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What We Already Know about This Topic

• Deep learning image classification techniques are changing the 
interpretation process in a range of radiology settings

• It is unclear whether automated detection of a misplaced endotra-
cheal tube can perform similarly to critical care clinicians

What This Article Tells Us That Is New

• A deep learning–based algorithm developed using portable chest radio-
graphs from 1,842 adult intubated patients can identify the endotra-
cheal tube tip, carina, and endotracheal tube tip–to–carina distance 
with a measurement error of 2.6 mm, 3.6 mm, and 4.0 mm, respectively

• The algorithm performed as well as, if not better than, 11 critical care 
clinicians in identifying these portable chest radiograph landmarks

Among adverse events associated with endotracheal 
intubation, improper endotracheal tube (ETT) posi-

tioning is frequently observed and potentially hazardous if 
not promptly recognized and managed.1–3 An ETT placed 

aBStraCt
Background: Improper endotracheal tube (ETT) positioning is frequently 
observed and potentially hazardous in the intensive care unit. The authors 
developed a deep learning–based automatic detection algorithm detecting 
the ETT tip and carina on portable supine chest radiographs to measure the 
ETT–carina distance. This study investigated the hypothesis that the algorithm 
might be more accurate than frontline critical care clinicians in ETT tip detec-
tion, carina detection, and ETT–carina distance measurement.

Methods: A deep learning–based automatic detection algorithm was 
developed using 1,842 portable supine chest radiographs of 1,842 adult 
intubated patients, where two board-certified intensivists worked together 
to annotate the distal ETT end and tracheal bifurcation. The performance of 
the deep learning–based algorithm was assessed in 4-fold cross-validation 
(1,842 radiographs), external validation (216 radiographs), and an observer 
performance test (462 radiographs) involving 11 critical care clinicians. The 
performance metrics included the errors from the ground truth in ETT tip 
detection, carina detection, and ETT–carina distance measurement.

results: During 4-fold cross-validation and external validation, the median errors 
(interquartile range) of the algorithm in ETT–carina distance measurement were 
3.9 (1.8 to 7.1) mm and 4.2 (1.7 to 7.8) mm, respectively. During the observer 
performance test, the median errors (interquartile range) of the algorithm were 2.6 
(1.6 to 4.8) mm, 3.6 (2.1 to 5.9) mm, and 4.0 (1.7 to 7.2) mm in ETT tip detection, 
carina detection, and ETT–carina distance measurement, significantly superior to 
that of 6, 10, and 7 clinicians (all P < 0.05), respectively. The algorithm outper-
formed 7, 3, and 0, 9, 6, and 4, and 5, 5, and 3 clinicians (all P < 0.005) regarding 
the proportions of chest radiographs within 5 mm, 10 mm, and 15 mm error in ETT 
tip detection, carina detection, and ETT–carina distance measurement, respectively. 
No clinician was significantly more accurate than the algorithm in any comparison.

Conclusions: A deep learning–based algorithm can match or even outper-
form frontline critical care clinicians in ETT tip detection, carina detection, and 
ETT–carina distance measurement.
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at a high position may lead to air leaks or injury to the vocal 
cords and possibly increase the risk of accidental, unplanned 
extubation. Conversely, a mainstem bronchus intubation 
can result in hyperinflation of the intubated lung with sub-
sequent pneumothorax and atelectasis of the nonventilated 
lung. Physical examination alone is unreliable for assessing 
the depth of ETT insertion.1–4 In the neutral neck position, 
the optimal position of the ETT tip within the trachea is 3 
to 7 cm above the carina, which is the reference point of the 
proper ETT position on portable chest radiographs.5 It is 
recommended to evaluate the ETT position using a porta-
ble chest radiograph immediately after endotracheal intuba-
tion.1,2,4,6–8 Given that radiologists are not always available at 
any time to read portable radiographs in the intensive care 
unit (ICU), timely interpretation of postintubation chest 
radiographs by critical care clinicians may improve the pro-
cess of early decision-making.

The portable supine chest radiograph allows valuable 
information to be obtained without the risk of patient 
transport in the ICU.9,10 Compared with standard standing 
chest radiographs, the quality is inconsistent due to higher 
image noise, because portable supine chest radiographs are 
obtained without an antiscatter grid.10,11 The existence of 
the medical devices required for critical care (e.g., nasogas-
tric tubes, pacemaker wires, and electrocardiogram cables) 
and anatomical structures (e.g., such as sternum, heart, and 
spines) may interfere with the reading of a portable chest 
radiograph to identify the precise ETT tip and carina loca-
tions. Nearly 40% of ICU patients are mechanically venti-
lated.12 Thus, an algorithm designed to detect the ETT tip 
and carina on portable chest radiographs may help identify 
a suboptimal ETT position, reduce associated complica-
tions, and improve the ICU workflow.

With recent advances in image processing, artificial 
intelligence and deep learning have been gradually intro-
duced into respiratory medicine and critical care.13,14 
Although some of these studies applied artificial intelli-
gence and deep learning to recognize different patholo-
gies (e.g., malignancy) on standard chest radiographs and 
computed tomography,13,15–18 only two reports in the lit-
erature have demonstrated the approaches and algorithm 
performance in identifying ETT malposition on portable 
supine chest radiographs.19,20 These deep learning solutions 
are trained with image classification (categorization) on the 
basis of the entire image. However, an approach using image 
classification without labeling the objects (i.e., the ETT and 
carina) on chest radiographs cannot localize the ETT and 
carina and is unlikely to accurately estimate the distance in 
between (i.e., the ETT–carina distance), potentially limiting 
its application and reliability in clinical settings.

In the study presented here, we developed a deep learning– 
based automatic detection algorithm detecting the ETT tip 
and carina on portable supine chest radiographs to mea-
sure the ETT–carina distance using pixel-level segmenta-
tion labels. This study investigated the hypothesis that the 

algorithm might be more accurate than frontline critical 
care clinicians in ETT tip detection, carina detection, and 
ETT–carina distance measurement.

Materials and Methods

Training Datasets

The entire study protocol was approved by the Institutional 
Review Board of National Cheng Kung University Hospital 
(A-ER-108-305; Tainan, Taiwan). The study was conducted 
in the National Cheng Kung University Hospital, a 1,300-
bed medical center that offers first-line and tertiary referral 
services for 1.8 million people in southern Taiwan. In this 
study, 1,870 de-identified portable supine chest radiographs 
of 1,870 intubated adult patients receiving surgical ICU care 
between 2015 and 2018 were randomly retrieved from the 
imaging database in the Department of Radiology. Patient 
consents were waived by the Institutional Review Board. 
The images had been de-identified before we received 
the files, and thus the patient demographics were not pro-
vided. The files were exported in the Digital Imaging and 
Communications in Medicine format. The length and 
width of these images ranged from 2,517 to 3,032 pixels, 
including 1,279 images sized at 2,517 × 3,032 pixels, 538 
images sized at 3,032 × 2,517 pixels, and 53 images sized 
variously between 2,517 × 2,517 and 3,032 × 3,032 pix-
els. The image files were split into 4 folds. The number of 
images was estimated and 4-fold cross-validation was used 
based on our internal pilot study results. During the inter-
nal pilot experiment, we used approximately 400 images 
and 4-fold cross-validation to evaluate the performance of 
the algorithm. Based on the pilot study results, we chose the 
4-fold cross-validation strategy and estimated the number 
of chest radiographs to be approximately 1,800.

Using a self-developed image annotation software, two 
board-certified intensivists (Drs. Huang and Lai; 14 and 9 
yr of experience as intensivists, respectively) read the chest 
radiographs together at the same time and in the same loca-
tion and conducted manual labeling as the ground truth 
annotations. The distal ETT end was labeled by the quad-
rangle constituted by P

1
 to P

4
, and the tracheal bifurcation 

was labeled by the polygon formed by P
5
 to P

13
 (fig. 1A). If 

the distal ETT end or tracheal bifurcation could not be reli-
ably identified at the discretion of two intensivists, the chest 
radiographs were eliminated from further processing. The 
numbers of chest radiographs eliminated from the 4 folds 
were 6, 6, 9, and 7, respectively. Thus, the chest radiograph 
numbers became 462, 461, 458, and 461 in the 4 folds, mak-
ing a total of 1,842 images from 1,842 patients included in 
the training and cross-validation datasets. Across the 4 folds, 
a cranially misplaced ETT (i.e., the ETT tip more than 7 cm 
above the carina) was found in 101, 109, 91, and 99 chest 
radiographs, respectively; a caudally misplaced ETT (i.e., the 
ETT tip less than 3 cm above the carina) was found in 38, 
45, 31, and 40 chest radiographs, respectively.
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Fig. 1. Portable supine chest radiograph labeling and architecture of the deep learning–based algorithm. (A) Four points (P1 to P4) are used 
to label the distal endotracheal tube (eTT) end, and nine points (P5 to P13) are used to label the tracheal bifurcation as the ground truth.  
(B) The deep learning–based algorithm includes several steps, including feature extraction, mask prediction, classification, and bounding box 
regression. because the architecture is originally designed to process the red, green, and blue color channels of the input images, triplicates 
of images are used as input to fit the three channels. The masks of the distal eTT end and tracheal bifurcation and the bounding boxes of the 
eTT tip and carina serve as supplements of each other to obtain the eTT tip and carina locations on chest radiographs. 
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Architecture of the Deep Learning–based Automatic 
Detection Algorithm

The ETT tip, defined as the midpoint between P
2
 and P

3
, 

and the carina (P
9
) were selected as the feature points. In 

addition to the 13 points (P
1
 to P

13
) that labeled the dis-

tal ETT end and tracheal bifurcation, two ground-truth 
bounding boxes (used to define the location of the tar-
get objects; 48 × 48 pixels) with the ETT tip and carina 
at the center of each ground-truth bounding box were 
annotated.21–23 The detection algorithm aimed to find the 
masks of the distal ETT end and tracheal bifurcation and 
the detected bounding boxes of the ETT tip and carina on 
portable supine chest radiographs (fig. 1B).

The mask region–based convolutional neural network 
(Mask R-CNN) has been known for its effectiveness in 
object recognition and instance segmentation.21 In this 
study, a mask region–based convolutional neural network 
was trained to detect the distal ETT end and tracheal 
bifurcation masks through pixel-level segmentation of the 
two items. The mask region–based convolutional neural 
network algorithm for feature extraction was composed of 
50-layer ResNeXt networks24 as the backbone architec-
ture with a recently proposed feature pyramid network.22 
During the inference step, only the masks with the max-
imal score for each class were preserved. A rule-based 
feature extraction method was performed to identify the 
feature points (i.e., the ETT tip and carina) as the post-
processing procedure, which was developed based on the 
preliminary evaluation of the algorithm performance. To 
obtain the exact locations of the ETT tip and carina, the 
masks and detected bounding boxes localized by the mask 
region–based convolutional neural network were used to 
supplement each other. The ETT tip location was prefer-
entially determined based on the detected bounding box 
center. Alternatively, the lowest point of the distal ETT 
end mask was accepted as the ETT tip location when the 
detected bounding box could not be identified on chest 
radiographs. Regarding the carina, the detected bounding 
box center was the preferred carina location. However, 
if the detected bounding box center was ≥100 pixels 
(13.9 mm) away from the feature point obtained from 
the tracheal bifurcation mask, the mask result was pre-
ferred as the carina location. The final detected locations 
of the distal ETT end and tracheal bifurcation were dis-
played as overlays on images. A supplemental method sec-
tion (Supplemental Digital Content 1, http://links.lww.
com/ALN/C918) is available to explain the architecture 
more thoroughly. The architecture of the deep learning– 
based algorithm and the rules in the postprocessing pro-
cedure were consistent during the training process of the 
four models. The ETT–carina distance was converted 
from pixels to millimeters using the pixel size of 0.139 mm 
based on the Digital Imaging and Communications in 
Medicine image data.

Validation Datasets

The validation steps included internal 4-fold cross-valida-
tion and external validation. Of the 4 folds, a single fold was 
retained as the validation dataset for testing the model, and 
the remaining 3 folds were used as the training datasets. For 
example, the first model was trained using the second, third, 
and fourth folds and tested using the first fold—each of the 
4 folds serves as the validation dataset exactly once during 
4-fold cross-validation. The external dataset was collected 
from intubated patients transferred from 12 neighboring 
urban hospitals between 2018 and 2019, whose images had 
been uploaded into the imaging database on patient admis-
sion. Overall, 216 de-identified chest radiographs were 
retrieved as the external validation dataset from the imaging 
database in our Department of Radiology.

Observer Performance Test

Eleven healthcare workers in the ICU, including two senior 
ICU nurse practitioners, two postgraduate year residents, 
five surgical residents, and two board-certified intensivists, 
participated in the observer performance test after consents 
were obtained. In Taiwan, postgraduate year residents par-
ticipate in a generalized training program, and the surgical 
residency comes after 2 yr of postgraduate year residency 
training. Each clinician independently reviewed the first 
fold of the original dataset and labeled the ETT tip and 
carina on each chest radiograph. To ensure the labeling 
quality, these clinicians were temporarily exempted from 
clinical work and received standardized hands-on training 
before using the annotation software. The performance of 
each clinician was compared with that of the first model.

Performance metrics and Statistical Analysis

The performance metrics measured consisted of the accuracy 
of ETT tip detection, carina detection, and ETT–carina dis-
tance measurement. As shown in Supplemental Digital Content 
2 fig. S1 (http://links.lww.com/ALN/C919), the accuracy of 
ETT tip and carina detection was evaluated using the detec-
tion error between the detected location and ground truth 
location. Likewise, the accuracy of ETT–carina distance mea-
surement was assessed using the measurement error between 
the estimated distance and ground truth distance. With refer-
ence from a previous study,20 these performance metrics were 
further classified in terms of the errors from the ground truth 
within 5 mm, 10 mm, 15 mm, and beyond. In addition, whether 
the algorithm can detect a cranially misplaced ETT (i.e., the 
ETT tip more than 7 cm above the carina) and a caudally mis-
placed ETT (i.e., the ETT tip less than 3 cm above the carina) 
was evaluated. The overall performance of the algorithm in 
internal 4-fold cross-validation and external validation was cal-
culated by pooling the results of the four individual models. 
During the observer performance test, the 462 chest radio-
graphs in the first fold were used to compare the performance 
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(i.e., the distribution of detection and measurement errors  
and proportions of chest radiographs within 5 mm,  
10 mm, and 15 mm error from the ground truth) of the algo-
rithm and clinicians.

A data analysis and statistical plan were written after the 
data were accessed. Statistical analyses were performed using 
SPSS Statistics for Windows, Version 17.0 (SPSS Inc., USA). 
A P value < 0.05 was considered statistically significant. 
Categorical variables were expressed as percentage (num-
ber), whereas continuous variables were expressed as median 
(interquartile range). For categorical variables, independent 
samples (i.e., comparisons in internal validation and inter-
nal validation results versus external validation results) were 
compared using the chi-square test and dependent samples 
(i.e., comparisons in external validation and observer per-
formance tests) using the McNemar test, with the P value 
of multiple comparisons adjusted by the Bonferroni cor-
rection. For comparisons of continuous variables between 
two independent groups (i.e., internal validation results ver-
sus external validation results), the Mann–Whitney U test 
was used. For comparisons of continuous variables among 
multiple groups, independent samples (i.e., comparisons 
in internal validation) were compared using the Kruskal-
Wallis test, and dependent samples (i.e., comparisons in 
external validation and observer performance tests) were 
compared using the Friedman test, followed by the post hoc 
analysis using Dunn’s test.

results
The overall performance of the deep learning–based 
automatic detection algorithm is summarized in table  1. 
During internal 4-fold cross-validation, the median error 
(interquartile range) and overall proportions of chest 
radiographs within 5 mm, 10 mm, and 15 mm error of the 
deep learning–based algorithm were 2.8 (1.6 to 4.9) mm 
and 75.1%, 92.5%, and 96.4% in ETT tip detection, 3.6 

(2.1 to 5.5) mm and 68.8%, 91.5%, and 95.6% in carina 
detection, and 3.9 (1.8 to 7.1) mm and 60.4%, 84.2%, and 
92.8% in ETT–carina distance measurement, respectively. 
Among the four individual models, the performance (i.e., 
the median error [interquartile range] and proportions of 
chest radiographs within 5 mm, 10 mm, and 15 mm error 
from the ground truth) in ETT tip detection, carina detec-
tion, and ETT–carina distance measurement during inter-
nal 4-fold cross-validation was not significantly different 
(Supplemental Digital Content 3 table S1, http://links.lww.
com/ALN/C920). During external validation, the median 
error (interquartile range) and overall proportions of chest 
radiographs within 5 mm, 10 mm, and 15 mm error of the 
deep learning–based algorithm were 3.0 (1.7 to 5.3) mm 
and 72.6%, 90.4%, and 95.3% in ETT tip detection, 3.5 
(2.0 to 5.9) mm and 67.8%, 89.2%, and 95.9% in carina 
detection, and 4.2 (1.7 to 7.8) mm and 57.6%, 83.2%, and 
92.6% in ETT–carina distance measurement, respectively. 
Compared with the performance in internal cross-validation,  
the overall proportions of chest radiographs within 5 mm, 
10 mm, and 15 mm error and median error (interquar-
tile range) from the ground truth in the three perfor-
mance metrics were not significantly different, except 
a slight decline of median error (interquartile range) in 
ETT tip detection (2.8 [1.6 to 4.9] mm in internal cross- 
validation versus 3.0 [1.7 to 5.3] mm in external validation,  
P = 0.046). Thus, similar results were obtained during val-
idation using the external dataset from neighboring hospi-
tals. Among the four individual models, the accuracy of the 
three performance metrics was not significantly different 
during external validation (Supplemental Digital Content 
4 table S2, http://links.lww.com/ALN/C921). For each 
model, the performance in ETT tip detection, carina 
detection, and ETT–carina distance measurement obtained 
during external validation (Supplemental Digital Content 
4 table S2, http://links.lww.com/ALN/C921) was not 
significantly different from those obtained during internal 

table 1. Overall Performance of the Deep Learning–based Automatic Detection Algorithm

Validation* Metric† 
Median  

(interquartile range), mm ≤ 5 mm ≤ 10 mm ≤ 15 mm 

Internal 4-fold cross-validation (n = 1,842) eTT tip detection 2.8 (1.6–4.9) 75.1% (1,383) 92.5% (1,703) 96.4% (1,775)
carina detection 3.6 (2.1–5.5) 68.8% (1,268) 91.5% (1,686) 95.6% (1,760)
eTT–carina distance 3.9 (1.8–7.1) 60.4% (1,112) 84.2% (1,551) 92.8% (1,709)

external validation (n = 864)‡ eTT tip detection 3.0 (1.7–5.3)§ 72.6% (627) 90.4% (781) 95.3% (823)
carina detection 3.5 (2.0–5.9) 67.8% (586) 89.2% (771) 95.9% (829)
eTT–carina distance 4.2 (1.7–7.8) 57.6% (498) 83.2% (719) 92.6% (800)

error from the ground truth in eTT tip and carina detection and eTT–carina distance during internal 4-fold cross-validation (1,842 images, 1,842 patients) and external validation 
(216 images, 216 patients).
*The overall performance was calculated by pooling the results of the four individual models. †Data are expressed as percentage (number) unless otherwise indicated. §A statistically 
significant difference exists when compared with the result in internal 4-fold cross-validation (P = 0.046, mann-Whitney U test). ‡The overall sample size in external validation is 
obtained from 216 images sampled four times by each individual model (n = 216 × 4 = 864).
eTT, endotracheal tube.
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cross-validation (Supplemental Digital Content 3 table S1, 
http://links.lww.com/ALN/C920).

Whether the deep learning–based algorithm can detect a 
cranially or caudally misplaced ETT was also evaluated. For 
chest radiographs with a cranially misplaced ETT (table 2), 
the sensitivity and specificity of the algorithm were 77.3% 
and 95.2% during internal 4-fold cross-validation and 72.1% 
and 95.3% during external validation, respectively. For chest 
radiographs with a caudally misplaced ETT (table 3), the 
sensitivity and specificity of the algorithm were 70.8% and 
96.4% during internal 4-fold cross-validation and 69.3% 
and 96.6% during external validation, respectively.

During the observer performance test, the median error 
(interquartile range) of the algorithm in ETT tip detection 
was 2.6 (1.6 to 4.8) mm (fig. 2), significantly superior to 
that of six clinicians. The sensitivities of the algorithm at 
5 mm, 10 mm, and 15 mm error from the ground truth or 
less were 77.1%, 92.9%, and 96.5%, respectively (table 4). 
Compared with the 11 clinicians, the algorithm had sig-
nificantly higher sensitivities than 7, 3, and 0 clinicians at 
5 mm, 10 mm, and 15 mm error or less. No clinician was 
more accurate than the algorithm in ETT tip detection.

For carina detection, the median error (interquartile range) 
of the algorithm (3.6 [2.1 to 5.9] mm) was significantly 

table 2. Detection of a cranially misplaced endotracheal Tube (i.e., the endotracheal Tube Tip more than 7 cm above the carina) by 
the Deep Learning–based Automatic Detection Algorithm during Internal 4-Fold cross-validation (1,842 Images, 1,842 Patients) and 
external Validation (216 Images, 216 Patients)

Validation* Model† 
total number  

of images 

number of images 
with the ett tip > 7 cm 

above the Carina 

Correctly detected 
by the algorithm 

(Sensitivity) 

number of images 
with the ett tip ≤ 7 cm 

above the Carina 

Correctly detected 
by the algorithm 

(Specificity) 

Internal 4-fold 
cross-validation

1st 462 101 76.2% (77) 361 95.0% (343)
2nd 461 109 82.6% (90) 352 94.9% (352)
3rd 458 91 73.6% (67) 367 94.8% (348)
4th 461 99 75.8% (75) 362 96.1% (348)

Overall 1,842 400 77.3% (309) 1,442 95.2% (1,373)
external validation‡ 1st 216 52 71.2% (37) 164 95.1% (156)

2nd 216 52 73.1% (38) 164 93.3% (153)
3rd 216 52 73.1% (38) 164 96.3% (158)
4th 216 52 71.2% (37) 164 96.3% (158)

Overall 864 208 72.1% (150) 656 95.3% (625)

*The overall performance was calculated by pooling the results of the four individual models. †Data are expressed as number or percentage (number). ‡The overall sample size in 
external validation is obtained from 216 images sampled 4 times by each individual model (n = 216 × 4 = 864).
eTT, endotracheal tube.

table 3. Detection of a caudally misplaced endotracheal Tube (i.e., the endotracheal Tube Tip less than 3 cm above the carina) by 
the Deep Learning–based Automatic Detection Algorithm during Internal 4-Fold cross-validation (1,842 Images, 1,842 Patients) and 
external Validation (216 Images, 216 Patients)

Validation*  Model†  
total number 

of images 

number of images with 
the ett tip < 3 cm  
above the Carina 

Correctly detected 
by the algorithm 

(Sensitivity) 

number of images 
with the ett tip ≥ 3 cm 

above the Carina 

Correctly detected 
by the algorithm 

(Specificity) 

Internal 4-fold 
cross-validation

1st 462 38 62.2% (24) 424 96.9% (411)
2nd 461 45 75.6% (34) 416 95.4% (397)
3rd 458 31 64.5% (20) 427 95.8% (409)
4th 461 40 77.5% (31) 421 97.6% (411)

Overall 1,842 154 70.8% (109) 1,688 96.4% (1,628)
external validation‡ 1st 216 22 63.6% (14) 194 97.4% (189)

2nd 216 22 68.2% (15) 194 97.9% (190)
3rd 216 22 63.6% (14) 194 93.8% (182)
4th 216 22 81.8% (18) 194 97.4% (189)

Overall 864 88 69.3% (61) 776 96.6% (750)

*The overall performance was calculated by pooling the results of the four individual models. †Data are expressed as number or percentage (number). ‡The overall sample size in 
external validation is obtained from 216 images sampled 4 times by each individual model (n = 216 × 4 = 864). 
eTT, endotracheal tube.
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Fig. 2. Accuracy of endotracheal tube (eTT) tip detection, carina detection, and eTT–carina distance measurement in the observer performance test 
(462 images, 462 patients). (A) Distribution of detection error in eTT tip detection. (B) Distribution of detection error in carina detection. (C) Distribution 
of measurement error in eTT–carina distance measurement. *Signifies statistical significance when compared with the results of the algorithm.
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superior to that of 10 clinicians (fig. 2). The sensitivities of 
the algorithm at the error of 5 mm, 10 mm, and 15 mm or 
less were 67.5%, 90.0%%, and 95.0%, respectively (table  5). 
Compared with the 11 clinicians, the algorithm was signifi-
cantly more sensitive than 9, 6, and 4 clinicians at the error 
of 5 mm, 10 mm, and 15 mm or less. No clinician was signifi-
cantly more accurate than the algorithm in carina detection.

The results of ETT–carina distance measurement of 
the algorithm and clinicians are shown in Supplemental 
Digital Content 5 fig. S2 (http://links.lww.com/ALN/
C922). For ETT–carina distance measurement, the median 
error (interquartile range) of the algorithm (4.0 [1.7 to 
7.2] mm) was significantly superior to that of 7 clinicians 
(fig. 2). Of the algorithm, the proportions of chest radio-
graphs within 5 mm, 10 mm, and 15 mm error from the 
ground truth were 59.3%, 84.4%, and 91.1%, respectively 
(table  6). In the comparisons with the 11 clinicians, the 
proportions of chest radiographs within 5 mm, 10 mm, and 
15 mm error of the algorithm were significantly higher 
than those of 5, 5, and 3 clinicians. No clinician was signifi-
cantly more accurate than the algorithm in ETT–carina 
distance measurement.

discussion
In the current study, we aimed to develop an algorithm 
to localize the ETT tip and carina on chest radiographs 

and estimate the ETT–carina distance. The performance 
of the algorithm was compared with that of clinicians in 
ETT tip detection, carina detection, and ETT–carina dis-
tance measurement in an observer performance test. Of 
note, the algorithm did perform better than some clinicians, 
and no clinician was more accurate than the algorithm in 
any comparison (regardless of the distribution of errors or 
proportions of chest radiographs within 5 mm, 10 mm, or 
15-mm error). Thus, although the clinical effects remain to 
be determined, the deep learning–based algorithm might 
play a role to complement and augment the ability of crit-
ical care clinicians by offloading their routine duties and 
enabling them to focus on cognitively demanding tasks.

Several study groups and companies have announced 
working on relevant projects. However, only Lakhani 
et al.19,20 documented the details of their approaches and 
results in two studies. Their deep learning–based algorithms 
were trained using image classification, i.e., category label-
ing for the entire image rather than annotation for specific 
objects. In their former study,19 the authors found that the 
deep convolutional neural networks achieved a relatively 
poorer area under the curve of 0.81 in differentiating the 
low or normal position of the ETT. In the latter study,20 
the Inception V3 deep neural network was used to classify  
the ETT–carina distance. A total of 22,960 chest radio-
graphs were classified into 12 categories, including bronchial 

table 4. endotracheal Tube Tip Detection in the Observer Performance Test (462 Images, 462 Patients) 

Observer*† 

detection error from the Ground truth

≤ 5 mm P Value‡ ≤ 10 mm P Value‡ ≤ 15 mm P Value‡ 

Algorithm 77.1% (356) — 92.9% (429) — 96.5% (446) —
Overall clinicians§ 67.3% (3,411) — 89.9% (4,561) — 95.9% (4,865) —
 Nurse practitioner
  Nurse practitioner 1 73.2% (338) 0.139 93.7% (433) 0.652 98.3% (454) 0.134
  Nurse practitioner 2 71.9% (332) 0.040 90.3% (417) 0.155 95.9% (443) 0.728
 Postgraduate year resident∥
  Postgraduate year resident 1 68.2% (315) 0.001# 93.9% (434) 0.568 98.1% (453) 0.189
  Postgraduate year resident 2 66.9% (309) < 0.001# 85.7% (396) < 0.001# 92.6% (428) 0.008
 Surgical resident∥
  resident 1 53.7% (248) < 0.001# 84.0% (388) < 0.001# 93.3% (431) 0.020
  resident 2 71.4% (330) 0.032 91.8% (424) 0.568 95.9% (443) 0.678
  resident 3 63.9% (295) < 0.001# 89.0% (411) 0.330 96.3% (445) > 0.999
  resident 4 58.7% (271) < 0.001# 84.2% (389) < 0.001# 93.1% (430) 0.020
  resident 5 72.9% (337) 0.113 92.6% (428) > 0.999 96.8% (447) > 0.999
 Intensivist
  Intensivist 1 68.8% (318) 0.002# 91.6% (423) 0.461 97.4% (450) 0.523
  Intensivist 2 68.8% (318) 0.001# 90.5% (418) 0.144 95.5% (441) 0.424

comparisons of the deep learning–based automatic detection algorithm and clinicians in terms of the error from the ground truth within 5 mm, 10 mm, and 15 mm.
*Data are expressed as percentage (number). †Nurse practitioners 1 and 2 had 15 and 3 yr of intensive care unit experience; postgraduate year residents 1 and 2 were postgraduate 
year 1 and postgraduate year 2 residents; residents 1 and 2 were second-year surgical residents; residents 3, 4, and 5 were third-year surgical residents; intensivist 1 and 2 had 2 and 
6 yr of intensive care unit experience. ‡comparisons of the algorithm and clinicians were performed using the mcNemar test. A P value < 0.005 (adjusted by the bonferroni correction) 
was considered statistically significant. §The performance of overall clinicians was calculated by pooling the results of the 11 critical care clinicians. ∥Postgraduate year residents 
participate in a generalized training program, and the surgical residency comes after 2 yr of postgraduate year residency training. #Signifies statistical significance compared with 
the results of the algorithm.
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insertion, distance from the carina at 1.0-cm intervals up 
to 10 cm (0.0 to 0.9 cm, 1.0 to 1.9 cm, …, 9.0 to 9.9 cm), 
and 10 cm or greater. The mean differences between the 
algorithm and radiologists in ETT–carina distance were 
0.69 ± 0.70 cm on the internal test dataset and 0.63 ± 0.55 cm 
on the external test dataset, with both intraclass correlation 
coefficients greater than 0.8. On the internal test images, 
the algorithm was 66.5% sensitive and 99.2% specific in 
detecting ETT–carina distance greater than 7 cm and 95.0% 
sensitive and 91.8% specific in detecting ETT–carina dis-
tance less than 3 cm, respectively. Although Lakhani’s work 
is more sensitive in detecting a caudally misplaced ETT, 
our algorithm performs slightly better in detecting a cra-
nially misplaced ETT. However, as acknowledged by the 
authors, an approach using such “weak” labeling needed 
substantially more training data. More important, the algo-
rithms were trained through image classification (i.e., low 
or normal position of the ETT in the former study and 
12 numerical categories of ETT–carina distance in the lat-
ter study). No accurate object annotation for the ETT and 
carina was made on training dataset images so that the deep 
learning solutions classified only the low or normal posi-
tion of the ETT or ETT–carina distance. Therefore, if the 
clinicians have any suspicion of the ETT–carina distance 
reported by the algorithm, no localization information of 
the ETT and carina can be provided.

In the current study, we aimed to improve model 
explainability (i.e., transparency) using a deep learning–
based object detection algorithm instead of image classi-
fication. The deep learning–based algorithm learned how 
to localize the ETT tip and carina on chest radiographs 
to estimate the ETT–carina distance. Although pixel-level 
segmentation labeling performed by two board-certified 
intensivists together was a time-consuming and labor- 
intensive task, the image annotations using 4 and 9 points 
each provided abundant information to recognize the dis-
tal ETT end and tracheobronchial tree on chest radio-
graphs, substantially reducing the number of images in 
training datasets. In addition, complementary application 
of the mask and bounding box results may enhance ETT 
tip and carina detection and consequently contribute to 
the accuracy of ETT–carina distance measurement. The 
deep learning–based algorithm, trained using the bound-
ing boxes denoting the ETT tip and carina locations and 
pixel-level segmentation of the distal ETT end and tracheal 
bifurcation, exhibited robustness in ETT–carina distance 
measurement during internal cross-validation and external 
validation. In addition, the overlays, which localize the dis-
tal ETT end and tracheal bifurcation on images, can help 
users perceive the ETT tip in relation to the carina (fig. 3), 
especially when a disagreement exists between the inter-
pretation of clinicians and the detection of the algorithm.

table 5. carina Detection in the Observer Performance Test (462 Images, 462 Patients): comparisons of the Deep Learning–based 
Automatic Detection Algorithm and clinicians in Terms of the error from the Ground Truth within 5 mm, 10 mm, and 15 mm

Observer*† 

detection error from the Ground truth

≤ 5 mm P Value‡ ≤ 10 mm P Value‡ ≤ 15 mm P Value‡ 

Algorithm 67.5% (312) — 90.0% (416) — 95.0% (439) —
Overall clinicians§ 50.7% (2,570) — 82.8% (4,197) — 92.4% (4,687) —
 Nurse practitioner
  Nurse practitioner 1 56.1% (259) < 0.001∥ 88.1% (407) 0.380 95.2% (440) > 0.999
  Nurse practitioner 2 65.2% (301) 0.419 88.5% (409) 0.494 96.8% (447) 0.215
 Postgraduate year resident#
  Postgraduate year resident 1 47.6% (220) < 0.001∥ 83.1% (384) 0.002∥ 93.7% (433) 0.461
  Postgraduate year resident 2 54.3% (251) < 0.001∥ 84.8% (392) 0.009 92.2% (426) 0.085
 Surgical resident#
  resident 1 37.2% (172) < 0.001∥ 79.4% (367) < 0.001∥ 90.5% (418) 0.008
  resident 2 69.3% (320) 0.275 92.2% (426) 0.237 97.2% (449) 0.110
  resident 3 39.8% (184) < 0.001∥ 74.5% (344) < 0.001∥ 87.4% (404) < 0.001∥
  resident 4 42.0% (194) < 0.001∥ 74.9% (346) < 0.001∥ 88.1% (407) < 0.001∥
  resident 5 42.9% (198) < 0.001∥ 76.6% (354) < 0.001∥ 88.7% (410) 0.001∥
 Intensivist
  Intensivist 1 42.4% (196) < 0.001∥ 76.4% (353) < 0.001∥ 87.2% (403) < 0.001∥
  Intensivist 2 59.5% (275) 0.003∥ 89.8% (415) > 0.999 97.4% (450) 0.071

*Data are expressed as percentage (number). †Nurse practitioners 1 and 2 had 15 and 3 yr of intensive care unit experience; postgraduate year residents 1 and 2 were postgraduate 
year 1 and postgraduate year 2 residents; residents 1 and 2 were second-year surgical residents; residents 3, 4, and 5 were third-year surgical residents; intensivist 1 and 2 had 
2 and 6 yr of intensive care unit experience. ‡comparisons of the algorithm and clinicians were performed using the mcNemar test. A P value < 0.005 (adjusted by the bonferroni 
correction) was considered statistically significant. §The performance of overall clinicians was calculated by pooling the results of the 11 critical care clinicians. ∥Signifies statistical 
significance compared with the results of the algorithm. #Postgraduate year residents participate in a generalized training program, and the surgical residency comes after 2 yr of 
postgraduate year residency training.
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For the deep learning–based automatic detection algo-
rithm, ETT tip and carina detection was accurate to within 
a 10-mm error from the ground truth in ~90% of images 
and within 15-mm error in ≈95% of images. In addition, 
ETT–carina distance measurement was accurate to within 
10-mm error in ≈85% of images and within 15-mm error 
in ≈90% of images. More important, the performance of 
the deep learning–based algorithm was consistent in inter-
nal 4-fold cross-validation and external validation. We 
compared the performance of the deep learning–based 
algorithm with that of a diverse group of 11 critical care 
clinicians. In terms of the median error (interquartile range) 
from the ground truth, the algorithm performed better 
than 6, 10, and 7 clinicians in ETT tip detection, carina 
detection, and ETT–carina distance measurement, respec-
tively. The algorithm was superior to 7, 3, and 0, 9, 6, and 
4, and 5, 5, and 3 clinicians regarding the proportions of 
chest radiographs within 5 mm, 10 mm, and 15 mm error in 
ETT tip detection, carina detection, and ETT–carina dis-
tance measurement. The algorithm outperformed clinicians 
in many comparisons, particularly when a lower error (i.e., 
5 mm) from the ground truth was allowed. No clinician was 
significantly more accurate than the algorithm in terms of 
the sensitivities within 5 mm, 10 mm, and 15 mm error or 
median error (interquartile range) from the ground truth. 

These findings suggested that the deep learning–based 
automatic detection algorithm can match or even out-
perform frontline critical care clinicians in measuring the 
ETT–carina distance. Whether clinical use of the algorithm 
might reduce complications associated with ETT malpo-
sition and improve the ICU workflow warrants further 
investigation.

The current study has some limitations. First, in the 
observer performance test, only the performance of the 
first model was compared with that of the clinicians. The 
performance of the four individual models was not signifi-
cantly different during internal 4-fold cross-validation and 
external validation. However, it is not equivalent to or in 
place of comparing the other three individual models with 
clinicians. Second, the possibility of overfitting cannot be 
avoided considering that a rule-based feature extraction 
method was used as the postprocessing procedure in iden-
tifying the ETT tip and carina. Finally, the performance 
of our algorithm cannot be compared comprehensively 
with previous works. The algorithms presented in previous 
studies were trained using image classification,19,20 and thus 
the area under the curve and intraclass correlation coeffi-
cients are used as evaluation metrics. However, in a detec-
tion task like our work, using the area under the curve or 
intraclass correlation coefficients to evaluate the algorithm 

table 6. endotracheal Tube–carina Distance measurement in the Observer Performance Test (462 Images, 462 Patients):  
comparisons of the Deep Learning–based Automatic Detection Algorithm and clinicians in Terms of the error from the Ground Truth 
within 5 mm, 10 mm, and 15 mm

Observer*† 

Measurement error from the Ground truth

≤ 5 mm P Value‡ ≤ 10 mm P Value‡ ≤ 15 mm P Value‡ 

Algorithm 59.3% (274) — 84.4% (390) — 91.1% (421) —
Overall clinicians§ 49.0% (2,487) — 76.9% (3,901) — 88.9% (4,508) —
 Nurse practitioner
  Nurse practitioner 1 56.5% (261) 0.397 82.0% (379) 0.351 92.6% (428) 0.464
  Nurse practitioner 2 59.5% (275) > 0.999 87.2% (403) 0.208 94.4% (436) 0.063
 Postgraduate year resident∥
  Postgraduate year resident 1 50.6% (234) 0.010 80.5% (372) 0.127 93.1% (430) 0.314
  Postgraduate year resident 2 51.3% (237) 0.011 79.2% (366) 0.031 88.3% (408) 0.160
 Surgical resident∥
  resident 1 37.2% (172) < 0.001# 66.5% (307) < 0.001# 83.1% (384) < 0.001#
  resident 2 61.0% (282) 0.614 84.8% (392) 0.920 94.4% (436) 0.044
  resident 3 34.4% (159) < 0.001# 63.0% (291) < 0.001# 79.4% (367) < 0.001#
  resident 4 41.1% (190) < 0.001# 68.4% (316) < 0.001# 84.2% (389) 0.002#
  resident 5 42.9% (198) < 0.001# 75.3% (348) 0.001# 87.7% (405) 0.101
 Intensivist
  Intensivist 1 46.8% (216) < 0.001# 76.0% (351) 0.001# 87.2% (403) 0.050
  Intensivist 2 56.9% (263) 0.462 81.4% (376) 0.223 91.3% (422) > 0.999

*Data are expressed as percentage (number). †Nurse practitioners 1 and 2 had 15 and 3 yr of intensive care unit experience; postgraduate year residents 1 and 2 were postgraduate 
year 1 and postgraduate year 2 residents; residents 1 and 2 were second-year surgical residents; residents 3, 4, and 5 were third-year surgical residents; intensivist 1 and 2 had 
2 and 6 yr of intensive care unit experience. ‡comparisons of the algorithm and clinicians were performed using the mcNemar test. A P value < 0.005 (adjusted by the bonferroni 
correction) was considered statistically significant. §The performance of overall clinicians was calculated by pooling the results of the 11 critical care clinicians. ∥Postgraduate year 
residents participate in a generalized training program, and the surgical residency comes after 2 yr of postgraduate year residency training. #Signifies statistical significance compared 
with the results of the algorithm.
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performance tends to discretize continuous variables, lead-
ing to a loss of information. Also, evaluation using differ-
ent testing datasets could result in biased comparisons. A 
standard regarding the performance evaluation for relevant 
studies remains lacking. Thus, conducting an observer per-
formance test using the same dataset may be a more feasi-
ble and direct approach to identify whether the algorithm 
works before further validation.

In summary, we have developed a deep learning–based 
automatic detection algorithm detecting the ETT tip and 
carina on portable supine chest radiographs to measure the 
ETT–carina distance. Our study demonstrates that the deep 
learning–based algorithm is comparable or even superior 
to frontline critical care clinicians in detecting the ETT tip 
and carina and measuring the ETT–carina distance.
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