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Personalized Surgical 
Transfusion Risk Prediction: 
Comment

To the Editor:

We have read the study titled “Personalized Surgical 
Transfusion Risk Prediction Using Machine 

Learning to Guide Preoperative Type and Screen 
Orders” by Lou et al.1 and the accompanying editorial 
titled “Moving from ‘Surgeries’ to Patients: Progress and 
Pitfalls While Using Machine Learning to Personalize 
Transfusion Prediction” by Mathis et al. 2 The authors 
include 4 million surgical cases during a 3-yr period from 
the American College of Surgeons National Surgical 
Quality Improvement Program database. The authors 
used the American College of Surgeons National Surgical 
Quality Improvement Program database to develop a 
machine learning model that incorporates patient- and 
surgery-specific variables to predict transfusion risk and 
the associated need for preoperative type and screen. The 
authors hypothesize that their machine learning algorithm 
would outperform the traditional approach of relying pri-
marily on historical surgery-specific transfusion rates and 
thus optimize resource allocation by decreasing blood bank 
waste. The machine learning algorithm recommends fewer 
preoperative type and screen orders.

The study presents in exceptional detail the method-
ologic approach to developing highly accurate algorithms 
to predict transfusion risk. Several authors have shown 
that race is an independent predictor of postoperative 
transfusion across surgical disciplines, associated with 

 2. Fuchs-Buder T, Claudius C, Skovgaard LT, Eriksson 
LI, Mirakhur RK, Viby-Mogensen J; 8th International 
Neuromuscular Meeting: Good clinical research 
practice in pharmacodynamic studies of neuromuscu-
lar blocking agents II: The Stockholm revision. Acta 
Anaesthesiol Scand 2007; 51:789–808

 3. Claudius C: Calibration of the neuromuscular monitor: 
Is it necessary? Can J Anaesth 2016; 63:354–5

 4. Schreiber JU, Mucha E, Fuchs-Buder T: 
Acceleromyography to assess neuromuscular recovery: 
Is calibration before measurement mandatory? Acta 
Anaesthesiol Scand 2011; 55:328–31

 5. Claudius C, Skovgaard LT, Viby-Mogensen J: Is the 
performance of acceleromyography improved with 
preload and normalization? A comparison with mech-
anomyography. Anesthesiology 2009; 110:1261–70

 6. Bland JM, Altman DG: Statistical methods for assessing 
agreement between two methods of clinical measure-
ment. Lancet 1986; 1:307–10

 7. Nemes R, Nagy G, Murphy GS, Logvinov II, Fülesdi 
B, Renew JR: Awake volunteer pain scores during 
neuromuscular monitoring. Anesth Analg 2020; 
130:941–8

Table 1. Primary and Secondary Outcomes in Patients  
Undergoing Awake and Anesthetized Calibration

 
Calibrated 

Awake 
Calibrated  

Anesthetized P Value 

Primary outcome    
 Total duration, normalized 

(min)
51 ± 14 51 ± 14 0.624

Secondary outcomes    
 Total duration,  

non-normalized (min)
46 ± 12 47 ± 13 0.406

 Duration of deep block (min) 19 ± 5 19 ± 5 0.573
 Duration to train-of-four ratio 

25% (min)
32 ± 7 32 ± 7 0.550

 Duration to train-of-four ratio 
50% (min)

36 ± 9 37 ± 9 0.125

 Duration to train-of-four ratio 
75% (min)

41 ± 12 42 ± 11 0.174

 Onset time(s) 140 ± 51 139 ± 59 0.740
 Baseline train-of-four ratio 

after calibration (%)
112 ± 6 111 ± 7 0.593

 Stimulation current after 
calibration (mA)

45 ± 13 44 ± 13 0.751

The values are presented as mean ± SD. Total duration, normalized is the time 
in minutes from rocuronium injection until recovery to a normalized train-of-four 
ratio of 0.9. Total duration, non-normalized is the time in minutes from rocuronium 
injection until recovery to a non-normalized train-of-four ratio of 0.9. Duration 
of deep block is the time in minutes from rocuronium injection to reappearance 
of the first response to post-tetanic count stimulation. Duration to train-of-four 
ratio 25% is the time in minutes from rocuronium injection until 25% recovery 
of non-normalized train-of-four ratio. Duration to train-of-four ratio 50% is the 
time in minutes from rocuronium injection until 50% recovery of non-normalized 
train-of-four ratio. Duration to train-of-four ratio 75% is the time in minutes from 
rocuronium injection until 75% recovery of non-normalized train-of-four ratio. 
Onset time is the time in seconds from rocuronium injection to 95% depression of 
the first twitch of the train-of-four.
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Transfusion Risk Prediction: 
Comment

To the Editor:

We have read with great interest the recent article by 
Lou et al.,1 in which they used the American College 

of Surgeons National Surgical Quality Improvement 
Program participant use data file to expertly develop a 
transfusion prediction model with the goal of guiding type 
and screen ordering.

Lou et al. devised a clever method to broadly capture 
institution-specific transfusion information by redefining 

either higher or lower rates of transfusion.3,4 However, the 
work by Lou et al. did not include any mention of race 
or ethnicity. Experience from previous algorithms used 
to model resource allocation in health care demonstrate 
that omitting this information may lead to perpetuating 
bias that unfortunately exists within the United States 
healthcare system.5,6 Although the intent from health-
care providers is to provide the best possible care to their 
patients, determinants of health are closely linked to race 
and ethnicity and availability of resources in the United 
States. Therefore, artificial intelligence models aiming to 
personalize medicine can present pitfalls for those already 
with low resource availability, unwittingly withholding 
care in marginalized communities.5 On the other hand, 
it has been shown that including race or ethnicity in 
machine learning models may perpetuate bias, and there-
fore including race and ethnicity in artificial intelligence 
remains intensely debated.7,8

Our primary question is the following: Why did the 
authors choose not to include race and ethnicity in their 
table 1 or in their prediction model? Was the absence of 
any demographic data in the Lou et al. article an intended 
or inadvertent omission? Given the potential impact of a 
patient’s race or ethnicity on clinician decision-making, 
and the ongoing controversy about the use of these vari-
ables in clinical prediction models,8 we believe that an 
explanation for the absence of this data would be helpful. 
Inclusion of ethnic and racial minorities in research is 
important, and transparency is key in the design of pre-
diction models to improve societal health.
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the procedure-specific transfusion risk on local institutional 
data in their external validation experiments. The choice 
to use this process to improve model performance speaks 
to the importance of institution-specific data and to the 
assumption that inclusion of granular institutional data 
results in superior prediction. One example of an institu-
tion-specific variable that may confer additional predictive 
power is surgeon identifier, as there is evidence of inter-
surgeon variability in transfusion requirements.2–4 Also, it is 
unclear if anesthesiologist identifier is predictive of trans-
fusion, which should be explored in greater detail. Widely 
externally valid approaches to modeling perioperative 
problems sacrifice data granularity that may be critical for 
practical implementation.
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In Reply:

We thank Burton et al.1 and Zapf et al.2 for their 
thoughtful comments on our research on personal-

ized surgical transfusion risk prediction.3 Both letters raise 
important considerations regarding variable selection for 
predictive models in health care, which are worth discuss-
ing in further detail.

As Burton et al. note, race and ethnicity were not 
included as input variables in our machine learning 
model for surgical transfusion risk; we would like to clar-
ify that this was intentional for several reasons, which 
we explain here. First, the inclusion of race in predictive 
models has been well-described to contribute to ineq-
uity.4 One major limitation of machine learning is that 
a model can only learn from its training examples— 
in other words, real-world clinician behaviors. If such behav-
iors or the societal factors contextualizing that behavior are 
biased, the model will also be biased. The citation provided 
by Burton et al. is a perfect example of this5: in this study, 
researchers evaluated a model trained to predict healthcare 
utilization after hospital discharge, with the intention to 
allocate additional resources to patients predicted to have 
high utilization. Unfortunately, black patients had low utili-
zation because they lacked access to care, which the model 
learned and perpetuated. Inclusion of race as an input vari-
able in model development encourages machine learning 
models to explicitly encode such latent biases, and conse-
quently the recommendations of such models will propa-
gate systemic inequities in care.

Second, although race is a frequently collected variable 
in many datasets, it serves as a proxy for often unmeasured 
variables such as socioeconomic status, access to care, ill-
ness severity (due to poor access to care and delayed pre-
sentation), and other social determinants of health.6 Thus, 
although the inclusion of race as a variable may improve 
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model discrimination, it potentially does so for the wrong 
reasons. Given two individuals, identical except for their 
skin color, it seems unjust for one to have a “better” predic-
tion based on the population averages of their racial group, 
which may be due to unmeasured variables not applicable 
to the specific individual.

Third, to the best of our knowledge, there is little evi-
dence that race itself contributes to risk for allogeneic 
blood transfusion after adjustment for disease burden, 
socioeconomic status, and other clinical variables that are 
known to contribute (e.g., hematocrit). We thank Burton 
et al. for bringing attention to the potential pitfalls of 
racial adjustment and the critical importance of fairness 
in predictive modeling. As machine learning is increas-
ingly used for clinical decision support, model developers 
must be vigilant for potential sources of bias, which can 
be introduced at every step of model development and 
implementation.7,8 As a research community, we share a 
responsibility to ensure that the decision support tools 
we create do not exacerbate, and ideally help to reduce, 
the health disparities that are currently present in modern 
medicine.9

Zapf et al. raise important points about the benefits 
and limitations of model development using large reg-
istry datasets versus institution-specific datasets. We agree 
that inclusion of surgeon and anesthesiologist identifiers 
may further improve predictive performance. Variation in 
transfusion risk can occur due to differences in surgeon 
technique or case complexity, and it would be appropriate 
to adjust for these; however, they can also occur due to dif-
ferences in preference for discretionary transfusion, which 
may be less appropriate to adjust for. By training our mod-
els on a large national database, we captured the average 
transfusion behavior of U.S. physicians, which we believe, 
on average, to be appropriate. Further customizing model 
predictions based on individual behavior patterns risks 
encoding undesirable physician practice patterns into the 
model; nonetheless, we acknowledge that such adjustment 
might be necessary for widespread adoption. Our transfer 
learning approach (i.e., hospital-specific procedure-specific 
transfusion rate) could easily accommodate the addition of 
a surgeon- or anesthesiologist-specific adjustment, and it 
would be interesting to investigate such modifications in 
future work.
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