THE CHANGES IN BLOOD GASES ASSOCLATED WITH VARIOUS METHODS OF INDUCIION FOR ENDOTRACHEAL ANESTHESTA

Robert J. Lachian, M.D., Joan H. Long, M.D., and
LeRoy W. Krumperman, M.D." $\dagger \ddagger \S$

Philadelphia, Pennsylvania

Within the past few years many new drugs and techniques have been added to the armamentarium of the anesthesiologist. Among those that have become increasingly popular are the rapid acting barbiturates and the carariform drugs. The combination of these drugs has permitted the development of a technique of so-called rapid induction and endotracheal intubation.

The use of this technique has been especially desirous in a busy operating room. The time required to prepare a patient for operation under endotracheal anesthesia can be reduced from about thirty minutes to five or ten minutes. It has been thought, however, that although rapid induction and intubation may be expedient, it may also sufficiently disrupt normal physiological processes so as to make it an undesirable technique.

Some anesthesiologists and surgeons have been reluctant to employ the rapid intravenous administration of drugs to facilitate induction and endotracheal intubation. This hesitancy has been justified because even though numerous clinical reports of the successful use of this technique have appeared, very few objective observations have been made.

The purpose of this investigation has been to collect objective information concerning changes in arterial blood gases daring the use of a variety of types of induction before endotracheal intabation. Thus, it has been possible to determine which technique is least disturbing to the physiology of respiration, circulation and the transportation of gases.

It has also been observed that the inhalation of 100 per cent oxygen while hyperventilating before induction will effectively minimize any subsequent disturbances to the respiratory gases and hydrogen ion concentration.

[^0]
Material

The subjects in this study were 50 patients undergoing vartous operations which required endotracheal anesthesia. No special eftort was made to avoid patients who had disease entities other than those for which operation was performed. An attempt was made, howeoter, to avoid patients who from the matomical structure of the head 哥nd neck, would present difficult subjects on whom to perform orotracgeal intubation. In patients who had short, thick necks and limited eextension, prominent upper teeth, receding mandible, edema of the floor of the mouth and tongue, or who had disenses of the larynx, laryngeal exposure and intubation would be an extremely difficult procedure. 을

The ages of the patients ranged from 21 to 82 years.

Methons

All of these patients received preanesthetic medication appropreate to their age group and the anticipated procedure.

On arrival of the patient in the operating room, an infusion of 5 per cent glucose in water was begun. A blood pressure cuff and ste scope were applied to the patient's other arm and an initial pulse fate and blood pressure recorded. Readings of the blood pressure were obtained for this study from the time of induction of anesthesia imtil ten minutes after the completion of intubation, and were taken as often as was feasible.

An arterial puncture was performed on each patient, using gauge stilet needle in the brachial artery at the antecubital spadce. Five arterial blood samples were drawn: (1) after sedation and before the administration of oxygen, (2) at the end of a three minute periog of inhalation of 100 per cent oxygen, (3) at the time of intubation, (4) Swo minutes after intubation and (5) ten minutes after intubation. Infone group of 19 patients, control bloods were obtained the day before or several days after, operation.

Three techniques of induction and endotracheal intubation were used : (1) The rapid administration of pentothal ${ }^{\$}$ sodium and a curariform drug before endotracheal intubation was used on a total ob 41 patients. All of these patients inhaled 100 per cent oxygen for a teree minute period before the induction, and 22 patients were asked tojhyperventilate during the inhalation of 100 per cent oxygen. (2) The second method was the slow induction using cyclopropane and ether until the patient was sufficiently relaxed to permit an atraumatichintubation. There were 6 patients in this group. (3) A topical agesthetic agent was applied to the pharynx, larynx and trachea as the only anesthesia before intabation. There were 3 patients in this gregup, 2 of whom inhaled 100 per cent oxygen before intubation.

Each sample of arterial blood was analyzed for oxygen content ${ }_{\text {and }}$ nd capacity and carbon dioxide content using the Van Slyke techniq̆ue.

The hydrogen ion concentration of each sample of blood was determine by the glass electrode technique. The arterial oxygen saturation wag calculated and plasma carhon dioxide determined according to Vad Slyke (1).

Obsemvations anu Results

Rapid Induction with Oxygen Inhalation

This group of patients was asked to breathe 100 per cent oxyge for three minutes before they were put to sleep. In this series of patients 5 received tri-(diethylaminocthoxy) benzene triethyliodide (flaxedil${ }^{8}$), 9 received succinylcholine chloride (anectine ${ }^{(8)}$), 5 receive ${ }_{8}$

decamethonium bromide (syncurine ${ }^{\boldsymbol{x}}$) $\|$ as a muscle relaxant. Enoug ${ }_{8}$ sodium pentothal was administered to produce sleep and then a curab rizing dose of muscle relaxant was given. When the desired effect was obtained, up to 500 mg . of pentothal was given rapidly. As soon a a_{P} apnea was present the endotracheal intubation was accomplished and the endotracheal tabe was connected directly to a circle filter gas machine. Nitrous oxide and oxygen were administered in a sema closed system with carbon dioxide absorption. Respirations were supg ported or controlled as necessary for a period of time which depended upon the curariform drug used.

It was in this series of patients that control bloods were taken bes fore sedation. In a considerable proportion of the patients the arterial oxygen saturation fell below normal after sedation (table 1, fig. $2 \mathbb{N}$

The curariform drugs used in this atudy were supplied by Burroughs Welleome \& Co. (U.R.A.) Inc., Tuckahoe 7, N. Y.
TABLE 1
Chemical Changrs in Arterial Hlood with Induction of Anestiesia Rapid Induction with Oxygen

With the administration of 100 per cent oxygen for three minates thê arterial oxygen saturation rose and remained at or near 100 per ceng for the remainder of the procedure (fig. 2). The one exception wal in a patient in whom the intubation was difficult, the arterial oxygeg saturation fell to 69 per cent (indicated by a in fig. 2).

The carbon dioxide combining power in volumes per cent and thद plasma carbon dioxide rose significantly above the control level aftef sedation had been produced (table 1). Sometimes both values wer elevated further even during the inhalation of 100 per cent oxygern. The greatest rise occurred at the time of intubation. The carbon de oxide increased in one patient to the extent of 7.3 volumes per cene

Fio. 2.
but the majority of patients in this group showed a rise of no mor than 3 to 5 volumes per cent (table 1).

The hydrogen ion concentration in this series of patients had definite pattern; it decreased steadily during the procedure, reachin its lowest value at the time of, or two minutes after, intubation and gradually returned to normal by the end of ten minutes (fig. 2).

Rapid Induction with Oxygen Inhalations and Hyperventilation
In this series of patients, the technique of induction and intubatioi was the same as that previously described but, in addition, this grous of patients was requested to breathe deeply during the inhalation of 100 per cent oxygen. As in the previous group, the oxygen saturation of the arterial blood rose to 100 per cent and remained there for ten

The carbon dioxide content and plasma carbon dioxide had either remained the same or fallen slightly in $1 \overline{5}$ patients of this series, after three minutes of oxygen inhalation. At the time of intubation aind during the period of apnea, the carbon dioxide levels and plasma cofle bon dioxide rose above the preinduction levels. After intabation thie carbon dioxide content showed a tendency to level off at the preinduchtion value (table 2).

In the patiente in this group the pattern of the hydrogen ion concentration was noticeably different from that of the previous serie.

It will be observed from figure 3 that the hydrogen ion concentratiơ showed a rise following the hyperventilation with 100 per cent oxygem. In only 2 patients was there an elevation above the normal pH of 7.45 . At the time of intubation the hydrogen ion concentration decreased, begt in only 7 of 20 patients did it drop below the normal level. In the nipjority of patients, the hydrogen ion concentration was well within the normal range within two minutes after intubation.

Slow Induction with Cyclopropane and Ether

In this series of 6 patients, anesthesia was produced by using cycejopropane in a closed circle carbon dioxide absorption system with an amount of ether up to 30 cc . Intabation was not attempted until the patient was sufficiently relaxed to permit atraumatic intabation.
Chenical Cilanare in Artertal Blood with Induction of Anesthesta Rapid Induction with Oxygen and Hyperventilation

SLOW INDUCTION

Fig. 4.
The oxygen saturation of the arterial blood was consistently elevated above the preinduction level and in the majority of cases reached $1{ }_{0} 0$ per cent saturation, showing only a slight fall at the time of intubation. In only one patient the oxygen saturation at the time of intana tion fell below the preinduction value (fig. 4).

TABLE 3
Chemical. Changes in Artebial Blood with Induction of Anebtiesta Slow Induction

Time of Fampling		$\begin{aligned} & \text { Tot. } \\ & \begin{array}{c} \text { Col } \\ \text { Vol. } \\ \% \end{array} \end{aligned}$	pCO_{4}	pH	$\begin{gathered} \text { Art. } \\ \substack{\text { Ant. } \\ \text { sit. } \\ \%} \end{gathered}$	$\begin{aligned} & \text { Tot. } \\ & \text { COI. } \\ & \text { Yot. } \end{aligned}$	pCO_{4}	nH		$\begin{aligned} & \text { Tot } \\ & \text { Cot. } \\ & \text { Vol. } \\ & \% \end{aligned}$	pCO,	-
	Care 42				Case 43				Case 4t			
Sedation	93	47	39	7.45	96	52	48	7.42				+
Before Intub.	100	58	74	7.20	100	52	55	7.30	95	48	59	78
Intubation	96	57	76	7.17	94	58	67	7.30	97	50	61	788
2 min . after					100	48	43	7.45	98	50	65	$7{ }^{6} 5$
10 min . after	100	56	75	7.19	100	48	38	7.51	100	50	68	$7{ }^{6} 4$
	Case 45				Case 46				Case 47			
					94	48	40	7.48	97	40		$7{ }^{3}$
Before Intub.	100	54	52	7.41					100	44	52	7 7
Intuidation	100	54	55	7.39					${ }^{94}$	50	60	$7{ }^{7}$
2 min. after 10 min . after	100	46	42	7.4.4	$\begin{array}{r} 100 \\ 97 \end{array}$	${ }_{53}^{52}$	55	7.36 7.36	100	48	59	7.80

TABLE 4
Chenical Chanaes in Abterial Blood with Induetion or Angstiresia
Topical Anesthesia

Time of Sempling	Art Ot Set \%	Tor C0, Vol. $\%$	pCOr	pll	Art O2, Sat $\%$	Tot OO\% Vol \%	SCO_{2}	DH	Art Oz Sat Sat $\%$	Tot CO, Vol. $\%$	${ }^{1} \mathrm{CO}$	
	Case 48				Case 49				Case $50 \sim \sim$			
Sedation	80	46	42	7.43	01	49	44	7.44	92	42	37	7.48
After O_{2}									100	43	42	7.48
Intubation	81	49	49	7.38	100	49	44	7.42	100	47	52	73.3
2 min . after				7.37	100	51	50	7.40	100	47	57	7.38
10 min . after	100	49	48	7.39	100	51	51	7.39	100	45	55	7.38
Control	90	48	41	7.44	91	48	44	7.44				翟

The carbon dioxide content and plasma carbon dioxide showed $\underset{\mathcal{B}}{\mathbb{T}}$ rapid and marked rise from the onset of general anesthesin until the time of intubation. Following the intubation there was a tendency for the carbon dioxide content and plasma carbon dioxide to fall, but only 3 patients did it reach the preinduction valuc. In these 3 case the respirations were controlled from the time of intubation (table 3 在

In this group of patients the greatest changes in values of hydrogeid ion concentration were observed. The range was from normal to

Fia. 5.
low in one case of pH 7.17. Here again the greatest fall occurred ${ }_{\text {句t }}$ the time of intubation with a tendency for a slight rise after intubation. In those patients in whom respirations were controlled following the intubation, the hydrogen ion concentration returned to normal (fig. 4,
Intubation After Topical Anesthesia to Pharynx, Larynx, and Trachea
There were only 3 patients in this group. In one patient intubation was performed after topical anesthetization of the pharynx, laryigx, and trachea. The arterial oxygen saturation fell from the preintagat tion level of 90 per cent to a low of 80 per cent (fig. 5). In the other \because patients, intubation was not performed until the patient had become hyperventilated while breathing 100 per cent oxygen and it was q bserved that the oxygen saturation of arterial blood remained at 100 per cent.

Along with the above observations it was also noted that there was only a slight change in the carbon dioxide content, plasma carbon Fi i oxide and hydrogen ion concentration (table 4 and fig. 5).

In all of the cases the indirect technique of observing the patien $\overline{\bar{\phi}}$'s blood pressure was used. The pulse rate was obtained by palpation of the temporal artery. During the procedure the blood pressure and pulse rate were observed frequently, and with this technique no marked alteration in either was noted. Additional valuable information cond have been obtained if a continuous recording of blood pressure, puse rate and electrocardiogram had been available.

Discussion

The changes in patient's arterial oxygen saturation, carbon dioxe content, plasma carbon dioxide and hydrogen ion concentration h角e been observed during various types of induction and endotracheal intubation.

It becomes apparent that sedation alone reduces ventilation to sogne extent, the plasma carbon dioxide increases nbove the control level and the arterial oxygen saturation falls below normal (table 1 and 2).

Stone ef al. (2) have shown that when rapid induction is accoinplished by the uge of decamethonium bromide and pentothal sodium, during the period of apnea accompanying the intubation the arterial oxygen saturation routinely drops below normal and the hydrogen en concentration falls markedly (fig. 1).

It has always been our policy to administer 100 per cent oxygenato the patient before apnea is produced and endotracheal intubationois performed. This obviates the drop in arterial oxygen saturation with any type of rapid induction and intubation (figs. 2 and 3). The artemal oxygen saturation is maintained at a normal level except in those patients who have long periods of apnea as a result of difficult intubations (a in fig. 2; a and b in fig. 3).

It was observed that even when the patients breathed 100 per cent oxygen before induction, plasma carbon dioxide began to rise and the hydrogen ion concentration began to fall, and that these two factons reached their greatest change at the time of intabation. The indoktion technique was then modified further. The patient was asked 有o hyperventilate during the breathing of 100 per cent oxygen. With this technique, the plasma carbon dioxide then remained stable or fegll slightly. It was also revealed that there was little alteration in tise hydrogen ion concentration, and the changes that did occur were withitn the normal range.

It can be seen from figure 4 that, with the slow induction and i省tubation technique which has been used for years and which is stin considered by many to be the safest method to employ, the greatest variations were in the carbon dioxide content, plasma carbon dioxige and hydrogen ion concentration. These changes occurred in spite of what was thought to be adequate respiratory exchange, using assisted respirations when indicated.

The use of topical anesthesia applied to the pharynx, larynx and trachea withont any additional narcosis before intubation is reserved for the old and poor risk patient. From our study, the changes plasma carbon dioxide and hydrogen ion concentration are minimel as compared with the changes associated with the above described procedures. It is also apparent that unless the patient inhales 16 per cent oxygen there may be considerable decrease in arterial blood oxygen saturation during intubation (fig. 5).

This technique of rapid indaction and intubation should be avoided in patients with marked aortic stenosis, shock, and in those with receft myocardial infarction. The one common factor present in these cond ${ }^{\text {b }}$ tions is a fixed cardiac output and it has frequently been observed thag the rapid intravenous administration of sodium pentothal may resuft in a marked and persistent hypotension. It has been observed that patients with advanced cardiac disease other than aortic stenosio tolerate this type of induction well (3).

The following conclusions may be drawn from these observation $\stackrel{\rightharpoonup}{6}$ The use of rapid induction and intubation causes much less alteration in the arterial blood gases than does the older accepted technique of inhalation anesthesia. This, however, is true only if the patient $\frac{18}{8}$ requested to hyperventilate while breathing 100 per cent oxygen in mediately preceding the induction and intubation. The aged or of tremely poor risk patient should be intubated while awake, after the pharynx, larynx and trachea have been anesthetized adequately and the patient has become hyperventilated while inhaling 100 per cent orygen just before the endotracheal intubation.

Future studies of this nature are indicated and should include $\frac{\stackrel{7}{3}}{3}$ method of recording the orygen content and the hydrogen ion concent tration of arterial blood throughout the entire anesthetic and operas with the patient under close observation and before operation has b⿳亠口冋巳心－ gun，what changes occur during and at the finish of a long operatige procedure？

Summary

The effects of various techniques of induction and endotracheal 通－ tubation upon arterial blood oxygen，plasma carbon dioxide and hyy drogen ion concentration have been observed on 50 patients．

The greatest alteration in the gases of arterial blood occurred duti－ ing a slow induction．

There was deviation from the normal values of the arterial bloeg ${ }^{-}$d gases with rapid induction and intubation．The changes that occgr with this technique can be reduced to a minimum which will remagin within the normal range if the patient is permitted to hyperventilate while inhaling 100 per cent oxygen before the induction and intubation．

From these observations，it would appear that the so－called rappd technique could be ased for all patients who are anatomically saitabige and who must receive endotracheal anesthesia．

AcEMOWLEDGMENT

The authors express their appreciation to Miss Eleanor ．Ioncs for the laboratory werk performed and for the preparation of the tablea and graphs．

REFERENCES

1．Van Blyke，D．D．；Wu，H．，and McLean，F．C．：Studics of Gas and Electrolyta Equilitika in Blood，J．Biol．Chem．56： 765 （July） 1923.
2．Colon－Yordan，E．；Mackrell，T．N．，and Stone，H．II．：An Evaluation of Uao of Thiopenfal and Decamethonium Bromide for Rapid Endotracheal Intubation，Aneathesiology E： 255－277（May） 1953.
3．Keown，K．K；Grove，D．D．，and Huth，H．S．：Aneathesin for Commisaurotomy for Mithan Stenosis；Preliminary Report，J．A．M．A．，146：446－450（June 2） 1951.

[^0]: - From the Departments of Anestheaiology and Surgical Research, Temple University Medical Bchool and Horpital, Philadeiphia, Pa.

 IRead before the annual meeting of the American Society of Anesthealologiate, Ine, Seattle, Washington, October 8, 1953.

 * Accepted for publication February 23, 1954.

 4 This atudy was aded by a grant from Burroughs Welleome \& Co. (U.B.A.) Ine.

