthesia；Cardine Rate and Mhytum During Steady Levels of Cycko－ propane Anesthesia in Man at Normal and Elerated End－Expiratory Carbon Dioxfle Tensions，Anestitesiolooy 10： 457 （July－Aug．） 1958.
8．Price，II．L．，and Priec，Mr．L．：The Chemical Estimation of Epinephrine nnd Norepinc通－ rine in Human and Canine Plasma：Critique of Trilhydroxyindolo Mcthod，J．Lab．O． Clin．Med．50： 769 （Nov．） 1957.
9．Fisher，R．A．；Statistical Methods for Rescareh Workers，ed．10，New York，Hafner P lishing Co．，Inc．， 1948.
10．Moc，G．K．，Malton，S．D．，Rennick，B．R．，and Freyburger，W．A．：Role of Arterial Preat． sure in Induction of Idioventricular Rhythms During Cyelopropane Aneathesin，\＄9 ． Pharmacol．\＆Exper．Therap．94： 319 （Nov．） 1948.
11．Outschoorn，A．S．，and Yogt，AI．：Nature of Cardiac Sympathin in Dog，Brit．J．Pharmacgh． 7： 319 （June） 1959.
12．Macilonald，F．M．，and Simonson，E．：Human Electrocardiogram During and After $\overline{\mathrm{B}}$－ halation of Thirty Pereent Carbon Dioxide，J．Appl．Physiol．6： 304 （Nov．） 1953.
13．Tenncy，E．M．：Mechanism of 1lypertension During Diffusion Respiration，Anestnesioloffy 17： 768 （Nov．） 1956.
14．Gellhorn，E．：On tho Phyaiological Action of Carbon Dioxide on the Cortex and Hyfo－ thalamus，Electrocncephalog．\＆Clin．Neuroplygiol，5： 401 （Aug．） 1953.
15．Purpura，D．P．，Pool，J．L．，Housepian，E．M．，Girardo，M．，Jacobson，S．A．，and Soymoin， R．J．：Hypothermia Potentintion of Centrally Indueed Cardiac Irregularities，Aneg． thesiolooy 19： 27 （Jon．） 1958.
16．Diksbit，B．B．：Production of Cardiac Irregularities by Excitation of Hypothnlantic Centres，J．Physiol．81： 389 （June） 1034.
17．Brow，G．H．，Long，C．N．M．，and Beatic，J．：Irregularities of Heart Under Culoroform； Their Dependenee on Sympathetie Nervous System，J．A．M．A． 85 ： 715 （Sept．6）1930．
18．Price，II．L．：Unpublished data．
19．Rothlerger，C．J．，and Winterberg，H．：Ober die Bezielhungen der Herznerven zur atidi－ ventrikuliiren Automatic（nodnl rhythm），Areh．ges．Physiol．135：559， 1910.
20．Martin，S．J．，and Marazzi，A．S．：Action of Cyclopropane and Chloroform on Centand Origins of Sympathetic Systems，Fed．Proc．1：159， 1942.
21．Fawaz，G．：Mechanism by Which N：N－dibenzylchlorocthylamine Protects Animals Agaigt Cardiac Arrliythmins Produced by Sympathomimetic Amines in Presence of Cyelorge\％ pane or Chloroform，Brit．J．Plarmacol．8： 492 （Sept．） 1951.
22．Morris，L．E．，Ycin，C．S．，Maid，B．，and White，J．M．，Jr．：Laboratory and Clinical ob－ servations on Effect of Begitine（ $\mathbf{C}-7337$ ）on Cardiac Irregularitics during Cyelopropanc Anesthesia，J．Pharm．\＆Exper．Therap．48：106（Sept．） 1952.
23．Rothberger，C．J．，and Winterherg，II．：Uber dic experimentelle Eracugung extrabid tolischer ventrikularer Taclyhardie durch Aeceleransreizung，Arch．ges．Physiol．14． 461， 1911.
24．Morton，D．R．，Klassen，K．P．，Jacoby，J．J．，and Curtis，G．ML：Effect of Intrathoracie Vagal Stimulation on Electrocardiographic Tracing in Man，Surg．，Ggnce．\＆Ohst．gig： 724 （June） 1953.
25．DiPalma，J．R．：The Role of Aectyleboline in Hydroenrbon－Epincphrine Arrhythmias， Pharmneol．\＆Exper．Therap．118： 255 （March） 1956.
26．Johnstone，M．：General Anaesthesia and Cardiac Inhibition，Brit．Heart J．13：47，（Jañ） 1951.
 propane－Epinephrine Tachyenrdia by Various Drugs，Anestiesiology 2： 503 （ Bephs ） 1941.

28．Virtue，R．W．，and Simmons，B．F．：Effect of Rempiratory Acidosis and Alkalosis on Cyelopropane－Epincphrine Indued Arrhythmins in Dog，J．Pbarm．\＆Exper．Therap． 114： 148 （Junc） 1955.

[^0]: Receired from the Department of Anesthesiology，University of Pennsylvanin Sehools ${ }^{\text {Gf }}$ Medicine，Philadelphin 4，Pennaylranin，and aecepted for publication April 7，1058．This stuty was presented in preliminary form at a mecting of the American Society for Pharmacolog and Experimental Therapeutics，Baltimore，September，1957．Dr．H．L．Price is Welleome Associate Professor of Rescarch Anesthesiology．Dr．Luric is Poatdoctoral Fellow，Nintioral Ifeart Institute．（Present address：Department of Surgery，Stnte Unirersity of New Yoris， Syracuse 10，New York．）

[^1]: - Fifteen aubjects in whom arrhythmins were produced by hyperearbin have been omitifid, either beeause the threshold was not aceurately determined or beeause blood samples for eatechol amine analyais were not obtained.

[^2]: Fr. VEX = Frequent ventricular extrasystoles.

[^3]: This study was supported（in part）by a grant from the National Heart Institute，Na． tional Institutes of llealth（II－1508C3），and a grant from the Office of the Surgeon Generie， U．8．Army（DA－49－007－3ID－599）．

 ## REFERENCES

 1．Meek，W．J．，Hathaway，II．R．，and Orth，O．B．：Effects of Ether，Chloroform and Cyc N propane on Cardine Automatieity，J．Pharmneol．E Exper．Therap．61： 240 （Nov．） 1037.
 2．Stutzman，J．W．，Murphy，Q．，Allen，C．R．，and Mcek，W．J．：Further Studies on Produc－ tion of Cyclopropane－Epinephrine Trehyeardia，Anestiresioloay 8： 579 （Nov．） 1947.

