THE EFFECT OF NEMBUTAL ANESTHESIA ON THE CARDIAC RESPONSE TO ACETYLCHOLINE • \dagger

Maray A. Teitelbaum, M.D. and W. Horsley Gantt, M.D.

Baltimore, Maryland

While carrying out experiments, by means of an apparatus designe $\frac{\text { e }}{2}$ ly us (1), to determine whether the effect of acetylcholine on the heare could be conditioned, we (2) observed that the cardiac reaction $t \stackrel{\sigma}{7}$. ncteylcholine in the unanesthetized dog differed from that in the nembuie tal anesthetized animal. This observation led to further experimentaz tion, the results of which are reported below. Also, the value of ou ${ }_{\mathscr{O}}^{\circ}$ apparatus for other than conditional reflex stadies is thus indicated

In line with our observations, Emmelin (3), Schutz (4, 5) and Fernando (6) have observed that the barbiturates influence the actio 0 of acetylcholine. Although Ellis and Weiss (7) reported cardiac aE celeration but no bradycardia following intravenous administration ol acetylcholine in man, Goldenberg and Rothberger (8), Noth, Essex and Barnes (9), and Greenberg and Lambeth (10) described cardiac in libition followed by acceleration, as we (2) did, as the effect of acetyb choline administration. That the action of acetylcholine on the hearty is peripheral rather than through the central nervous system, has bee \AA established by Hoffman, Middleton and Essex (11), McNamara, Kroe and McKay (12), Greenberg and Lambeth (10), Heymans and Bemanti (13) and McDowell.

Method

By means of our (1) apparatus, we are able to inject drugs intra venously into trained, unanesthetized dogs, isolated in a soundprod camera. This is accomplished by inserting a large bore needle inte the radial vein, and passing a fine plastic tube through the needle into the vein. The needle is then withdrawn, leaving the plastic tube ig place. The tube in the vein is connected to the lower end of a glasis cylinder containing the drug solution. The upper end of the cylinder is continuous with plastic tubing that extends through the camera wat to the outside. Layered over the drug solution in the cylinder is heaver mineral oil that fills the cylinder as well as the plastic tubing extending to the outside of the camera. In this way we have a continuous fligid system of mineral oil layered over the drug solation. By injecting \&

[^0]quantity of oil into the tubing from outside the camera，an equal qua tity of drug solution is displaced into the venous circulation．

By means of the apparatus described above，acetylcholine chlorid in 1 or 2 per cent solution was injected intravenously into 5 dogs，usura ally in 0.4 ce．doses．Smaller（ 0.2 ce ．）and larger（ 0.6 cc．）doses wef used at times，as indicated．The drug was studied in some dogs in the unanesthetized and anesthetized states on the same day．After series of injections was given to the unanesthetized dog，nembutaf was administered intravenously， 60 mg ．per 5 pounds，and then another series of injections was given．In other instances the observations $\frac{\operatorname{Lin}}{\text { in }}$ the unanesthetized and anesthetized states，respectively，were mad on different days．

The heart rate was recorded by means of a brush developmera oscillograph and amplifier，on paper calibrated to permit the reading of heart beats per second．In counting the heart rate，the time interva咸 between beats were considered as units，so that it was possible to coutt fractions of heats per second．

Results

Effect of Nembutal on Heart Rate．The heart rate of dogs in the unanesthetized state was found to le slower and more variable that in the anesthetized state．For instance in one $\operatorname{dog}(\operatorname{Dog} 1)$ the pre injection control rates for five injections varied between 66 and $22 \frac{1}{2}$ beats per minute，when the rate was calculated for one second interval尺্尺 The respective averages of the five controls，calculated for one secong intervals，varied between 95 and 126 （fig．1）．After anesthesia，the preinjection control heart rates for five injections varied between 15 會 and 180 beats per minute，with the respective averages varying be tween 162 and 170 （fig．1），calculated for intervals of one second．

Table 1 contains data on the 5 dogs studied．In the first two cot umns，the average heart rates are compared in the manesthetized an $\overrightarrow{\text { G }}$ anesthetized states during respective fifteen second intervals，immed管 ately preceding the injection of acetylcholine．They are，therefore marked＂control．＂Comparison of columns 1 and 2，table 1，revealo that the average heart rates in the anesthetized state show absolute increases over those in the unanesthetized states of $16,50,72,47$ and 51 beats per minute，respectively．The respective percentage increase in heart rate are $13,42,118,38$ and 52.

Effect of Acetylcholine on Heart Rate．That acetylcholine slow the heart rate and then accelerates it is well illustrated in figure $\frac{1}{8}$ The inhibition is not constant and usually precedes the acceleration which is a constant response．In one dog 200 injections of acetyl choline caused acceleration each time，but inhibition only 159 time In another dog 200 injections that caused acceleration，caused inhibio tion only 50 times．In some instances a number of fast beats occurre

Fic. 1. Comparison of response of heart rate to acetylcholine in anenthetized and aneathetized states. The effect of nembutals anesthesis in increasing the heart rate ${ }_{\text {a }}^{7}$ illustrated in the preinjection, control graphs. The rate prer minute is ploted at one ser. ond intervals.
before the inhibition set in. This observation agrees in essence wift McDowall's (14) finding that in a few hearts the slowing is precedeal by a few forcible contractions.

The use of acetylcholine in graduated doses showed that smalle doses caused acceleration alone as a rule, while larger doses produceed inconstant temporary inhibition followed by acceleration of the heaft

TABLE 1
Efpect of Nenbutal Anesthebia on the Reaction of the Heart Rite to Acetyliciolone in 5 Dogs*

Doy	Control Averskefor 15 Beconda		Rete at Greatent Inhibition due to Acetyicholine		Inhibition (of Control). per rent		Rate at Grentent Acceleration due to Aeetyleholine		Accelerntion (of Control). per ceat	
	Uran.	An.	Unan.	An.	Unan.	An.	Unan.	An.	Unen.	An.ర\%
1	119	135	04	32	46.2	76.3	278	267	133	$97{ }^{-1}$
2	119	169	91	33	21.9	77.5	210	250	84.3	53.9
3	61	132	48	25	23	80.9	179	183	192.5	44.2
4	122	169	68	45	40.9	72.6	251	215	118.3	26.7
5	97	148	60	12	37.6	92.1	232	170	156.7	17.10

*The figures are averages of a number of injections in each instance, as follows: Dog 1 , Un⿹ㅡN. -10; An-12. Dog 2, Unan.-12; An.-11. Dog 3, Unan.-8; An.-13. Dog 4, Unan. $\frac{\mathrm{N}}{\mathrm{N}}$ An.-8. Dog 5, Unan.-5; An.-12.
rate. In the anesthetized state, one dog (Dog 1) showed the responseb recorded in table 2A. Here 0.1 cc . of 1 per cent acetylcholine caused marked acceleration but no inhibition; with increasing doses of drug, the inhibition appeared and became more marked. A relative relationship between dosage and inhibition is illustrated in table 2B. In thege tables it can be seen that complete cardiac arrest is usually of longegr duration with increasing dosage.

Although in table 2A, there appears to be greater acceleration of heart rate with increasing dosage of drug, this finding is not constaift

TABLE 2
Effect or Graded Doses of 1 per cent Acetylcholine Cholade on the Heart Rate per Minute of 2 Nembutal Anestietized Doos

Dowe, ce.	${ }_{\text {Cor }}^{\text {Contol, Average }}$	Inhibitad Rate	$\begin{aligned} & \text { Durntion of } \\ & \text { Complete Btandutin } \\ & \text { in Seconds } \end{aligned}$	Accelerated Rato
A. $\operatorname{Dog} 1$				
0.1	125	1:38	0	198 ¢
0.2	122	42	1	258 需
0.4	120	18	2	272 ¢
B. Dog 5^{*}				
0.2	169	24	>1	$180 \stackrel{\sim}{\square}$
0.2	150	12	>4	150 ¢
0.4	180	12	$>4,>1$	180 へ
0.4	120	12	>6	174 -
0.4	118	6	>8	174 8
0.4	114	12	>4	138 \%
0.6	174	6	$>7,>1$	$180 \sim \stackrel{N}{\sim}$
0.6	162	6	$>7,>3$	168 ¢
0.6	120	12		138 ¢
0.6	118	7	$>6,>1$	194 -

[^1]within the range of doses used, as is evident in table 2B. Here the higher doses of drug do not show greater cardiac acceleration, but \bar{d} show relatively poor acceleration in some instances.

Effect of Nembutal on Cardiac Inhibition Due to Acetylcholine. The latent period for maximal cardiac inhibition due to acetylcholio varied between seven and sixteen seconds in 2 dogs in the unanesthetized state, and between six and eighteen seconds while under nembutid anesthesia.

The accentuating effect of nembutal anesthesia on cardiac inhibe
tion attributable to acetylcholine is strikingly evident in the greate号 duration of complete cardiac arrest in the anesthetized state． 0 응 forty－one injections in 5 dogs，without anesthesia，cardiac arrest foo longer than one second（less than two seconds）occurred only sio times，while in the other thirty－five instances the cessation of hear $\overrightarrow{\boldsymbol{B}}$ action lasted less than one second．Under nembutal anesthesia，cardiag arrest for less than one second occurred only three times．The ref spective durations of complete cardiac standstill resulting from the other injections were：over one second， 5 injections；over two seconds， 17 ；over three seconds， 11 ；over four seconds， 6 ；over six seconds， 2_{8}^{2} over eight seconds， 1.

The graph（fig．1）shows the greater quantitative slowing of the heart rate by acetylcholine in the nembutal anesthetized state，as coms pared to that in the unanesthetized state．Since the control heart rate is faster in the anesthetized state，the inhibition due to acetylcholin when compared to that in the unanesthetized state，is even more strilis ing．The same differences in cardiac inhibition in the anesthetize日 and unanesthetized states，respectively，are apparent in table 1．Foo instance in one dog（Dog 1，table 1），the diminution in heart rate caused by acetylcholine was from 119 per minute to 64 per minute（ 46.2 pes cent）in the unanesthetized state，although it fell from 135 per minute to 32 per minute（ 76.5 per cent）in the anesthetized state．In the a esthetized state there was a greater absolute diminution in heart rate attributable to acetylcholine，as is evident in comparing columns 3 and 4，table 1．This greater absolute diminution in heart rate in the 5 doge， respectively，is 32 per minute， 58 per minute， 23 per minnte， 23 p ${ }_{S}^{8}$ minute，and 48 per minute．The greater percentage diminution in heat rate from respective controls，due to acetylcholine in the anesthetizeq9 state as compared to that in the unanesthetized state，is evident 鲁 columns 5 and 6，table 1.

Effect of Nembutal on Cardiac Acceleration Due to Acetylcholine The time interval between drug injection and maximal acceleratiog， as well as that between maximal inhibition and maximal acceleratio showed considerable variation．Nembutal anesthesia had no signif cant effect on these time intervals．

There was no significant relationship between the dose of acetyf choline and the degree of acceleration in the dosage range employed． It is likely that with smaller amounts of acetylcholine，the threshold for acceleration would become evident．It is apparent in table 1，columes 7 and 8 ，that nembutal anesthesia does not have any specific effect on the cardiac acceleration caused by acetylcholine．In 2 dogs（Dogs 32 and 3），the acceleration was greater in the anesthetized state，with thet in Dog 3 being insignificant－only 4 per minute．In the other 3 dogs the acceleration was greater in the unanesthetized state，with that in Dog 1 being insignificant，only 11 per minute．The percentage in－
creases in heart rate due to acetylcholine over their respective contro was greater in the unanesthetized state in all 5 dogs．This is af tributable，at least in part，to the lower control heart rates．Thus，喽 though the graph in figure 1 shows that the acceleration due to acety＊ choline rises to greater heights in the anesthetized than in the up－ anesthetized state，this is characteristic only of this animal，and not $\frac{\pi}{7}$ constant feature．

The return to the preinjection，control cardiac rate，following a气 celeration，occurred in a markedly variable period of time，one for ninety－one seconds．This was not significantly influenced by ane ${ }^{\frac{6}{9} \text { en }}$ thesia，for under the latter，this time interval varied from one to $1 \frac{8}{6}$ seconds．

Discussion

Our observations confirm the inhibitory and accelerator effects $\bar{\circ} \mathrm{F}$ acetylcholine on the heart rate．We agree with McDowall＇s（14）find ings that small doses of acetylcholine cause stimulation only，although with larger doses，inhibition also appeared．Greenberg and Lambeg （10）reported that minimal doses of acetylcholine produced only cardianc acceleration．

Although the data reported here do not shed any light on the si申e of action of this drug，we（15）have completed experiments that shog that the cardiac reaction to acetylcholine does not become conditioneg， and is thus a peripheral rather than a central process．With dru that act peripherally，as pilocarpine on salivation，cardiac reaction fats， to become conditioned，as shown by Kleitman（16），Mulinos and Lie （17），and Finch（18），while with drugs that act centrally，as morphiwe on salivation，cardiac reaction can be conditioned，as reported Collins and Tatum（19），Kleitman and Crisler（20），Mulinos a $\frac{\text { id }}{}$ Lieb（17）．Therefore，the failure of the cardiac reaction to acety－ choline to become conditioned indicates a peripheral action of this drutg． This would agree with the findings of Hoffman et al．（11），MeNama嵒 ct al．（12），Greenberg and Lambeth（10），Heymans and Bennati（1月， and McDowall（14）．

Several studies are available on the mechanisms involved in the action of acetylcholine on the heart．MeDowall（14）and Hoffman eft al．（11）found that atropine blocks the inhibitory effect of acetylcholiye and accentuates the accelerator effect，while ergotamine，curare and nicotine abolish the accelerator action．Hoffman et al．（11），McNamafa et al．（12）and Greenberg and Lambeth（10）found evidence that ${ }^{\circ} \mathrm{n}$ epinephrine－like substance and epinephrine mediate the cardiac $\frac{8}{8} \mathrm{c}-$ celeration produced by acetylcholine．This observation gains further support in that acetylcholine does mediate epinephrine seretion owigg to splanchnic nerve stimulation，as shown by Feldberg，Minz and Tzudzimura（21）．The cardiac acceleration is also due to the nicoting action of acetylcholine，and involves an intracardiac，ganglionic sym－
aptic process，as it is blocked by＂tetraethylammonium＂according te ${ }^{\circ}$ Heymans and Benatti（13），as well as by nicotine according to Hoff man et al．（11）and McNamara et al．（12）．

Our observation of the increase in heart rate with nembutal an ${ }^{\circ}$ esthesia agrees with that of Hafkesbring and MacCalmont（22）．Hoffö man al al．（11）found that atropine blocks the cardiac inhibition proz duced by acetylcholine，thus indicating that this inhibition is the resul展 of the＂muscarine＂action of acetylcholine，which is counteracted b害 cholinesterase．Thus，the action of nembutal in accelerating the heart would suggest that this acceleration is not an anticholinesterase effec $\frac{\rho_{6}}{-2}$ for such an effect would theoretically enhance the＂muscarine＂actiog of acetylcholine and slow the heart．However，the nembutal effect of accentuating the cardiac inhibtion caused by acetylcholine does suggesi an anticholinesterase action by that anesthetic．Although Schutz（ 4 5）reported anticholinesterase activity by harbiturates，this was o $\frac{0}{6}$ served only after prolonged administration of barbiturates．In on study，nembutal effects were observed with single，narcotic doses of this drug．Furthermore，although Emmelin（3）did observe increaseg sensitivity to acetylcholine，attributable to luminal，this effect was cons： pletely independent of any possible cholinesterase activity．The pro愛 lem is further complicated by Fernando＇s（6）observation that barbit운－ rates block cardiac inhibition in amplitude due to acetylcholine．

The more likely explanation for the action of nembutal would its effect on cardiovascular homeostatic mechanisms．In this respect， Greenberg and Lambeth（10）reported that，in the unanesthetized do ${ }^{\circ}$ ， ＂A minimal dose of acetylcholine produced a transient depressor effeequ accompanied by an increased heart rate，＂while a large dose caused ＂temporary heart arrest，followed by an increased heart rate for tein to fifteen seconds until the blood pressure rose to alove resting bloog pressure，after which there was a slowing of heart rate to less than normal，lasting for several minutes．＂In the same dog，following cardiac denervation，the same minimal dose of acetylcholine causeg a＂transient vasodepressor effect and no change in heart rate，＂whife the larger dose caused a＂temporary heart arrest，followed by oa gradual rise in pressure to slightly above normal and an increase $\dot{\text { en }}$ heart rate which began later and was much greater than in the normal dog．＂Thus，the cardiac acceleration associated with the vasodepres－ sion is dependent on neural reflexes，as denervation abolishes it．The delayed tachycardia，however，which occurs twenty－five seconds after cardiac arrest，is due to epinephrine released reflexly and directly，努y the action of acetylcholine on the adrenal gland．

Goodman and Gilman（23）pointed out that in barbiturate anesthesia the carotid sinus mechanism is depressed，and cardiovascular reflexes are diminished．This could delay the reflex cardiac acceleration assoei－ ated with hypotension，for this acceleration is spparently depende⿱⺈⿵⺆⿻二丨⿱刀⿰㇒⿻二丨冂刂灬斯 on intact cardiac innervation，as shown by Greenberg and Lambeth
(10). With this delay in reflex cardiac acceleration under nembuta anesthesia, the cardiac arrest due to acetylcholine would be prolonge $\overline{D_{0}}$ The later acceleration due to epinephrine, occurring twenty-five second after cardiac arrest, is not affected by nembutal anesthesia.

Summary

Acetylcholine chloride, in the unanesthetized dog, was observed to have an inhibitory, followed by an accelerating, effect on the heart rates

Nembutal anesthesia stabilized and increased the heart rate.
Acetylcholine had a more marked inhibitory effect on the heart rate in the nembutal anesthetized state than in the unanesthetized state of the dogs studied. Although our studies showed that the acceleration caused by acetylcholine was not influenced by nembutal anesthesiof there are indications that the early phase of this acceleration is ing hibited by nembatal, thus contributing to the accentuation of cardia arrest due to acetylcholine.

The mechanisms involved in these observations are discussed.

REFERENCES

1. Teitelbaum, II. A., and Gantt, W. H.: Method of Intravenous Injection of Drugs frọ̄ Distance in Conditional Reflex Studies, Science 113: 603 (May 25) 1951.
\therefore Teitelbaum, II. A., and Gantt, W. H.: Acteylcholine on Heart Rate in Unaneathetize ${ }^{\text {P }}$ Compared with Ancsthetized Dogs, Federation Proc. 11: 160 (March) 1952.
2. Emmelin, N.: Action of Bome Indifferent Narcotics on Acteylcholine Bensitivity of Rectip Muscle of Frog, Bkandinav. Arch. f. Physiol. 83: 69 (Nov.) 1939-1940.
3. Schutz, F.: Effect of Barbiturates on Serum Cholinesterase, J. Physiol. 102: 259 (DeF 31) 1943.
4. Achutz, F.: Effect of Barbiturates on Cholinesterase in Different Tissues. J. Pbysion 102: 269 (Dec. 31) 1943.
5. Fernando, II. E.: Blocking Action of Acctyleholine by Barbiturates, Science 115: (Jnn. 11) 1952.
6. Ellis, L., and Weiss, E.: Etudy of Cardiovascular Responses in Man to Intravenous and Intra-arterial Injection of Acetylcholine, J. Pharmacol. \& Fxper. Therap. 44: 23勹 (Fob.) 1932.
7. Goldenberg, M., and Rothberger, C. J.: Uber die Wirkung von Acetyleholin auf def Warmblnterherx, Ztechr. f. d. ges. exper. Med. 94: 151 (March) 1934.
8. Noth, P. H.; Essex, II. F., and Barnes, A. R.: Effect of Intravenous Injection of Acety choline on Electrocardiogram of Dog, Proc. Stafl Meet. Mayo Clin. 14: 348 (May 1949.
9. Greenberg, R., and Lambeth, C. B.: Response of Chronic Dencrvated Heart to Aectyf choline and Epinephrinc. Am. J. Physiol. 169: 369 (May) 1952.
10. Hoffman, F.; Hoffman, E. J.; Middleton, B., and Talesnik, J.: Stimulating Effect of Acetylcholine on Mammalian Heart and Liberation of Epinephrinc-like Substance by Tsolated Heart, Am. J. Physiol. 144: 189 (July) 1945.
11. MacNamara, B., Krop, S., and Mckay, E. A.: Effect of Calcium on Cardiovascnlar 8tim Iation Produced by Acetylcholine, J. Pharmacal. \& Exper. Therap. 92: 153 (Feb.) 194\&:
12. Hoymank, C., and Bennati, D.: Mecanisme de la tachycardic par l'acetylcholine, Arefu Internat. Pharmacodyn. 70: 486 (June 1) 1949.
13. MeDowall, R. J. E.: Stimulating Action of Acetyleholine on Heart, J. Physiol. 104: 3g8 (April 15) 1946.
14. Teitelbaum, II. A.; Gantt, W. II., and Stonc, B.: Cardiac Conditional Reflexes Can bo Formed to Centrally Motivated Btates (Pain), but Not to Peripherally Aeting Etimutib (Acteylcholine). To be published.
15. Kleitman, N.: Infuence of Starvation on Bate of Secretion of Saliva Elieited Pilocarpine and its Bearing on Conditioned Salivation, Am. J. Physiol. 83: (Nov.) 1927.
16. Mulinos, M. G., and Lieb, C. C.: Pharmacology of Learning, Am. J. Phyaiol. 90: 4앵 (Oct.) 1829.
17. Finch, G.: Pilocarpine Conditioning, Am. J. Physiol. 121: 679 (Dee) 1938.
18. Collins, R. H., and Tatum, A. L.: A Conditioned Salivary Reflex Establiahed by Chronit Morphine Poisoning, Am. J. Phyaiol. 74: 14 (Sopt.) 1925.
19. Kleitman, N., and Crisler, G.: Quantitative Study of Balivary Conditioned Reflex, A总. J. Physiol. 79: 571 (Feb.) 1927.
20. Feldherg, W.; Minz, B., and Tsudzimura, H.: Mechanism of Nervous Discharge of Adrenalin, J. Physiol. 81: 286 (June 9) 1934.
21. Hafkesbring, R., nnd MacCalmont, W.: Effect of Sodium Amytal, Sodium Barbital asal Nembutal on Electrocardiogram, J. Pharmacol. \& Exper. Therap. 64: 43 (Bept.) 1838. 1938.
22. Goodman, Louis and Gilman, Alfred: The Pharmacological Basis of Therapentica, Ne York, Maemillan Co., 1941.

[^0]: - Aecepted for publication Febraary 23, 1954.
 \dagger Bupported by a grant from the Amorican Heart Association, Pavlovian Laborator Phipps Paychiatric Clinic, Johns Fopkina Medieal Behool, Baltimore, Maryland.

[^1]: - In B (Dog 5), the two figures in column 4 indicate intervals of complete cardine rtandetil occurring in immedinte sucecssion, with only one heart beat between them.

