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EDITOR’S PERSPECTIVE

What We Already Know about This Topic

•	 Uses for risk stratification tools include setting baselines for health 
service evaluations, identifying patients who may need higher levels 
of care, and allocating hospital resources

What This Article Tells Us That Is New

•	 From a dataset of more than 9 million patients, a risk score based 
on administrative claims history was developed to provide individu-
alized risk profiles at hospital admission that may help guide patient 
management

ABSTRACT
Background: Risk stratification helps guide appropriate clinical care. Our 
goal was to develop and validate a broad suite of predictive tools based on 
International Classification of Diseases, Tenth Revision, diagnostic and proce-
dural codes for predicting adverse events and care utilization outcomes for 
hospitalized patients.

Methods: Endpoints included unplanned hospital admissions, discharge sta-
tus, excess length of stay, in-hospital and 90-day mortality, acute kidney injury, 
sepsis, pneumonia, respiratory failure, and a composite of major cardiac com-
plications. Patient demographic and coding history in the year before admis-
sion provided features used to predict utilization and adverse events through 
90 days after admission. Models were trained and refined on 2017 to 2018 
Medicare admissions data using an 80 to 20 learn to test split sample. Models 
were then prospectively tested on 2019 out-of-sample Medicare admissions. 
Predictions based on logistic regression were compared with those from five 
commonly used machine learning methods using a limited dataset.

Results: The 2017 to 2018 development set included 9,085,968 patients 
who had 18,899,224 inpatient admissions, and there were 5,336,265 patients 
who had 9,205,835 inpatient admissions in the 2019 validation dataset. Model 
performance on the validation set had an average area under the curve of 0.76 
(range, 0.70 to 0.82). Model calibration was strong with an average R 2 for the 
99% of patients at lowest risk of 1.00. Excess length of stay had a root-mean-
square error of 0.19 and R 2 of 0.99. The mean sensitivity for the highest 5% 
risk population was 19.2% (range, 11.6 to 30.1); for positive predictive value, 
it was 37.2% (14.6 to 87.7); and for lift (enrichment ratio), it was 3.8 (2.3 to 
6.1). Predictive accuracies from regression and machine learning techniques 
were generally similar.

Conclusions: Predictive analytical modeling based on administrative claims 
history can provide individualized risk profiles at hospital admission that may 
help guide patient management. Similar results from six different modeling 
approaches suggest that we have identified both the value and ceiling for 
predictive information derived from medical claims history.
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Risk stratification tools are useful in at least four dis-
tinct situations. The first is health services research. 

Specifically, comparisons among various facilities or treat-
ment groups can only fairly be evaluated after adjusting 
for baseline risk of the outcomes of interest. For example, 
health services evaluations comparing mortality among 
various hospitals must adjust for baseline mortality risk and 
procedural complexity across the relevant populations.1 
Accurate risk stratification similarly contributes to observa-
tional research by providing an accurate basis for propensity 
matching and multivariable regression. The second role for 
risk stratification is to identify enriched populations for care 
pathways and clinical trials2—that is, selecting patients most 
likely to experience an adverse event and benefit from spe-
cific interventions. The third role for risk stratification is to 
guide clinical care, including decisions about which surgical 
or alternative treatment options are most likely to prove 
helpful.3 Finally, reliable predictions of expected duration 
of hospitalization and discharge disposition can help guide 
hospital resource management and planning for follow-up 
support services.4

The Risk Stratification Index version 1.0, first intro-
duced in 2010, was a broadly applicable risk adjustment 
measure for predicting mortality in-hospital, at 1 month, 
and at 1 yr.5 The original models were derived from more 
than 35 million Medicare hospitalizations between 2001 
and 2006, and were thereafter validated in a wider age range 
of California inpatients6 and in two single-center stud-
ies.5,7,8 The index also performed well in an independent 
set of 39 million Medicare admissions from 2008 to 2012.9 
Version 2.0 of the Risk Stratification Index,10 introduced in 
2018, used the expanded set of International Classification 
of Diseases, Ninth Revision, codes and information that 
Medicare now allows for each admission, including up to 
25 diagnostic codes, 25 procedure codes, and flags indicat-
ing conditions that were present on admission. Both Risk 
Stratification Index versions provided better discrimination 
than the Charlson Comorbidity Index and other pub-
licly available stratification systems based on administrative 
data.5,10 Version 2.0 was also well calibrated.9 While these 
versions have been used for academic research,11–16 we are 
not aware that they are being used for clinical care.

Previous versions of the Risk Stratification Index were 
based exclusively on diagnosis and procedure codes from 
the index hospitalization, and relied heavily on present-on- 
admission codes. The difficulties with this approach are that 
billing codes and present-on-admission flags are usually 
generated by specialized coders after patients are discharged. 
Consequently, key information necessary for accurate risk 
stratification is generally unavailable at the time of hospital 
admission—when stratification may be especially useful. An 
additional consequence of basing stratification on a single 
hospitalization is that temporally restricted information 
fails to capture individuals’ preadmission illness trajecto-
ries, which might improve predictions. Another limitation 

of previous versions of the Risk Stratification Index is 
that they were based on International Classification of 
Diseases, Ninth Revision, codes, rather than International 
Classification of Diseases, Tenth Revision, codes, which are 
now universally used. Previous versions were also restricted 
to surgical admissions rather than also considering medical 
admissions. Finally, previous Risk Stratification Index mod-
els were restricted to in-hospital, 30-day, and 1-yr mortality, 
along with hospital length of stay.

Our primary goal was therefore to develop and validate a 
broad suite of practical analytic tools based on International 
Classification of Diseases, Tenth Revision, diagnostic and 
procedural code histories for predicting hospital utilization 
outcomes and adverse events for both surgical and medical 
inpatient admissions. Specifically, we derived predictors for 
meaningful utilization endpoints including unplanned hos-
pital admissions, discharge status, and excess length of stay, 
along with major adverse events and complications includ-
ing in-hospital and 90-day mortality, acute kidney injury, 
sepsis, pneumonia, respiratory failure, and a composite of 
major cardiac complications.

As in previous versions of the Risk Stratification Index, 
we primarily used logistic regression because the method 
provides easily interpretable results including model coef-
ficients that identify key drivers of risk and quantify their 
relative contributions. However, machine learning methods 
have become increasingly popular and have shown better 
predictive perioperative performance than clinical scoring 
systems in some but not all settings.17–19 We therefore devel-
oped analogous models using five commonly used machine 
learning methods and compared model performance char-
acteristics with each method.

Materials and Methods
Our primary analyses were conducted on the Centers for 
Medicare and Medicaid Services (Baltimore, Maryland) 
Research Identifiable File data on a remote server under 
a Centers for Medicare and Medicaid Services data use 
agreement (No. 51870). Access to the remote server was 
provided through VM Horizon Client (5.3; VMware‚ 
Inc‚ USA) and analysis conducted using SAS (9.04; SAS 
Institute‚ USA) within SAS Enterprise Guide (7.15; SAS 
Institute). Secondary (robustness) analyses were conducted 
on a 5% sample (Limited Data Set) of the same Medicare 
dataset provided by the Centers for Medicare and Medicaid 
Services housed on a local server using R software (ver-
sion 4.2.0; available at https://cran.r-project.org/src/base/ 
release 2022-04-22) under a separate data use agreement 
(LDSS-2017-51396). Data were handled consistent with 
our data use agreements, which required suppression of 
metrics in downloaded tables for populations smaller than 
11 individuals.

Our analyses were determined to be exempt from 
informed consent requirements by the New England 
Institutional Review Board (Needham‚ Massachusetts). This 
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report follows the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis 
reporting guideline.20

The bulk of our statistical analysis plan was submitted to 
the Centers for Medicare and Medicaid Services in response 
to their Artificial Intelligence Health Outcome Challenge 
in February 2020, before formal analysis began. The plan 
included primary use of logistic regression, specific end-
points, the metrics to be reported, reporting results at out-
come incidence and at the top 5%, and a priori definitions 
of adequate model performance. A comparison to various 
machine learning methods was anticipated, although the 
specific methods were not prespecified. Lift (enhancement 
ratio) was not part of the original plan, and was added 
during the analysis, which was conducted from October 
2021 to January 2022.

Subject Selection

We used the full Medicare fee-for-service and dual-eligible 
(Medicaid and Medicare) files for beneficiaries hospital-
ized in 2017 to 2019. Admissions were excluded if patient 
age on admission was younger than 18 or older than 99 yr, 
records had missing or inconsistent data (e.g., missing sex 
or birthdate information, or had different sex, birth dates,  
or mortality dates [if applicable] reported in source files), or 
patients had either discontinuous Part A or Part B Medicare 
coverage or had Part C coverage in the year before admis-
sion. Claims data during the year before the admission 
were used to characterize the patient history. Claims data 
during the 90 days after admission characterized outcomes. 
The admission status was classified as “planned” if the rea-
son for admission was elective, and otherwise designated 
“unplanned.”

Outcomes Selection

We present a suite of 10 models that predict excess length 
of stay and adverse events, selected to demonstrate perfor-
mance of predictors for clinically and economically mean-
ingful outcomes spanning a broad range of incidences. 
Cardiac complications, kidney injury, sepsis, pneumonia, 
and respiratory failure were defined using International 
Classification of Diseases, Tenth Revision, diagnosis and 
procedure codes21 along with information about their 
associated claim, such as the setting and revenue center. 
Additionally, we considered whether codes were primary 
or secondary.

Endpoint definitions were derived using published 
methods for classifying events using administrative data. 
Event definitions and their associated references are pre-
sented in Supplemental Table 1 (http://links.lww.com/
ALN/C923). Events were identified between admission 
and discharge (for in-hospital endpoints) and/or between 
admission and 90 days thereafter (for 90-day endpoints). 
A 90-day observation window was chosen for events and 

mortality because previous reports suggest that 90-day 
outcomes may be more reliable than 30-day outcomes for 
measuring hospital performance.22–24 In-hospital mortality 
was defined by any-cause death between admission and dis-
charge. Ninety-day mortality was defined by death between 
admission and 90 days thereafter. Excess length of stay was 
defined as the difference between the observed duration 
of hospitalization and the geometric mean length of stay 
associated with the default 2021 v1 Clinical Classifications 
Software Refined25 category for the admitting diagnosis 
when the admission was unplanned, or the 2020 Clinical 
Classifications Software26 category associated with the pri-
mary procedure for planned admissions. Discharge status to 
a facility was defined by discharge to locations other than 
home, with or without organized home health care.27

Model Development

Medical history was represented by a set of variables indi-
cating the presence or absence of individual and categories 
of International Classification of Diseases, Tenth Revision, 
diagnostic and procedure codes. We used a custom proce-
dure to reduce 69,000 potential International Classification 
of Diseases, Tenth Revision, diagnostic codes to a repre-
sentative subset of 4,426 codes by collapsing rare codes 
into their parent codes to avoid overfitting (Supplemental 
Figure 1, http://links.lww.com/ALN/C923). International 
Classification of Diseases, Tenth Revision, diagnostic codes 
were additionally represented by their corresponding 
default Clinical Classifications Software Refined cate-
gory.25 Similarly, International Classification of Diseases, 
Tenth Revision, procedure codes were represented by their 
corresponding default Clinical Classifications Software 
category.26 Temporal information relative to a prediction 
date was encoded using two sets of these variables repre-
senting the presence or absence of relevant codes in the 
past 90 or 365 days.

Outcomes were indexed to the date of inpatient admis-
sion, and claims within the preceding 365 days were 
included in our models. The only information used from 
the day of admission was the admitting diagnosis (rather 
than the principal diagnosis) along with the principal pro-
cedure for planned admissions. We also included age at the 
time of admission.

Logistic regression models were trained with the SAS 
HPLOGISTIC procedure using log-log linkage and back-
wards fast selection of covariates, keeping those with a  
P < 0.01 significance level. We used the asymmetric log-log 
link function because such models handle skewed extreme 
value distributions associated with rare events better than 
symmetrical link functions.28 There were nonlinear inter-
actions by sex and admission type between International 
Classification of Diseases, Tenth Revision, codes and vari-
ous outcomes which preclude using a single logistic model 
for each outcome. We therefore constructed an overall 
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process to apply the appropriate model coefficients from 
the ensemble of four models depending on sex and admis-
sion status.

Model Application

Our general approach was to (1) train a model on 80% of 
qualifying Medicare admissions from 2017 and 2018 from 
the development dataset (training set); (2) apply the result-
ing model to the remaining 20% of the development dataset 
(test set) to document modeling robustness; and (3) prospec-
tively evaluate the resulting final model on out-of-sample  
admissions from 2019 to document model validation (pro-
spective validation set).

Performance Metrics

Overall discrimination performance was evaluated using 
the area under the receiver operating characteristics curves 
(AUC). Performance at a given operating threshold was 
assessed by sensitivity, positive predictive value, and lift.29 
Lift is defined as the ratio of detected events using the clas-
sifier relative to not using the classifier, which is equivalent 
to the positive predictive value divided by the incidence. 
When predictive classifiers are used to identify an enriched 
subpopulation, lift therefore quantifies the enrichment ratio.

To compare model detection performance consistently 
across various endpoints, we compared sensitivity, positive 
predictive value, and lift for each model at an alert thresh-
old corresponding to the highest 5% risk fraction of the 
population. This sort of high-risk threshold might be used 
clinically to identify subpopulations most likely to benefit 
from intervention. We similarly compared sensitivity, posi-
tive predictive value, and lift for each model at thresholds 
corresponding to the observed incidence for each endpoint 
within the population. Evaluating detector performance 
using endpoint-specific thresholds normalizes performance 
results, thereby simplifying performance comparisons across 
various endpoints and modeling methods. We did not try 
to identify thresholds that optimize positive and negative 
predictive values because optimizing depends upon the rel-
ative costs of false detections and missed events, which are 
specific to individual endpoints and use cases. Specifically, 
selection of the most appropriate thresholds represents a 
form of resource constrained ranking,12 where selection of 
a particular threshold to define a “higher-risk” subgroup 
from a ranked population is based on a particular use case.

One hundred bins in steps of 1% resolution of risk were 
used to identify subpopulations along the full continuum 
of risk. To evaluate calibration, we computed correlation 
coefficients between observed and predicted incidences for 
each endpoint using all bins having more than 100 subjects. 
We similarly computed observed-to-predicted ratios. For 
the excess length of stay model, the only nonbinary event 
in the suite, we estimated the root mean squared error of 
the absolute predictions versus the observed values in groups 

of 1,000 individuals. We computed the mean and 95% CI 
for AUC.

We a priori set conservative minimum acceptable perfor-
mance criteria using two metrics to reject clinically non-
viable models. Model acceptance required (1) a reasonably 
accurate overall classification performance defined by an 
AUC 0.70 or greater and (2) relatively accurate prediction 
defined by an observed-to-expected ratio near 1 over the 
full risk continuum (i.e., calibration R2 greater than 0.80). 
The conservative 0.7 minimum acceptance threshold for 
AUC was based on consultation with clinical advisors and 
a literature review indicating the acceptability of numerous 
perioperative machine learning models with c-statistics in 
the 0.7 to 0.8 range.18,30 Because no a priori hypotheses were 
tested, we did not estimate required sample size, and instead 
used all eligible cases available in the Medicare fee-for- 
service files for the selected years. To evaluate the impor-
tance of endpoint-specific models, we compared incidence 
of various complications in patients selected for having the 
highest 5% risk of 90-day mortality to those with the high-
est 5% risk of specific complications.

Model Comparisons

In addition to our primary models, which were developed 
using multivariable regression, we developed models based 
on five machine learning methods including random for-
est, boosting, rule-based, and deep learning (neural net-
work). The Centers for Medicare and Medicaid Services 
computing environment, which must be used for the 100% 
Medicare sample, does not provide advanced machine 
learning tools. Consequently, our machine learning models 
were based on a 5% Limited Data Set sample, which we 
were able to host locally. The models were developed using 
R software (4.2.0; available at https://cran.r-project.org/
src/base/ release 2022-04-22). The methods we explored 
were the following:

1.	 Ranger Random Forest (RangerRF, using R 
package RANGER 0.13.1; available at https://
cran.r-project/src/contrib/Archive/ranger/released 
2021-07-14)31,32

2.	 Extreme Gradient Boosting (XGBoost, using R 
package XGBOOST 0.90.02; available at https://
cran.r-project/src/contr ib/Archive/xgboost/ 
released 2019-08-01)33

3.	 Combination Gradient Boosting with Random Forests 
(XGBoostRF, using R package XGBOOST 0.90.02)33

4.	 RuleFit (RuleFit, using R H20 package 3.36.1.2; 
available at https://cran.r-project/src/contrib/
Archive/h20/ released 2022-05-28)34

5.	 Automated Machine Learning (autoML, using R 
H20 pacakge 3.36.1.2)35

A reference model on the local system was created using 
logistic regression (using R package GLMNET 3.0; 
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available at https://cran.r-project/src/contrib/Archive/
glmnet/ released 2019-11-09).

Logistic and machine learning models were developed 
and evaluated on the 5% sample database using methods 
similar to those employed for the primary analyses, with the 
following exceptions:

1.	 The development set was restricted to 2018 admissions.
2.	 The set of features available for modeling were 

restricted to a subset of the International Classification 
of Diseases, Tenth Revision, variables correspond-
ing to the 400 having the highest predictive power 
per endpoint as identified using Extreme Gradient 
Boosting (maximum depth, 4; maximum rounds, 200).

3.	 Separate models were developed for each endpoint, 
one each for unplanned and planned admissions. Sex 
was included among the top 400 features.

Specifics on model development for each method are 
detailed in the following sections.
RangerRF.  RangerRF models (with minimum node size 
of 8 and maximum tree depth of 50) were identified as 
those with the highest out-of-bag AUC when opti-
mized over a grid where the number of trees ranged over 
1,000,  2,500,  and  4,000, and the splitting method was 
either Gini or Hellinger.
XGBoost.  Utilizing a 75%/25% learn/test random split of 
the development database, XGBoost models were identi-
fied as those with the highest test set AUC when optimiz-
ing hyperparameters over a grid where the learning rate 
ranged over 0.1, 0.25, and 0.4, the maximum tree depth 
ranged over 2, 4, and 6, the fraction of variables sampled 
in training each tree ranged over 0.33, 0.5, and 0.67, and 
the default values were used for other parameters. A maxi-
mum of 400 boosting rounds was used for each parameter 
combination.
XGBoostRF.  Combination Gradient Boosting with Random 
Forest models were developed by boosting candidate ran-
dom forest models. XGboost RF models were identified 
as those with the highest test set AUC when optimizing 
hyperparameters over the same range of values described in 
the prior section for XGboost, and additionally expanding 
the dimensionality of the grid to include 10, 20, and 40 
trees.
RuleFit.  The RuleFit algorithm creates a model in four 
steps. First, it fits a tree ensemble to the data. Second, it 
builds a rule ensemble by traversing each tree. Third, it 
evaluates the rules on the data to generate additional sets 
of features that represent interaction terms identified by 
the rules. Fourth, it fits a sparse Least Absolute Shrinkage 
and Selection Operatory regression model to the enlarged 
pool of features containing the original 400, augmented 
with the newly created rule-based features. RuleFit mod-
els were identified as the resultant set of Least Absolute 
Shrinkage and Selection Operatory models when using 
400 rule-generation trees and restricting the candidate 

pool of features for regression to 1,000 (i.e., the original 
400 plus 600 rule-based features).
AutoML.  The automated machine learning framework H20 
trains a collection of models using various boosting ensem-
bles, random forest methods, generalized linear models, and 
deep learning (neural networks), with grid search to find 
optimal parameter values. It then uses a generalized linear 
model to combine the individual models into an optimal 
metalearner. The final models were identified as those with 
the highest AUC on the cross-validation test set optimized 
over its default parameter settings.

We computed performance metrics for these alternate 
models just as we did for our primary multivariable regres-
sion model. Due to the exploratory nature of this robustness 
testing component of our work, we avoided statistical com-
parisons among various models.

Results
There was a total of 18,899,224 admissions in 2017 to 2018 
across 9,085,968 beneficiaries in the Medicare research 
identifiable database who were eligible for analysis in the 
development set (many patients were admitted multiple 
times; Supplemental Figure 2, http://links.lww.com/ALN/
C923). There were 9,205,835 admissions eligible from 
5,336,265 beneficiaries for analysis in the 2019 prospective 
validation set (fig.  1). For our machine learning analysis, 
there were 476,593 admissions across 279,016 beneficia-
ries in the 5% limited database in 2018 for development, 
and 465,064 admissions from 272,220 beneficiaries in 2019 
for the prospective out-of-sample evaluation. Population 
characteristics of the development and validation sets were 
similar, with a slight predominance of women (54%), and 
the average age was 74 yr. About 80% of admissions were 
unplanned (Supplemental Table 2, http://links.lww.com/
ALN/C923).

Performance of models developed on the learn and test 
sets was nearly identical (not shown), confirming robust-
ness of the modeling process and a lack of overfitting. 
Prospective performance characteristics of predictors of the 
binary events in the 2019 out-of-sample validation set are 
summarized in table 1. The incidence of endpoints ranged 
from 2.8% for in-hospital mortality to 35.9% for discharge 
to a care facility. The mean and range of AUCs across nine 
outcomes were 0.76 (0.70 to 0.82). The mean and range of 
the calibration goodness-of-fit measure R2 for the 99% of 
patients at lowest risk were 1.00 (0.99 to 1.00).

The mean and range of the observed-to-expected ratio 
were 0.97 (0.90 to 1.00). For the highest 5% risk popu-
lation, mean and range of sensitivity were 19.2% (11.6 to 
30.1%), for positive predictive value they were 37.2% (14.6 
to 87.7%), and for lift (enrichment ratio) they were 3.8 (2.3 
to 6.1). At the observed incidence, the mean and range of 
sensitivity were 31.2% (15.5 to 63.9%), for positive predic-
tive value they were 31.2% (15.5 to 63.9%), and for lift they 
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were 3.7 (1.7 to 7.4). Note that the sensitivity and positive 
predictive value are equal when the detector operates at 
a threshold resulting in positive decisions (alerts) at a rate 
equaling the event incidence. A sample composite plot of 
charts describing performance characteristics for discharge 
to facility is presented in fig. 2. Similar plots for all other 
endpoints are in Supplemental Figures 3 to 11 (http://links.
lww.com/ALN/C923). Excess length of stay had a root 
mean square error of 0.19 and R2 of 0.99.

Table  2 shows the prospective performance on the 5% 
limited dataset of logistic and various machine learning mod-
els developed on the 5% limited dataset and the performance 
of the logistic model developed on the 100% Research 
Identifiable File. The 5% sample appeared sufficient for com-
parative performance to the 100% sample because it lacked 
only one feature found in the 100% sample (F328, other 
depressive episodes.) Overall, AUC performance was similar 

for each endpoint across all model types, with only minor 
differences in relative performance among endpoints.

The logistic model developed on the 100% Research 
Identifiable File performed best on eight of the nine end-
points, probably because a larger selection of statistically 
significant features afforded by the larger pool of events 
available in the much larger database. Likewise, machine 
learning models developed using the larger database would 
presumably perform better than those developed on the 5% 
sample, but there is no reason to expect that relative ranking 
would differ much. Of models developed on the smaller 5% 
limited dataset, it appears that gradient boosting performed 
marginally better than logistic regression, but not by a clin-
ically meaningful amount. This observation is consistent 
with previous work demonstrating that logistic regression 
provides results comparable to machine learning methods 
when large datasets are used.36,37

Fig. 1.  Cohort selection diagram for validation dataset.
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Complication-specific models consistently identified 
more patients who experienced specific complications 
than patients selected only for mortality risk (fig. 3). Model 

information, including open source coefficient files, is made 
available at https://my.clevelandclinic.org/departments/
anesthesiology/depts/outcomes-research/risk-stratification 

Fig. 2.  Model performance for discharge to facility. A, Receiver operating characteristic curve. The curve displays the tradeoff between 
sensitivity and specificity over the range of possible detection thresholds. Tabulated metrics: mean and 95% CI of the area under the receiver 
operating characteristics curve (AUC). B, Calibration curve. The calibration plot displays mean actual  incidence versus mean predicted risk 
of discharge to facility for populations clustered in 1% increments of the predicted risk. Dark green, light green, and red dots are populations 
of the lowest 95%, 95 to 99%, and top 1% risk. The diagonal line identifies the domain of ideal performance where actual and expected inci-
dence are equal. The performance of this index is close to ideal for approximately 99% of the population. Tabulated metrics: The incidence of 
discharge to facility was 36%. The AUC was 0.79. Slope (99%) and Intercept (99%) are the estimates of slope and intercept of the best fit line 
for all subjects except the riskiest 1%. Rsq and Rsq (99%) are goodness-of-fit measures of individual results to the best fit line for all subjects 
and all subjects except the riskiest 1% (i.e., green dots). C, Sensitivity/positive predictive value plot. Positive predictive value (blue dots) and 
sensitivity (purple dots) versus the fraction of population, sorted by the risk of discharge to facility. The vertical red line indicates where the 
number of patients above the risk threshold equals the incidence of the discharge to facility event in the population. Tabulated metrics: AUC 
and the incidence of discharge to facility (incidence rate). Vertical bars help identify the positive predictive value and sensitivity performance for 
detectors operating to identify the riskiest 5%, 10%, and 20% of patients. The positive predictive value and sensitivity are tabulated for these 
detector operating points. D, Enrichment factor (lift) plot. Lift (i.e., positive predictive value/incidence) versus sensitivity. Vertical bars help iden-
tify the lift and sensitivity performance for detectors operating to identify the riskiest 5%, 10%, and 20% of patients. Positive predictive value, 
sensitivity, and lift are tabulated for these detector operating points. The AUC and incidence of mortality (incidence rate) are also tabulated.
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(accessed October 12, 2022). The repository includes 
descriptions of the models and instructions how to derive 
the predictors from International Classification of Diseases, 
Tenth Revision, codes, and how to use the provided equa-
tions to make predictions.

A reasonable question is whether available medical his-
tory is a sufficient substitute for present-on-admission codes. 
We therefore compared the two models using codes found 
the year before admission versus performance using only 
codes that were post hoc coded as present on admission. The 
AUC performance for the two methods is shown for each 
model in table 3. Models built with historical codes were 
preferable, with a P value of 0.006. We therefore conclude 
that using available codes from the year before admission is 
superior to using present-on-admission codes—which are 
actually not generally available at admission since they are 
usually coded post hoc.

Discussion
Unlike previous versions of the Risk Stratification Index, 
version 3.0 models are based on billing codes from the year 
before admission. The only information used from index 
admissions was admitting diagnosis, principal procedure 
(for planned admissions), and patient age. Consequently, 
our models can be implemented at admission with results 
immediately available to inform clinical decision-making 
(field tests of this approach are in progress at several insti-
tutions). Other major advances include use of International 
Classification of Diseases, Tenth Revision, codes, inclusion 

of medical as well as surgical admissions, and many new 
outcomes. Risk Stratification Index 3.0 is thus a substantial 
advance from previous versions.

Despite restricting inputs to our models to health events 
captured in billing codes during the year preceding admis-
sion and limited information about the pending admis-
sion, our models performed reasonably well. AUCs in the 
validation set exceeded 0.70 for all endpoints, indicating 
satisfactory discrimination power over the range of oper-
ating thresholds. The calibration goodness-of-fit measures, 
R2, exceeded 0.95 for all models, indicating strong correla-
tion between observed and predicted values along the full 
continuum of risk. Furthermore, the prospective observed-
to-expected ratios were between 0.95 and 1.00 across all 
outcomes, indicating that our models predicted outcomes 
well in an out-of-sample population.

We chose a conservative approach to evaluate sensitivity, 
positive predictive value, and lift performance by prespec-
ifying two standard thresholds for comparing models. The 
top 5% risk threshold represents a means to identify subjects 
at the highest level of risk for a particular outcome as in a 
recent Artificial Intelligence Health Outcomes Challenge 
competition.38 We also considered a threshold tethered to 
the incidence for each endpoint.

Observed sensitivity, positive predictive value, and lift 
results for each model highlight both the limitations and 
potential clinical application of these types of predictive 
models. Focusing solely on subjects with the highest 5% of 
risk provides only modest sensitivity of between 12 to 30% of 
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Fig. 3.  Percentage of adverse events in the highest 5% risk group detected using complication-specific prediction models versus the 
highest 5% risk group for 90-day mortality. Blue bars show the incidence of various complications in patients selected for having the highest 
5% mortality risk. Green bars show the incidence of complications for the highest 5% risk based on complication-specific models. Use of 
predictors specific to adverse events results in detecting far more adverse events than using the risk of mortality alone.
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those who will experience each event. Although most people 
who had an adverse event were at lower risk levels, lift values 
for these top 5% riskiest patients exceeded 2.3, indicating that 
they were more than twice as likely as others to experience 
a future outcome event. The enrichment factor was partic-
ularly high for low-incidence (less than 5%) events, ranging 
from 3.7 to 6.1 for various models. In practical terms, this 
means that patients identified as being in this highest-risk 
category on admission are about five times more likely to 
experience adverse events than the general population. This 
3.0 generation of Risk Stratification Index models, based 
solely on previous claims history and admitting diagnosis, 
therefore quantifies and ranks patient risk surprisingly well.

Both health trajectory and real time data will increas-
ingly be available because Medicare is encouraging intra-
operability and  improved access to individual claims 
information through Blue Button individual access,39 the 
Beneficiary Claims Data application program interface,40 
and Data at the Point of Care41 initiatives. Real-time avail-
ability of automatically generated Risk Stratification Index 
profiles and associated alerts may help reduce cognitive 
load for the clinician by identifying key areas of concern 

in individual patients, thus potentially guiding monitoring 
and management.42

Although identifying patients at high risk of mortality 
helps to identify patients at high risk for specific adverse 
events associated with mortality, the use of predictors spe-
cific to adverse events results in detecting far more adverse 
events than using the risk of mortality alone. Accurate selec-
tion of patients at risk for specific complications therefore 
requires complication-specific models. A suite of predictors 
thus provides more information to guide risk-reducing treat-
ment pathways in personalized care plans than overall risk of 
mortality.

Risk stratification models are conventionally developed 
from logistic regression models. Regression has the advan-
tage of generating models that are portable and easy to 
deploy, apply, and interpret. Furthermore, regression mod-
els provide coefficients that identify factors that contribute 
most to specific adverse events, which is clinically valuable 
information, especially when contributing factors are mod-
ifiable. An additional consideration is that models can easily 
be re-run to accommodate new information obtained at a 
prehospitalization assessment, or even during hospitalization.

Table 3.  Comparative Performance between Models Based on Historical Codes versus Present-on-Admission Codes Based  
Out-of-Sample 2019 Medicare Admissions

Period Endpoint 

1-yr Hx
(No POA)

[Expected Use  
“Historical Method”] 

POA Only
(No 1-yr Hx)

[“POA Method”] 
Pairwise Difference
(Historical – POA] 

AUC
(95% CI)

AUC
(95% CI) AUC Difference

In-Hospital Mortality 0.82
(0.82–0.82)

0.84
(0.84–0.84)

−0.02

Discharge to facility 0.79
0.79–0.79)

0.76
(0.76–0.76)

0.03

90-days after admission Pneumonia 0.72
(0.72–0.72)

0.67
(0.67–0.67)

0.05

Acute kidney injury 0.73
0.73–0.73)

0.67
(0.67–0.67)

0.06

Sepsis 0.73
(0.73–0.73)

0.69
(0.69–0.70)

0.04

Major cardiovascular complication 0.79
(0.79–0.79)

0.75
0.75–0.76)

0.04

Respiratory failure 0.73
(0.73–0.73)

0.69
0.69–0.69)

0.04

Mortality 0.82
(0.82–0.82)

0.82
(0.82–0.82)

0.00

Unplanned admission 0.70
(0.70–0.70)

0.65
(0.65–0.65)

0.05

Overall mean (95% CI) 0.76
(0.73–0.79)

0.73
(0.68–0.77)

0.03
(0.01–0.05)

Complications and resource utilization outcomes are ordered by increasing frequency within their event periods. The 1-yr historical method used available billing codes in the year 
before admission, and the present-on-admission method used only codes that were post hoc coded as being present on admission. Both methods used admitting diagnosis (not 
principal diagnosis) and principal procedure when appropriate. Variance is presented as 95% CI.
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Although interpretable models are frequently preferred 
even among experts, machine learning models are increas-
ingly popular.43 Some reports suggest better performance 
for ML models compared to traditional clinical scor-
ing systems,17,18 but few have been validated on multiple 
external datasets. We evaluated five of the most commonly 
used methods. Interestingly, prediction model characteris-
tics were similar with all six approaches—indicating that 
none was obviously superior and that any of the approaches 
is valid.11–16 Therefore, an important corollary is that we 
appear to have identified both the value and ceiling for the 
amount of predictive information that can be derived from 
the medical claims history.

Our validation analysis was based on more than 9 mil-
lion adult hospital admissions in 2019 among patients 
enrolled in the United States fee-for-service and Medicare/
Medicaid program. Patients included in our validation 
represent approximately 70% of all hospital admissions in 
the Medicare-eligible population in the United States.10 
We excluded less than 0.4% of the available admissions 
because of missing and inconsistent values. Furthermore, 
data were missing nonsystematically, meaning that exclu-
sion of these admissions was unlikely to introduce mean-
ingful bias. Our results are therefore broadly applicable 
to Medicare-eligible adults. Although our 2019 sample 
included 1,025,099 dual eligible subjects younger than 65 
yr (representing 16.3% of the 2019 dataset), our results 
should be cautiously generalized to younger and healthier 
populations.

Use of the Medicare claims database to represent indi-
vidual medical histories remains controversial. For exam-
ple, reliability of the Centers for Medicare and Medicaid 
Services registry depends completely on accurate coding. 
However, well-enforced federal laws promote accurate 
billing, and regional differences in billing appear to result 
from true local practice patterns rather than miscoding.15 
Potential errors and delays in Medicare claims process-
ing are offset by large sample size, population diversity, 
and the highly structured and longitudinal nature of the 
dataset.

The Centers for Medicare and Medicaid Services usu-
ally uses a 30-day observation period. We used a 90-day 
period because previous reports suggest that 90-day out-
comes may be more reliable than 30-day outcomes for 
measuring hospital performance.22–24 Model performance 
at 30 days may of course differ.40 A potential limitation 
of real-time use of the models may be incomplete or 
delayed access to codes in a patient’s history, which may 
lead to underprediction of risk. However, analysis shows 
that predictions based on available 1-year coding history 
are slightly better than those based on codes for pres-
ent-on-admission conditions.

In summary, we developed a suite of risk stratifica-
tion models using methods similar to those used for 
earlier Risk Stratification Index versions. An important 

distinction from previous models is that version 3.0 is 
based on historical information coupled with admit-
ting diagnosis, principal procedure (for planned admis-
sions), and patient age. Consequently, our models can 
be implemented at admission with results immediately 
available to guide clinical decision-making. Other major 
advances include use of International Classification of 
Diseases, Tenth Revision, codes rather than International 
Classification of Diseases, Ninth Revision, codes; inclu-
sion of medical as well as surgical admissions; and many 
new outcomes. Our models predicted outcomes well 
in an out-of-sample population and provide clinically 
meaningful guidance to clinicians.
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