
Review Article

ANESTHESIOLOGY, V 136   •   NO 6	 June 2022	 997

Emergence from general anesthesia is a dynamic time of 
transition from the anesthetized state to the awake state 

that continues to be an unpredictable and fragile period 
for patients in perioperative care.1–3 Some evidence sug-
gests that emergence is regulated by additional neural pro-
cesses independent of drug clearance4–6 and is not simply 
the reverse process of anesthetic induction, as described 
by models of anesthetic hysteresis.7–9 Many surgical cases 
necessitate rapid arousal for assessment of patients’ post-
operative cognitive and motor abilities. Therefore, rapid 
and smooth emergence is desirable for both patient safety 
and perioperative efficiency. Why some patients emerge 
quickly from higher anesthetic concentrations than others 
and why subsets of patients undergo an agitated, combative 
state during the process of emergence is currently not well 
understood at multiple levels. Together, this unpredictability 
and the lack of an established therapy to facilitate emer-
gence highlight the need for a better understanding of the 
basic neuropharmacologic mechanisms mediating emer-
gence from anesthesia.

Emergence agitation can be dangerous, with patients 
manifesting combative behaviors that can result in self- 
injury, harm to providers, catheter removal, self-extubation, 
and airway obstruction. Postoperative delirium can also 
result in longer hospital length of stay and worsened clinical 
outcomes.10–12 Efforts to mitigate adverse emergence phe-
nomena, like agitation and delirium, are currently focused 
on avoiding inhalational anesthetics or supplementing inha-
lational agents with intravenous sedatives like the α2 recep-
tor agonist dexmedetomidine.13–18

However, the results from these studies vary widely with 
patient population,19,20 and the basic neuronal mechanisms 
modulating emergence under different anesthetic con-
ditions are still unclear. Mechanisms of emergence from 
volatile or propofol anesthesia, which can directly bind to 
γ-aminobutyric acid (GABA) receptors, can be inconsis-
tent with mechanisms found to mediate the effects of ket-
amine, which blocks glutamatergic neurotransmission.21,22 
However, common anesthetic substrates in the brain exist, 
such as the activation of hypothalamic neurons.23 Here, we 
will focus our discussion on studies that use propofol, sevo-
flurane, or isoflurane for maintenance of general anesthesia, 
since they form much of the literature investigating meso-
limbic circuitry in emergence. Further mechanistic basic 
science research is needed to examine whether findings 
hold true across disparate anesthetic conditions. There is a 
clinical need for therapeutic interventions targeting emer-
gence and the postanesthetic period to improve the predict-
ability, speed, and safety of anesthesia care. By prioritizing a 
translational and multidisciplinary approach, basic neurosci-
entists can help to uncover these gaps in knowledge.

Decades of accumulating literature support a role for 
dopaminergic signaling through the brain reward circuitry 
in promoting arousal (see reviews24–26). Here, we summarize 
key clinical and preclinical evidence supporting a central role 
for the brain’s mesolimbic dopaminergic reward circuitry in 
modulating emergence from general propofol and volatile 
anesthesia, with a focus on the ventral tegmental area and 
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the nucleus accumbens regions. The same neural circuitry 
may be important for the pathophysiology of emergence 
agitation, given the essential role of reward circuitry in reg-
ulating emotional and arousal-related behavioral states. We 
then discuss systems neuroscience approaches for bridging 
preclinical and clinical studies of brain reward circuitry in 
emergence to promote the therapeutic application of pre-
clinical investigations (fig. 1).

Until recently, high-resolution approaches for care-
ful examination within the intact brain did not exist to 
enable discrete cell type– and region-specific investigations 
of circuit dynamics. However, now we can harness viral- 
mediated and genetic approaches to deliver engineered 

photoactivatable compounds and perform whole-brain 
imaging at single-cell resolution. This more intricate systems 
neuroscience approach can be used to understand brain cir-
cuitry in preclinical models of awake, behaving rodents and 
even nonhuman primates.27–30 To place the granularity of 
these investigations in a clinically useful framework, mech-
anistic cellular-level studies must then be examined in the 
context of changes to whole-brain activity.

While there is a broad and vast literature describing 
the role of dopaminergic circuitry in mediating arousal 
and reward-reinforcing behaviors, this review is limited to 
systems neuroscience studies of particular relevance to the 
clinical practicing anesthesiologist (table  1). We also refer 

Fig. 1.  Schematic highlighting the need to bridge the gap between preclinical and clinical studies of anesthesia emergence with transla-
tional research. The numbered boxes highlight common methodologies in either clinical or preclinical research. The insets show midbrain 
slices from the human and mouse brain, as well as the chemical structures of propofol and sevoflurane, two of the most common anesthetics 
under investigation. The figure was created with BioRender.com. EEG, electroencephalogram.
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Table 1.  Selected List of Historical References, Primary Preclinical Articles Investigating the Role of Mesolimbic Circuitry in Emergence, 
and Suggested Literature Reviews on Emergence

Citation
Brain  

Region/Neurotransmitter Anesthetic Species Major Finding

Historical references     
  Eckenhoff et al. (1961)1  Thiopental, halothane, 

ether, cyclopropane, 
nitrous oxide, spinal

Human First descriptions of “emergence excitement” and differential 
effects of anesthetic drug treatment in 14,436 patients

  Mantz et al. (1994)31 Striatum/dopamine Halothane, isoflurane, 
thiopental, ketamine

Rat Anesthetics significantly alter spontaneous and evoked dopa-
mine release in striatal synaptosomes

  Irifune et al. (1997)32 Nucleus accumbens/dopamine Isoflurane Mouse HPLC assays show increased dopamine turnover, hyperlocomo-
tion during emergence 

  Tsukada et al. (1999)33 Striatum/dopamine Isoflurane Rhesus
monkey

Positron emission tomography and microdialysis show enhanced 
DAT inhibition and D2 receptor binding under isoflurane

  Fiset et al. (1999)34 Medial thalamus, midbrain Propofol Human Positron emission tomography shows cerebral blood flow 
changes in midbrain and thalamus 

Brain region–specific  
  manipulations

    

  Kelz et al. (2008)35 Hypothalamus/orexin Isoflurane, sevoflurane Mouse Ablation of orexinergic neurons or an orexin-1 antagonist delays 
emergence, not induction

  Mhuircheartaigh et al.  
  (2010)36

Putamen, thalamus, cortex Propofol Human Functional magnetic resonance imaging blood-oxygen-level–
dependent imaging shows changes in subcortical connectivity 

  Shirasaka et al. (2011)37 Prefrontal cortex/orexin Propofol Rat ICV injection of orexin speeds emergence, increases norepineph-
rine and dopamine release in the prefrontal cortex 

  Solt et al. (2014)38 Ventral tegmental area, sub-
stantia nigra/dopamine?

Isoflurane, propofol Rat Electrical stimulation of the ventral tegmental area speeds 
emergence 

  McCarren et al. (2014)39 Ventrolateral preoptic nucleus/
norepinephrine

Isoflurane, dexmedeto-
midine

Mouse Single-cell reverse transcription–polymerase chain reaction of 
VLPO neurons and role of adrenergic manipulation

  Vazey and Aston-Jones  
  (2014)40

Locus coeruleus/norepinephrine Isoflurane Rat Chemogenetic activation of locus coeruleus neurons speeds 
emergence 

  Zhou et al. (2015)41 Ventral tegmental area/dopamine Propofol, isoflurane, 
ketamine

Rat Lesioning ventral tegmental area dopamine neurons with 6-hydroxy-
dopamine prolongs emergence from propofol, not isoflurane

  Taylor et al. (2016)42 Ventral tegmental area/dopamine Isoflurane Mouse Optogenetic activation of ventral tegmental area dopamine 
neurons speeds emergence

  Muindi et al. (2016)21 Parabrachial nucleus/glutamate? Isoflurane Mouse Electrical stimulation of parabrachial nucleus speeds emergence
  Fu et al. (2017)43 Central medial thalamus/

norepinephrine
Propofol Rat Norepinephrine microinjection in central medial thalamus speeds 

emergence
  Du et al. (2018)44 Locus coeruleus/norepinephrine Propofol, etomidate Zebrafish Deletion of dopamine-β-hydroxylase in locus coeruleus neurons 

delays emergence from intravenous anesthesia
  Yin et al. (2019)45 Ventral tegmental area, 

hypothalamus/GABA 
Isoflurane Mouse Activation of ventral tegmental area GABA to hypothalamus 

slows emergence
  Wang et al. (2019)46 Parabrachial nucleus/glutamate Sevoflurane Mouse Activation of parabrachial nucleus glutamate neurons speeds 

emergence
  Zhang et al. (2019)47 Reticular thalamus/

norepinephrine
Propofol Mouse Locus coeruleus-to-TRN norepinephrine projections delay 

emergency by activating α1 adrenergic receptor
  Torturo et al. (2019)48 Ventral tegmental area/

dopamine
Isoflurane Rat Isoflurane inhibits exocytosis in cultured rat dopamine neurons 

by a distinct calcium-mediated mechanism
  Li et al. (2019)49 Ventral tegmental area/orexin Isoflurane Rat Microinjection of orexin in the ventral tegmental area promotes 

emergence by activating dopamine neurons
  Zhang et al. (2020)50 Prefrontal cortex/acetylcholine, 

adenosine, norepinephrine
Isoflurane Mouse Microdialysis studies showing neurotransmitter roles in  

anesthetized-to-awake state transition
  Luo et al. (2020)51 Basal forebrain/acetylcholine Isoflurane, propofol Mouse Chemogenetic activation of cholinergic neurons speeds emergence
  Gretenkord et al. (2020)52 Ventral tegmental area, pre-

frontal cortex/dopamine
Urethane Rat Stimulation of ventral tegmental area and D1 receptors in 

prefrontal cortex promotes arousal
  Ao et al. (2021)53 Paraventricular thalamus/

dopamine
Isoflurane Mouse PVT cFos activity increases after emergence, enhanced by a D2 

agonist
  Zhang et al. (2021)54 Nucleus accumbens shell/

dopamine
Isoflurane Mouse D1 receptor agonist accelerates emergence in young but not 

aged mice
  Bao et al. (2021)55 Nucleus accumbens/ dopamine Sevoflurane Mouse Chemogenetic activation of D1 receptors delays induction and 

accelerates emergence
Recommended literature 

reviews on emergence
    

  Franks (2008)56   Human/rodent Molecular targets of arousal
  Brown et al. (2010)57   Human Relationship of anesthesia to sleep and coma
  Tarnal et al. (2016)5   Human Hysteresis, neural inertia, and active emergence
  Kelz et al. (2019)4   Rodent Neurotransmitter modulators of emergence

DAT, dopamine transporter;  GABA, γ-aminobutyric acid; HPLC, high-pressure liquid chromatography; ICV, intracerebroventricular; PVT, paraventricular thalamus; TRN, thalamic reticular 
nucleus; VLPO, ventrolateral preoptic nucleus. 
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the reader to comprehensive reviews of mesolimbic cir-
cuitry58–62 and to articles discussing transcriptomic tools for 
studying the brain under anesthesia,63,64 such as single-cell 
RNA sequencing and clustered regularly interspaced short 
palindromic repeats/Cas9 approaches65–67 that are beyond 
the scope of this review.

Brain Reward Circuitry
The brain reward circuitry, also known as the mesolimbic 
dopamine system or mesolimbic circuitry, is composed of 
interconnected subcortical and cortical brain regions. This 
circuitry is evolutionarily conserved across mammals to 
mediate reinforcing behaviors important for survival, like 
sex68,69 and food consumption.70–80 The same brain regions 
also modulate sleep/wake transitions and states of arousal 
essential for executing these reward-related behaviors.81–85 
Dysregulation of reward seeking is concomitant with dys-
regulated arousal.86 For example, disordered sleep is an 
important feature of illnesses characterized by anhedonia 
and dysregulated reward circuit functioning like depression, 
addiction, schizophrenia, and Parkinson’s disease.87,88

Dopamine neurons in the ventral tegmental area proj-
ect to the nucleus accumbens, forming a key projection in 
the mesolimbic dopamine system, the circuitry that guides 
reward-related behaviors and promotes arousal (fig. 2).58,89–98 
The nucleus accumbens is a central processing hub in ven-
tral striatum that integrates inputs from the ventral teg-
mental area with inputs from myriad brain regions in the 
reward circuitry, which has been shown to guide a variety 
of behavioral responses and emotional states.58,62,70,91,99–103 
Distinct neurochemical markers in the striatum divide its 
neurons into either the direct (“go”) or indirect (“no-go”) 
pathways.58 These markers include the dopamine recep-
tors, which are G-protein–coupled receptors classified as 
either D1 (G

s
-coupled) receptors that signal through the 

direct pathway or D2 (G
i
-coupled) receptors that signal 

through the indirect pathway. The direct pathway, named 
for its direct projection to the ventral tegmental area in the 
midbrain, expresses the neuropeptides dynorphin and sub-
stance P, while indirect pathway peptide expression includes 
enkephalin and adenosine A2A receptors.58 This region is 
very heterogenous in anatomical and functional properties 
and is enriched in numerous neuropeptides, and modulators 
include acetylcholine, among others.58,70,97,99,100,104 The dor-
sal striatum expresses similar dopamine receptor subtypes as 
ventral striatum but projects to the substantia nigra, instead 
of the ventral tegmental area, to guide motor responses to 
stimuli. In reality, the canonical role of dorsal striatum as 
confined to pure sensorimotor processing and the role of 
ventral striatum as confined to emotional processing are less 
explicitly segregated than was once believed (see review105).

γ-Aminobutyric acid–mediated (GABAergic) medium 
spiny neurons are the principal neurons in the nucleus 
accumbens, comprising over 95% of the neuronal popula-
tion, and form local inhibitory synapses between medium 

spiny neurons, as well as long-range GABA projections to 
other brain regions in mesolimbic reward circuitry (fig. 2). 
Approximately 3% of nucleus accumbens neurons are cho-
linergic interneurons releasing acetylcholine, while less than 
2% are inhibitory interneurons releasing GABA with either 
somatostatin or parvalbumin.58,106 As a result, the inhibi-
tory GABA receptors are ubiquitously expressed in nucleus 
accumbens in addition to neuronal expression of dopamine 
receptors, μ-opioid receptors, glutamate receptors, enkeph-
alin, dynorphin, and other neuropeptide signaling substrates. 
The mechanism of action of propofol and volatile anes-
thetics, like sevoflurane and isoflurane, is known to involve 
direct activation of GABA type A receptors (see review107). 
Binding of propofol or volatile anesthetic to GABA recep-
tors presumably may occur at both the medium spiny 
neuron and interneuron, thus modulating dopaminergic 
signaling within the nucleus accumbens microcircuit in 
addition to affecting long-range GABAergic projections in 
mesolimbic circuitry. Dopamine signaling also changes cal-
cium currents and N-methyl-d-aspartate–induced currents 
studied in striatal slices.108–111 Changes in dopamine release, 
dopamine D1 receptor activation, and transcriptional acti-
vation of deltaFosB in nucleus accumbens are shown to be 
necessary for the behavioral and abuse liability properties 
of propofol administration.112–115 Further research is needed 
to define GABA, glutamate, and dopaminergic interactions 
during behavioral emergence.

Ventral tegmental area dopamine neuron firing pat-
terns signal errors in reward prediction, help to guide and 
modify behavior, and reinforce the motivation to seek 
rewards.70–74,116–119 Ventral tegmental area dopamine neurons 
respond in two different modes: single-spike tonic firing 
to maintain dopamine tone120–122 and phasic burst firing 
that is thought to signal an unexpected reward or salient 
event.72,123–129 Dopamine neuron bursting activity increases 
during transitions from sleep to wakefulness.81,82 Increased 
burst firing from ventral tegmental area neurons results 
in dopamine release to downstream interconnected brain 
regions, including the nucleus accumbens, prefrontal cor-
tex, hypothalamus, and amygdala94,98,130,131 (fig. 2).

Classically attributed to orchestrating dopamine sig-
naling, ventral tegmental area circuitry is modulated by 
numerous other neuropeptides, as well as local and long-
range GABAergic, glutamatergic, serotonergic, and cho-
linergic projections.98,132,133 For example, ventral tegmental 
area GABA neurons send long-range projections to syn-
apses directly on nucleus accumbens cholinergic neurons, 
forming one specialized circuit important for reward rein-
forcement100 and associative learning.134 Ventral tegmental 
area GABA neurons are also engaged in sleep arousal and 
modulated by anesthesia.135–137 The role of ventral tegmental 
area GABA to nucleus accumbens cholinergic neuron pro-
jections in emergence is unclear. The ventral tegmental area 
connects directly with the thalamus, basal forebrain, orexin-
ergic neurons in the hypothalamus, noradrenergic neurons 
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in the locus coeruleus, and serotonergic neurons in the dor-
sal raphe, each of which is individually important for medi-
ating arousal and differentially affected by anesthesia.4,138,139

Importantly, the state of general anesthesia, a drug- 
induced reversible coma, is distinct from natural sleep (see 
comprehensive reviews on this topic57,140). While insight into 
brain reward circuitry is gained from studies of sleep arousal, 
the same mechanisms should not be expected to correlate 
directly with emergence from anesthesia. This important 
caveat must be considered when comparing studies of sleep 
arousal and anesthesia as reviewed in this article.

Human Studies of Reward Circuitry in Emergence
Pharmacologic, neuroimaging, and genetic manipula-
tions support the role of monoaminergic circuits in both 
arousal from sleep and emergence from general anesthesia. 
Dopamine and norepinephrine are important neurotrans-
mitter mediators of arousal, as evidenced by impaired arousal 
seen in mice missing the dopamine β-hydroxylase26,141,142 
and dopamine transporter143 genes. In humans, single- 
nucleotide gene polymorphisms affecting the dopamine 
transporter and dopamine D2 receptor genes are associated 

with variations in self-reported sleep duration.144 Treatment 
with a tyrosine hydroxylase inhibitor, with the end result 
of decreasing dopaminergic tone, increases sleepiness in 
studies of healthy adults.145,146 Dopamine D2 receptor levels 
also decrease specifically in the human ventral striatum after 
sleep deprivation, as assayed by positron emission tomogra-
phy imaging.147

In contrast, stimulants that increase dopaminergic and 
catecholaminergic tone have strong effects on arousal. 
Dopamine-enhancing medications heighten arousal and 
accelerate emergence, as shown by studies of D1 receptor 
agonist treatment.148,149 In contrast, dopamine antagonism 
with droperidol slows emergence by deepening sevoflurane 
anesthesia.150 Together, these studies indicate a role for dopa-
minergic tone in promoting arousal, with a specific role for 
activation of dopamine receptors in ventral striatum.

Human neuroimaging under anesthesia consistently 
demonstrates thalamic deactivation and disruption of thal-
amocortical connectivity in states of general anesthesia,151–154 
along with deactivation of the basal forebrain and basal gan-
glia,36 important components of the brain reward circuitry. 
Studies using functional magnetic resonance imaging infer 
changes in brain activity by correlating changes in cerebral 

Fig. 2.  (Left) Systems neuroscience toolbox for dissecting mesolimbic circuitry with numbered boxes highlighting key methodologies for 
circuit-level and whole-brain investigations. (Right) Highly simplified schematic of mesolimbic reward circuitry with relevant glutamate 
(green arrow), dopamine (purple arrow), γ-aminobutyric acid (GABA; blue arrow), and other neuropeptide (dashed arrow) projections shown. 
Serotonergic projections from the dorsal raphe (DR), noradrenergic projections from locus coeruleus (LC), and orexinergic projections from 
the lateral hypothalamus (LH) (not shown) are also important for emergence. The inset below shows a magnified view of the ventral tegmental 
area (VTA) to nucleus accumbens (NAc) projections with upward arrows indicating the increased activity of dopaminergic projections and D1 
receptor activation in emergence. The role of the other VTA to NAc projections in emergence is unclear. The figure was created with BioRender.
com. AMY, amygdala; DStr, dorsal striatum; HIP, hippocampus; LDTg, lateral dorsal tegmentum; LHb, lateral habenula; PBN, parabrachial 
nucleus; PFC, prefrontal cortex; TH, thalamus.
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blood flow. However, they are not able to directly measure 
neuronal activity, an important limitation when interpreting 
results of functional magnetic resonance imaging studies. 
Invasive electrocorticography can be used to obtain direct 
recordings from the cortex of patients undergoing neuro-
surgery for intractable epilepsy. These studies demonstrate 
thalamocortical suppression with induction of general anes-
thesia, while recovery from anesthesia reflects a progressive 
increase in cortical activity, a decrease in reticulothalamic 
activity, and a return of tonic activity in the thalamus.155 
General anesthesia also inhibits auditory processing in 
higher-order auditory association areas while maintaining 
local field potential neuronal activity in the primary audi-
tory cortex, suggesting that anesthesia may selectively affect 
higher-order signaling to disrupt cortical circuits.156

Anesthesia research in both rodent models and the 
human clinical population utilize electroencephalogram 
(EEG) changes and perioperative EEG monitoring as a tool 
for monitoring the depth of anesthesia. General anesthetics 
are well known to produce distinct EEG patterns, with a 
shared pattern of increased delta oscillations (see a recent 
review140). Interestingly, a recent study links increased delta 
oscillations to dopamine depletion and loss of D2 recep-
tor activation in mouse striatum independent of anesthe-
sia exposure.159 Studies of D1 dopamine receptor activation 
during emergence from isoflurane anesthesia in mice show 
reduced delta and increased gamma oscillations, acceler-
ating emergence.54,148 EEG changes do not always reliably 
correlate with behavioral arousal. For example, optogenetic 
stimulation of ventral tegmental area dopamine neurons 
promoted behavioral arousal with minimal change in EEG.42

EEG studies of the brain are useful as a noninvasive and 
easily translatable method but have limitations for inter-
pretation. A recent multicenter study enrolled 60 healthy 
volunteers to evaluate frontal–parietal EEG dynamics 
in recovery from anesthesia, independent of surgery.160 
Results from this study support a model of early return 
of prefrontal cortical dynamics and executive function. 
However, EEG dynamics do not predict cognitive recovery 
after anesthesia. Burst suppression in the EEG is consid-
ered to reflect a very deep state of anesthesia that may be 
desirable to avoid.158 In a study of 27 healthy human vol-
unteers, EEG burst suppression does not change the time 
to emergence or affect the degree of cognitive impairment 
after isoflurane exposure, using a computational model to 
predict time of emergence.161 The Electroencephalography 
Guidance of Anesthesia to Alleviate Geriatric Syndromes 
(ENGAGES) randomized clinical trial also finds that 
EEG-guided administration of general anesthesia does 
not reduce the incidence of postoperative delirium, com-
pared to usual care, in adults aged 60 yr and older.162 Thus, 
while EEG is a useful readout of brain oscillatory arousal 
states, it is only one tool for evaluating clinical effects of 
emergence in the perioperative setting. A multidisciplinary 
systems neuroscience approach, additionally informed by 

preclinical research, is needed for a holistic view of anes-
thesia emergence and postanesthetic cognitive sequelae.

Preclinical Studies of Reward Circuitry in 
Emergence

Current basic neuroscience understanding of arousal is 
derived primarily from rodent studies of sleep/wake states 
and general anesthesia.35,42,46,49,52,85,135,137,138,163 Sleep studies in 
rodents consistently support a central role for dopaminergic 
signaling and specifically ventral tegmental area neuron activ-
ity in arousal.26,85,135,137 Emergence from anesthesia, defined 
as arousal and return of awareness, is assayed behaviorally in 
the rodent by restoration of the righting reflex response, a 
reflex that develops shortly after birth to maintain the prone 
position. In these studies, the mouse or rat is turned on its 
back while anesthetized, and upon emergence, the animal 
will right itself to having its paws on the ground.56,164–167

Preclinical research supports an important role for dopa-
minergic signaling in mediating emergence from anesthe-
sia. Isoflurane anesthesia inhibits synaptic vesicle exocytosis 
from dopamine neurons in cultured rat ventral tegmental 
area dopamine neurons.48,168 Subanesthetic propofol expo-
sure causes an increase in spontaneous ventral tegmental area 
dopamine neuron firing recorded from rat brain slices, and 
propofol potentiates evoked postsynaptic excitatory synaptic 
currents recorded downstream in the nucleus accumbens.169 
The stimulant drug amphetamine also causes presynaptic 
release of dopamine and inhibits dopamine reuptake in the 
striatum in recordings from striatal brain slices.170 Systemic 
administration of methylphenidate and amphetamine, which 
increase catecholaminergic tone by inhibiting norepi-
nephrine and dopamine reuptake, speeds emergence from 
both isoflurane and propofol general anesthesia in rodents, 
as measured behaviorally by restoration of the righting 
reflex.171–174 Similarly, other reports show that intravenous 
caffeine administration also accelerates emergence from iso-
flurane general anesthesia in both mice and humans.175–178 
These indirect pharmacologic studies support a general role 
for increased dopaminergic tone influencing emergence.

Studies directly manipulating the ventral tegmental area 
under general anesthesia demonstrate the sufficiency of 
ventral tegmental area neuron activity in promoting emer-
gence. Direct stimulation of ventral tegmental area neurons 
using an electrode inserted above the ventral tegmental area 
in the rat results in faster emergence from both isoflurane 
and propofol anesthesia.38 Further, cell type–specific stim-
ulation of only dopamine neurons in the ventral tegmental 
area using optogenetics in transgenic mice promotes emer-
gence from isoflurane anesthesia.42 Together, these findings 
support a working model of reduced ventral tegmental area 
dopamine neuron activity under general anesthesia, with 
emergence characterized by a resurgence of dopamine 
activity as brought about by direct neuronal stimulation or 
stimulant drug administration.
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Multiple reports indicate a critical role for the engage-
ment and activation of dopamine receptors during emer-
gence. Early studies of phenobarbital anesthesia demonstrate 
a role for activation of both dopamine D1 and dopamine D2 
receptors in promoting emergence using systemic receptor 
agonist treatment in rats179,180 and rabbits.181 Dopamine D1 
receptor agonists promote emergence from isoflurane and 
propofol anesthesia.148 Administration of A2A receptor ago-
nist, which also activates medium spiny neurons expressing 
D2 receptors, modulates the depth of propofol anesthesia 
and activates the nucleus accumbens in mice as measured 
by increased cFos expression.182 However, these studies all 
use systemic administration of dopamine receptor agonists, 
so the neural circuit mechanism and sites of their action 
in the brain are unknown. Direct microinjection of D1 
receptor agonist or antagonist into the nucleus accumbens 
supports a bidirectional regulation of time to emergence 
with dopamine receptor activation specifically within the 
nucleus accumbens.54 In addition, selective chemogenetic 
activation of nucleus accumbens D1 receptor–expressing 
neurons accelerates emergence and delays induction with 
sevoflurane.55

Together, these findings support a working model of 
the anesthetized state as marked by a reduction of dopa-
minergic tone, with emergence from anesthesia promoted 
by increased ventral tegmental area dopamine neuron 
activity, which subsequently causes activation of down-
stream D1-type dopamine receptors within the nucleus 
accumbens (fig.  2). It is unclear whether the increase in 
ventral tegmental area activity is driven by increases in 
tonic dopamine neuron firing or phasic discharge during 
emergence. While ventral tegmental area dopamine appears 
to be necessary for emergence, it is unclear whether ven-
tral tegmental area stimulation alone is sufficient to drive 
emergence. Optogenetic studies of ventral tegmental area 
dopamine neurons in emergence used repeated stimula-
tion for more than 30 min to increase the probability of 
righting.42 Additional mechanisms may be engaged within 
ventral tegmental area circuitry with repeated stimulation 
over time. Ventral tegmental area dopamine neurons proj-
ect to numerous target brain regions to form the meso-
limbic reward circuit, as discussed previously. Outside of 
the ventral tegmental area, manipulations of the parabra-
chial nucleus, which directly projects to the ventral teg-
mental area, the locus coeruleus, and the thalamus, also 
promote emergence from general anesthesia.40,183–186 It is 
possible that additional dopaminergic pathways are fur-
ther engaged in these studies. In addition to dopamine, 
the ventral tegmental area contains numerous neuropep-
tide-containing neurons,70 as well as GABAergic and glu-
tamatergic cells that can send long-range projections. The 
effects of increased ventral tegmental area neuron activity 
during emergence on heterogeneous downstream circuitry 
remains to be fully described (fig. 2, inset). Many investi-
gations of brain circuitry also largely ignore the contribu-
tion of nonneuronal cell types, while there is a new study 

indicating an important role for astrocytes in emergence.187 
Future research must be aimed at comprehensively eval-
uating all cell types in target brain circuit regions during 
emergence to form a complete mechanistic understanding 
and provide new therapeutic targets.

Preclinical Neuroscience Methods for Neural 
Circuit Investigation
Modern neuroscience tools enable a detailed dissection of 
neural circuits in the awake-behaving animal with high 
temporal and spatial resolution using optical manipula-
tion and behavioral modeling. Neural circuit investiga-
tion is strengthened by an interrogation at multiple levels 
of analysis, from molecular/cellular to systems to behav-
ioral. Beginning with the revolutionary introduction of 
optogenetics,188–190 the optical tools available for interro-
gating brain circuit connectivity now extend from light- 
activated ion channels to optically active G-protein–cou-
pled receptors, like parapinopsin191 and the optogenetically 
activated μ-opioid receptor69,146 and β

2
 adrenergic recep-

tor.147 Genetically encoded fluorescent sensors of neuro-
peptide and neurotransmitter release, such as the dLight 
sensor, which detects dopamine release, and the GPCR 
activation-based norepinephrine sensor sensor, which 
detects norepinephrine release,195 among many others,196 
are used together with calcium imaging to better eluci-
date the dynamics of neural circuit action during behavior. 
Optofluidic devices also enable the wireless light-evoked 
delivery of drugs into the brain for pharmacologic studies 
with high temporal and regional specificity.197–200 Coupled 
to transcriptomic manipulations at the single-cell level, the 
investigation of novel receptor-mediated signaling mech-
anisms in specific brain circuits is possible with exquisite 
detail.201

Advances in microscopy now allow for imaging across 
the whole brain at single-cell resolution after brain clear-
ing using light sheet microscopy.202 Some studies of general 
anesthesia are beginning to take advantage of the whole-
brain approach to investigating neural circuits, like the 
reticular activating system.203 In addition, calcium dynam-
ics can be imaged at the individual neuronal level within 
a specified circuit using in vivo two-photon microscopy in 
a head-fixed animal or in vivo one-photon imaging after 
implanting a miniature microscope (graded index lens) in 
freely moving mice.204–207 Calcium imaging can then be 
paired with optogenetic studies to dissect the effects of 
circuit activation or inhibition on neuronal activity. These 
newer imaging modalities provide high single-cell and spa-
tial resolution, enabling detailed cellular-level preclinical 
investigations, compared to approaches with poorer spatial 
resolution like functional magnetic resonance imaging and 
positron emission tomography.208,209

Multiregion, high-density recordings of neuronal activity 
using advanced physiology methods like implanted silicone 
probes, called Neuropixels  (imec, Leuven, Belgium), can 
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be used to decipher circuit activity during emergence.195 
Neuropixels do not utilize genetically encoded sensors and 
thus lack cell-type specificity, as well as tracking of the same 
neurons across long-term temporal domains.210 However, 
Neuropixels can be paired with optotagging, in which a 
neuron is optogenetically activated to determine its iden-
tity, and the high-density nature of Neuropixels recordings 
affords a more system-wide view of a given series of brain 
regions.

Neuronal recordings and optogenetic manipulation 
can then be paired with computational neuroethology for 
closed-loop stimulation or analytical studies.211 Closed-
loop deep brain stimulation therapy improved depression 
symptoms in one individual with major depression,212 
and similar approaches could be adopted for modifying 
emergence. Open source toolkits for high-throughput 
behavioral analysis using machine learning approaches, 
like DeepLabCut,213 SimBA (https://github.com/sgold-
enlab/simba, Golden Lab, University of Washington, 
Seattle, Washington),214 or DeepSqueak,215 can be applied 
to studying emergence from anesthesia. Machine learning 
approaches are useful for identifying previously unknown 
behavioral repertoires within simple behaviors, such as 
grooming216 and subtle pharmacologic effects on behav-
ior in rodents.217 Behavioral models of emergence such as 
spontaneous restoration of the righting reflex are currently 
analyzed as a binary output interpreted by visual manual 
scoring (either positive when the rodent is aroused and 
upright or negative when the rodent is lying unconscious 
on its back). The binary restoration of the righting reflex 
model as currently analyzed is suggested to variably cor-
relate with cortical signatures of arousal assayed by EEG 
and local field potential analysis.218 Even a simple experi-
mental model like restoration of the righting reflex presents 
an array of behavioral features (e.g., whisker movement, tail 
curling, side rolling, increased chest movement, then right-
ing). In-depth behavioral classification using pose estima-
tion and machine learning classification methods helps to 
remove experimenter subjectivity and provides an auto-
mated analysis pipeline to facilitate data comparisons across 
experiments, investigators, and research centers. There are 
several studies applying machine learning approaches to 
assessing depth of anesthesia in human subjects.219,220 These 
approaches may yield further mechanistic insights when 
also translated to the preclinical model for concurrent neu-
ral circuit interrogations.

Conclusions: Bridging the Preclinical–Clinical 
Divide
To develop a better understanding of anesthetic emer-
gence and work toward new clinical strategies to pro-
mote smooth emergence, existing studies of network state 
changes in humans might be used as working templates for 
further mechanistic dissection of brain arousal circuitry in 

preclinical animal models. By layering relevant clinically 
translational endpoints onto preclinical models, such as 
EEG analysis and functional magnetic resonance imaging 
imaging to identify shared areas of activation, a comprehen-
sive view of brain circuitry during emergence may develop. 
The preclinical model can then be used to develop a more 
granular mechanistic analysis of neuronal changes, taking 
advantage of high-resolution single-cell approaches in the 
context of whole-brain dynamics.

Emergence is likely a convergence of the activity of 
multiple distributed transmitters, receptors, and circuits, for 
example, a unification of orexinergic, dopaminergic, and 
noradrenergic systems.4 Further investigations are needed 
to understand the effects of different anesthetic conditions, 
like ketamine as compared to sevoflurane or propofol, on 
neural circuits. To study emergence, the aggregate brain 
network must then be examined using network-wide 
manipulations. The patterns of neuronal circuit activity 
that regulate emergence can be directly controlled and 
modified by utilizing closed-loop approaches, as discussed 
in this article. Additional tools to elucidate behaviorally 
activated brain-wide circuits include utilizing transgenic 
mice, like Fos-CreERT2 221, together with viral approaches 
to access activity-regulated neuronal ensembles207,222,223 (see 
review224). At this level of whole-brain analysis and neuro-
nal activity, it is then possible to generate neuronal decod-
ers for predicting and modifying emergence. Overall, an 
improved understanding of brain circuitry changes during 
emergence will help to facilitate predictable transitions 
from the anesthetized state to the awake state that will in 
turn improve patient safety and satisfaction with anesthesia 
care.

While it is not easy to reconcile preclinical and clinical 
approaches, innovative new tools exist for studying brain 
circuitry that can be applied strategically to heighten the 
translational value of preclinical anesthesia investigations. 
We must build dialogue and collaborative studies between 
basic neuroscientists and clinician researchers, appreciate 
the limitations of each scientific approach, and compare 
parallel findings from the preclinical and clinical literature 
as guides for future shared investigation.
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