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The term atelectasis derives from the Greek words atelez, 
which means “imperfect,” and ektasiz, which means 

“expansion.” Pulmonary atelectasis thus refers to the incom-
plete expansion of alveoli and terminal bronchioles. In its 
paradigmatic form, atelectasis is represented by complete 
deaeration of lung units. Atelectasis is pervasive in anesthesia 
practice, and already in 1963, Bendixen et al.1 demonstrated 
that general anesthesia with mechanical ventilation resulted 
in deterioration of intraoperative oxygenation and compli-
ance in patients with normal preoperative lung function. 
Brismar et al.2 subsequently demonstrated that such deteri-
oration was associated with pulmonary densities revealed by 
computed tomography. In addition to physiologic impair-
ment, pulmonary atelectasis could contribute to perioper-
ative lung injury.3 The clinical presentation of significant 
atelectasis in surgical patients is variable from no sequalae 
to prolonged oxygen requirement to hypoxemia requiring 
endotracheal intubation and ventilation to even acute respi-
ratory distress syndrome (ARDS). This article focuses on the 
perioperative period and aims to review the etiology of pul-
monary atelectasis and provide a pathophysiologic discus-
sion including biologic as well as biomechanical processes.

Physiologic Principles of Bronchiolar and Alveolar 
expansion
Bronchioles and alveoli walls are composed of cells and 
extracellular matrix and covered by a liquid film on their 
luminal side containing surfactant. Each of these elements 
are exposed to expanding and collapsing forces.

Stresses Acting on Bronchioles and Alveolar Walls

Normal stress is the force per unit of area (A) perpendic-
ular to the surface where the force is exerted. Three main 

components of the normal stresses acting on bronchioles 
and alveolar walls determine their expansion (fig. 1)4: fluid 
pressure, tethering stress, and surface tension. A conceptual 
note on the physical meaning of these mechanical com-
ponents is that, although related, they are not equivalent as 
pressure is a scalar (a physical quantity having only magni-
tude), whereas stress is a vector (a physical quantity with 
direction and magnitude).

(1) Fluid pressure represents the pressure applied by fluids 
(gas or liquid) to the surface of the alveolar or bron-
chiolar wall. The net result of the fluid pressures derives 
from the difference of inside (P

i
) and outside (P

o
) 

pressures, expressed by the formulation of transmural 
pressure:

Transmural pressure inside pressure P outside pressure Pi o= ( ) − ( ))

(2) Tethering stress represents radial stresses caused by attach-
ments of bronchioles and alveolar walls to adjacent 
structures through the tissue matrix. The radial tether-
ing stress is mechanically transmitted to alveoli, bronchi-
oles, and pleural surface through a network of collagen 
and elastin fibers composing the extracellular matrix in 
the pulmonary septa. These fibers are the force-bearing 
elements. The parenchymal cells themselves (epithelial 
and endothelial cells) have a lower mechanical con-
tribution. Preserved lung interstitial architecture thus 
ensures the transmission of the tethering stress inside 
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the lung parenchyma.5 The net effect of those stresses 
applied inside (F

i
/A) and outside (F

o
/A) the bronchi-

oles or alveolar walls can be expressed as (fig. 1):

Net tethering stress
F

A

F

A
o i=









 −











∑ ∑

(3) Surface tension represents the inward-acting radial stress 
arising from the circumferential components of forces 
applied by the thin layer of fluid lining the bronchi-
oloalveolar walls resulting from the effect of the sur-
face tension (T). For a spherical structure with radius R 
(alveoli), the Young–Laplace pressure equation expresses 
the relationship between the pressure difference across 
the fluid interface (P

w
) and the surface tension as:

P
T

Rw =
2

For a cylindrical structure of radius R (bronchioles), the 
relationship is:

P
T

Rw =

Accordingly, the pressure difference across the fluid inter-
face becomes substantial for small R. The surface tension 

is likely more important in the cylindric bronchioles than 
in alveoli, which are not strictly spherical.6 Pulmonary 
surfactant, a lipoprotein complex secreted by type II alve-
olar epithelial cells, is a critical biomechanical stabilizer 
to bronchioles and alveoli expansion.7 Its presence at 
the air–liquid interface strongly reduces surface tension, 
decreasing the magnitude of this collapsing contribution.

The balance of these forces and pressures allow for quan-
titative relationships in specific conditions (fig. 1):

• In equilibrium, the balance of the expanding and col-
lapsing radial stresses acting on bronchioles or alveolar 
walls should be zero4:

P P
F

A

F

A
Pi o

o i
w−( ) + −









 − =∑ ∑

0

• No external tissue attachments are present at the pleural 
surface. Consequently, F

o
 = 0 and transmural pressure 

is determined by P
i
 ( = alveolar pressure, P

alv
) and P

o
  

( = pleural pressure, P
pl
). Radial stresses corresponding 

to the sum of inward-acting tissue and surface forces are 
balanced by the transmural pressure (P

alv
 – P

pl
) acting on 

the pleural surface area (A
pl
). Because the radius of the 

pleural surface curvature is large, the effect of surface 

Fig. 1. Pressures and forces acting on alveolar and bronchiolar walls and visceral pleura surface. Fi, inward tethering; Fo, outward tethering; 
Fw, circumferential component of force applied by the layer of surface-active fluid; Palv, alveolar pressure; Pi, inside pressure; Po, outside 
pressure; Ppl, pleural pressure.
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tension is negligible (P
w
 ≈ 0). Accordingly, the balance of 

forces at the pleural surface is:

P P
F

Aalv pl
i

pl

−( ) = ∑

• Within the lung, if all airways are patent, pressures on the 
two sides of alveolar walls (i.e., P

i
 and P

o
) equal the same 

alveolar pressure (P
alv

). Therefore, transmural pressure 
between adjacent alveoli is null, and the outward-acting 
tethering force (F

o
) counteracts inward-acting tissue and 

surface forces:

∑ ∑= +
F

A

F

A
Po i

w

The Elastic recoil of the Lung

Lung elastic recoil represents the propensity of lung tissue 
to shrink and is the main physiologic mechanism of pas-
sive exhalation. It results from the combined effects of: (1) 
extracellular matrix elastic fibers (contributing to F

i
) and 

(2) bronchioloalveolar surface tension.4,7 Accordingly, deg-
radation of the elastic fibers in the extracellular matrix, as 
during emphysema, reduces elastic recoil, thus reducing the 
expiratory capacity and acting against alveolar collapse.8 
Conversely, diseases leading to quantitative or qualitative 
surfactant impairment increase surface tension and facilitate 
alveolar collapse.7

The Interdependent Lung Expansion

Pulmonary interdependence represents the interplay of 
mechanical forces among lung tissue components: alveo-
lar units, airways, vasculature, and extracellular matrix. For 
instance, interdependence during lung expansion trans-
mits tethering stress to traction airway walls outwards.5,9–11 
Interdependence relies on normal lung architecture, includ-
ing the extracellular matrix fibers.12 In a homogeneous lung, 
outward tethering stresses (ΣF

o
/A

pl
) are transmitted from 

the visceral pleura surface to the innermost lung regions. 
These stresses are determined by the elastic recoil pressure 
of the lung P

el
(L),13 equal to the transmural pressure at the 

pleural surface:

P L P P
F

Ael alv pl
o

pl

( ) = −( ) = ∑

A positive P
el
(L), transmitted to the inner lung through 

interdependence, is the primary determinant of lung expan-
sion. During awake spontaneous breathing, P

pl
 is negative 

throughout the pleural space, leading to a positive P
el
(L) 

as P
alv

 = 0 ( = atmospheric pressure). In contrast, P
el
(L) ≤ 0  

is associated with unphysiologic conditions resulting in 
lung collapse, such as open-chest or general anesthesia with 
mechanical ventilation.

The transpulmonary pressure (P
L
) has been advanced as 

a surrogate of the elastic recoil pressure of the lung when 
the alveolar pressure (P

alv
) can be approximated by the pres-

sure at the airway opening (P
ao
). This occurs when respi-

ratory flows are zero (usually at end expiration and end 
inspiration) and no gas trapping exists13:

P P PL a pl= −
°

Hence, a positive transpulmonary pressure throughout the 
respiratory cycle is required to maintain alveolar expansion.

Mechanisms of Atelectasis in the Perioperative 
Period
General anesthesia, mechanical ventilation, and surgical 
interventions produce several biophysical factors promot-
ing lung tissue collapse (fig.  2). Three major interrelated 
collapsing factors influence the balance of forces discussed 
above and contribute to perioperative atelectasis: increased 
pleural pressure, low alveolar pressure, and surfactant impair-
ment. As a result of these factors, continuous or intermittent 
airway and alveolar closure occur, presumably more com-
monly the first than the latter.14,15

Increased Pleural Pressure

Pleural pressure is the pressure within the pleural cavity. 
It varies regionally across the pleural space depending on 
anatomical and physiologic interactions between the lung 
parenchyma, chest wall, and gravity.16 General anesthesia 
affects such interactions increasing regional pleural pressure 
(e.g., dorso-caudal in supine patients), resulting in negative 
transpulmonary pressure and compressive atelectasis (fig. 2).

Functional Changes of the Diaphragm and Additional 
Chest Wall Components. The chest wall can be 
understood as composed by two functional portions: an 
elastic portion represented by the rib cage and abdominal 
wall and a constant weight component exerting a 
hydrostatic pressure represented by the abdomen. Changes 
in these portions will affect pleural pressure and lung 
expansion in the perioperative period, in line with the 
previously discussed equilibration of forces throughout 
the lung. The diaphragm is the primary muscle of lung 
ventilation and, consequently, significantly contributes 
to lung expansion and atelectasis development during 
anesthesia. For example, in anesthetized intubated 
patients without cardiopulmonary disease, phrenic nerve 
stimulation to produce diaphragm contraction reduces 
atelectatic area by approximately 33% as compared to 
mechanical ventilation with equal tidal volumes.17

In supine spontaneously breathing humans, diaphrag-
matic displacement and lung expansion are larger in depen-
dent than nondependent lung regions.18,19 This is due to the 
diaphragm dome shape with a smaller dependent radius of 
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curvature, higher dependent stretch producing more favor-
able dorsal length-tension relationships, and possibly larger 
number of muscle fibers20 and higher compliance of the 
crural than costal diaphragm.18 Diaphragm tension reduces 
the transmission of abdominal pressure to the lungs.21 
Reduction or loss of such diaphragmatic tone during anes-
thesia thus affects the net balance of stresses acting on the 
lungs, not only reducing the preferential dependent dis-
placement of the diaphragm but also facilitating the trans-
mission of abdominal pressure to the lungs. This results in 
a cephalad shift of the dependent diaphragm with depen-
dent lung compression and atelectasis22,23 and no change or 
caudad shift of nondependent regions.19,23 Relaxation of 
accessory respiratory muscles such as intercostals, scalenes, 
and sternocleidomastoids further contribute to reduction in 
cross-section chest area and lung aeration (fig. 3). In spon-
taneously breathing normal subjects receiving volatile anes-
thesia, the activity of parasternal muscles is abolished, and 
phasic expiratory activity in abdominal and lateral rib cage 

muscles is enhanced,24 contributing to caudad-dependent 
atelectasis.23 Muscle paralysis compounds to the dependent 
cephalad shift of the diaphragm and atelectasis during gen-
eral anesthesia,23 as the balance between alveolar pressure 
and the gravity-dependent hydrostatic pressure of abdom-
inal contents becomes the main determinant of diaphragm 
motion.19 Ultimately, atelectasis that is preferentially depen-
dent and caudad is detected in 90% of a broad population 
of patients without cardiopulmonary disease undergoing 
general anesthesia,25 with up to 20 to 25% of initially nor-
mal lung either atelectatic or poorly aerated in transverse 
computed tomography during anesthesia.26

Increased abdominal pressure as present with pneumo-
peritoneum, obesity, abdominal compartment syndrome, 
peritonitis, or abdominal shift of intrathoracic blood27,28 
produces further imbalance of net stresses on the lung, 
because it exposes the dorso-caudal lung to higher pleural 
pressure and susceptibility to atelectasis,2,29 with cephalad 
shift of both diaphragm and intra-abdominal organs.19,23,27 

Fig. 2. Mechanisms producing atelectasis in the perioperative period. (A) Normal lung unit in awake conditions. Adequate inspiratory (Pi) 
and expiratory (Pe) intraluminal pressure and bronchiolar or alveolar tethering stress associated with negative pleural pressure (Ppl) allow for 
the normal opening of the bronchiole and a normal alveolar ventilation (⩒A). Alveolar gas absorption is physiologic due to physiologic ⩒A/ lung 
perfusion (Q)� and atmospheric fraction of inspired oxygen (FiO2). Normal surfactant reduces alveolar surface tension. (B) Lung unit exposed 
to perioperative atelectasis. The increase in pleural pressure (Ppl) due to extrinsic or intrinsic compression (circle 1) is responsible for the loss 
of expansion and reduced alveolar ventilation (⩒A). Increased alveolar gas absorption (circle 2) reduces intraluminal alveolar pressure (Palv). 
Low ⩒A/

�Q , high FiO2, and low mixed venous oxygen partial pressure (PvO2) may participate in such gas exchange imbalance. Quantitative or 
qualitative surfactant impairment leads to higher surface tension and facilitates alveolar collapse (circle 3). FiN2, fraction of inspired nitrogen; 
Pc′O2, end-capillary oxygen partial pressure.
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Of note, cephalad-outward movement of the lower ribs 
potentially produced by those factors can increase the 
cross-section of the lower chest and partially compensate 
for the loss of lung volume.21

Although gravity has been frequently cited as a key 
determinant of lung expansion, cephalocaudal gradients of 
lung expansion present in large animals30 and humans22,31 
indicate the relevance of factors other than gravity. These 
factors include the matching of the lung to the thoracic 
cavity and the partially independent displacement of lobes, 
which are relevant determinants of regional lung expan-
sion in supine and prone positions beyond gravitational 
factors.30,32 Perioperative chest wall reshaping is influenced 
by body position, with proning allowing for recruitment of 
dorso-caudal lung.33

Postoperative respiratory muscle dysfunction, par-
ticularly diaphragm dysfunction, has been documented 
after abdominal,34 thoracic,35 and cardiac surgery.36 It 
facilitates the development of atelectasis as demonstrated 

by the significantly larger fraction of patients with atel-
ectasis 24 h after thoracic surgery in the presence of 
postoperative ultrasound-diagnosed diaphragmatic dys-
function (35%) than in its absence (13%).35 Diaphragm 
dysfunction can persist from a day to a week37,38 and even 
up to a year.39 It can occur because of direct injury to 
the diaphragm36 or phrenic nerve40 or because of indi-
rect factors such as phrenic nerve dysfunction37,41 and 
impaired thoracoabdominal mechanics.42 These factors 
could compound with previous diaphragmatic compro-
mise, for example, as present in neuromuscular disorders, 
sepsis,43 abdominal hernias,44 and potentially obesity.45 
Of note, diaphragmatic function could conversely affect 
regional lung inflammation by producing local high 
transpulmonary pressures as shown by the observation 
that spontaneously breathing lung-injured pigs exposed 
to low positive end-expiratory pressure (PEEP) present 
more dependent lung inflammation than those receiving 
high PEEP.46

Fig. 3. Changes in chest wall shape due to general anesthesia in a supine patient. During awake spontaneous breathing, contraction of dia-
phragm and accessory muscles of respiration maintain lung expansion. Loss of muscular tone during anesthesia is associated with cephalad 
motion of the dependent diaphragm, reduction in cross-sectional chest area, and generation of nongravitational compressive forces (i.e., 
cephalocaudal gradients). Together with gravitational forces and potential increase in intrathoracic blood volume, these factors contribute to 
reduction of lung volume and lung collapse, particularly on the dorsal and basal lung regions.
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Although anesthetics (e.g., isoflurane, sevoflurane, and 
propofol) can compromise diaphragmatic function,47–49 
they do not affect contractility.50 The diaphragmatic elec-
tromyographic activity can also be impaired by unwarranted 
administration of cholinesterase inhibitors, for example, 
neostigmine followed by sugammadex in humans51 or 
neostigmine administered after full recovery from neuro-
muscular block in rats.52

Intrapulmonary Gravity Gradient. The weight of the 
nondependent lung compresses the dependent lung 
and pleural space determining pleural pressure increases 
along the vertical axis11 with transpulmonary pressure 
reduction in dependent lung regions.53,54 Pulmonary edema 
increases the weight of the lung tissues, increasing the 
risk of dependent atelectasis caused by the superimposed 
hydrostatic pressure.54,55 Body position influences the effect 
of intrapulmonary compression by modulating the volume 
of dependent lung. For instance, the triangular shape of 
the lungs with the large dorsal base results in a greater 
volume of dependent lung in the supine than in the prone 
position.55,56

Compression by Intrathoracic Elements. In supine 
patients, the mediastinal weight, particularly the heart, 
has been associated with pleural space compression and 
preferential retrocardiac lung collapse.57 Pleural effusions 
may also compress the lung. However, the effusion volume 
does not entirely translate into compression58 because of 
the compliance of the chest wall. For instance, in ARDS 
patients, chest wall expansion in the presence of a pleural 
effusion accommodates ~70% of the effusion volume.58,59

Low Alveolar Pressure

The concept of critical opening pressure has been intro-
duced as the minimal alveolar pressure (P

alv
 in the previ-

ously described formulation) required to counteract the 
regional effect of collapsing forces.60 Accordingly, lung units 
are expanded when alveolar pressure is higher than the 
critical opening pressure. A parallel concept is that of criti-
cal closing pressure, i.e., the alveolar pressure below which 
open lung units collapse. Mean closing pressure has been 
estimated as 6 cm H

2
O in a small number of anesthetized 

mechanically ventilated patients,61 an interesting value to 
compare to the usual initial clinical setting of 5 cm H

2
O. 

As determined experimentally in animal and computa-
tional models,62,63 the critical closing pressure is lower than 
the critical opening pressure due to lung hysteresis, i.e., the 
difference between the inspiratory and expiratory compo-
nents of the pulmonary pressure–volume curve, produced 
by opening of previously nonaerated peripheral airspaces.64 
Due to the vertical dependence of pleural pressures, critical 
opening pressures are higher in dependent regions as lung 
regions exposed to positive pleural pressure require alveolar 

pressures higher than these pleural pressures to achieve pos-
itive transpulmonary pressure and expansion.

The rationale for the use of PEEP derives from such a 
concept, ultimately aiming to keep alveolar pressures above 
critical closing pressures at end-exhalation to prevent lung 
collapse. Local variation in critical opening and closing 
pressures conditions the regions expanded and kept inflated 
throughout the breathing cycle at a given PEEP. Even nor-
mal lungs, when mechanically ventilated without PEEP for 
many hours, will progressively lose aeration preferentially 
in dorsal regions.65 Of note, lung hysteresis imply that the 
PEEP required to keep lung regions open is lower than that 
required to open them (fig. 4).66 This provides support to 
the practice of recruiting the lungs at pressures higher than 
those used during steady state mechanical ventilation.

Resistance of Upstream Airways. The transmission of 
upper airway pressures to distal lung regions, i.e., the 
proximity between P

alv
 and P

ao
, depends on the patency 

of regional airways (fig.  2). Increased airway resistance, 
secondary to airway constriction, obstruction, or 
compression13 determines a pressure drop in the distal lung 
with local alveolar pressures potentially lower than tracheal 
pressures (P

alv
<P

ao
). Obstructive atelectasis is the term used to 

describe lung collapse resulting from airway obstruction, 
usually caused by mucous plugs and retention of secretions 
superimposed or not to airway constriction. Anesthetics 
dose-dependently compromise ciliary motility of 
respiratory epithelial cells (isoflurane, ketamine, thiopental) 
potentially facilitating obstruction, and this compromise 
seems weaker with sevoflurane,67 fentanyl or propofol.68 
Mucociliary clearance appears to be more compromised by 
cuffed endotracheal tubes than laryngeal mask airways.69

Balance of Alveolar Gas Exchange. Lung units presenting 
larger alveolar gas outflow than inflow will ultimately 
collapse. This is the basic concept of absorption atelectasis.70 
Such an imbalance is mostly determined by low local 
alveolar ventilation-to-perfusion (⩒

A
/ �Q ) ratios and 

high fraction of inspired oxygen. Low ⩒
A
/ �Q determines 

low inflow of fresh air into alveoli in relation to the 
local perfusion associated with O

2
 absorption. The lowest  

⩒
A
/ ratios are found in the most gravity-dependent 

regions,71 where intraoperative atelectasis is typically 
present.72,73 High fraction of inspired oxygen facilitates 
outflow as alveolar gas absorption by capillary blood is higher 
with O

2
 than with gases presenting lower blood:gas solubility 

as nitrogen.74–77 Lower mixed venous oxygen content further 
increases the rate of oxygen absorption (fig. 2).

Surfactant Impairment

Several factors during general anesthesia could impair sur-
factant function and contribute to the development of atel-
ectasis: inflammatory response, mechanical ventilation, high 

�Q
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oxygen concentration, anesthetics, and pulmonary edema. 
While these factors produce minimal compromise in short 
uncomplicated cases, they could become relevant as the sur-
gical insult and patient compromise increase.

Inflammatory lung injury resulting from endotoxemia 
and bacteremia lead to reduced production of surfactant 
phospholipids,78 increased surfactant turnover,79 decreased 
tubular myelin80 and altered surfactant protein A gene 
expression.81 Inflammation with surfactant dysfunction is 
also present during severe respiratory failure and pneumo-
nia.82 This dysfunction can be mediated by inflammatory 
cytokines,83 proteases secreted from immune cells,84 and 
increased proteins in alveoli.85 In line with these findings, in 
vivo lung neutrophilic inflammation developing within few 
hours of mechanical ventilation in poorly aerated areas was 
reported in association with surfactant dysfunction,86 with 
inflammation worsened by endotoxemia.87 The transla-
tional relevance of such data is suggested by the quantitative 
and qualitative surfactant impairment observed in surgeries 
associated with large systemic and pulmonary inflammatory 
response (e.g., on-pump cardiac surgery) or lung injury.88,89

Mechanical ventilation impairs surfactant production by 
type II alveolar cells90,91 through alveolar overstretching,92 
under-stretching93 and monotonic stretching.94 Conversely, 
deep breaths95 and biologically variable ventilation96 increase 

the release of active surfactant. Short-term exposure to 
high oxygen concentrations (100%) adversely affects sur-
factant function by increasing its susceptibility to rupture.97 
Suggestion that inhaled anesthetics could compromise sur-
factant biosynthesis in time- and dose-dependent patterns 
comes to date essentially from in vitro studies and is rap-
idly reversible after discontinuation.98 Pulmonary edema, 
e.g., from fluid overload, can change surfactant activity and 
increase surface tension, potentially by the loss of surfactant 
into the edema fluid.99 For permeability pulmonary edema, 
surfactant function can be inactivated by proteins in alveoli 
secondary to barrier disruption,82,100 via increasing its con-
version to non–surface-active forms.85

Pathophysiologic effects of Pulmonary 
Atelectasis

Global Physiologic Effects

Respiratory Mechanics and Lung Volumes. Functional residual 
capacity is reduced in the supine position, and further by 
general anesthesia and muscle paralysis. Such decrease is 
associated with loss of muscle tone, and related reduction 
of the cross-sectional area of the thorax,23 cephalad 
displacement of the diaphragm,19 increased curvature of 
the vertebral column,24 and increased intrathoracic blood 

Fig. 4. Pulmonary pressure–volume curve during inhalation and exhalation showing lung hysteresis. The shape of the lung pressure–vol-
ume curve is sigmoidal. There are three main portions of the curve. The initial portion (blue) of lung recruitment at low pressures and volumes 
is related to low compliance (i.e., the change in volume [ΔV] divided by the change in pressure [ΔP] is low). This is followed by a portion 
with a linear relationship between volume and pressure with higher compliance (ochre). Finally, hyperinflation ensues at high pressures and 
volumes with return of lower compliance (red). The transition between the first and second portions indicate that critical opening pressures 
for a large number of bronchoalveolar regions has been reached (lower inflection point). Note the higher pressure during inhalation to reach 
the same lung volume as during exhalation. Modified from radford.66
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volume.22 Of note, change in diaphragm displacement, 
thorax cross-section or functional residual capacity during 
general anesthesia were found not to correlate to the 
magnitude of atelectasis22,23 suggesting the relevance of 
other factors for ultimate lung collapse, such as intrathoracic 
blood volume and decreased volume of the aerated lung.

Atelectasis is associated with lower respiratory system 
and lung compliances. This is because closure of alveoli and 
small airways corresponds to the low-volume portion of 
the pressure–volume curve associated with smaller change 
in lung volumes in relation to applied pressures, i.e., low 
compliance (fig. 4).101,102 Indeed, in mechanically ventilated 
dogs, the respiratory system compliance is linearly related 
to lung volume.103 Alveolar and airway closure is affected 
by supine position and may be further influenced by obe-
sity (fig. 5).104 Higher driving pressures (P

plateau
 – PEEP = 

tidal volume/respiratory system compliance) consequently 
also ensue.105 End-expiratory lung volumes can be lower 
than closing capacity during mechanical ventilation likely 
due to loss of radial traction from parenchymal interde-
pendence.10,106 The same mechanism may contribute to the 
increased lung and respiratory system resistance associated 
with atelectasis in obese patients.107 Of note, once atelec-
tasis settles, the lung pressure–volume curve also becomes 
abnormal, further compounding the loss of lung volume.

Gas Exchange. The most clinically evident pathophysiologic 
effect of pulmonary atelectasis is hypoxemia.1,102 Impaired 
blood oxygenation has been described during routine 
general anesthesia with both controlled108 and spontaneous 
ventilation,109 and correlated with the degree of 
atelectasis.22,110 The mechanisms are low ⩒

A
/ ratios and 

intrapulmonary right-to-left shunt.109,111 In experimental 
and clinical studies, alveolar recruitment promptly reverses 
gas exchange dysfunction.1,101,112 Chronic obstructive 
pulmonary disease patients are less susceptible to oxygen 
absorption atelectasis113 and may develop less atelectasis 
during mechanical ventilation after cardiopulmonary 
bypass,114 presumably due to a combination of loss of elastic 
recoil and high airway resistance.

Hypoxic Pulmonary Vasoconstriction. Hypoxic pulmonary 
vasoconstriction is a reflex constriction particularly of 
distal pulmonary arteries but also venules in response to 
hypoxia.115,116 Oxygen sensing occurs at the alveolo-
capillary level,117 with endothelial cell depolarization and 
retrograde propagation of the signal via gap junctions to 
upstream arterioles, where it is transmitted to pulmonary 
arterial smooth muscle cells to produce vasoconstriction.117 
In health, the onset of the reflex to hypoxic gas mixtures 
occurs within seconds, and progresses into a plateau period 
(phase 1) of at least 20 min, and then a further rise (phase 
2) starting after ~43 min and reaching a peak at ~2 h.118 This 
pattern is consistent with the response times to atelectasis 
observed in a dog model.119

Hypoxic pulmonary vasoconstriction mitigates 
right-to-left shunt diverting blood away from poorly 
oxygenated lung areas, thus supporting adequate arte-
rial oxygenation during general anesthesia.120,121 The 
more effective the hypoxic pulmonary vasoconstriction, 
the lower the effect of atelectasis on right-to-left shunt 
and consequent hypoxemia. In normal humans, 47% of 
blood flow is diverted from a hypoxemic lobe within 
5 min.121 Factors that impair hypoxic pulmonary vaso-
constriction accentuate hypoxemia produced by atelec-
tasis: pneumonia,122 ARDS,123 endotoxemia,124 sepsis,125 
calcium channel blockers,126 atelectatic size,127 or vol-
atile agents (isoflurane, sevoflurane, desflurane) above 
1 minimum alveolar concentration.128–130 Mechanical 
factors associated with atelectasis could also impair 
hypoxic vasoconstriction; for example, unstable alve-
oli in the collapsed large animal lung could stent open 
pulmonary corner vessels through outward radial trac-
tion, reducing the hypoxic constriction.131 Intravenous 
anesthetics present a discrete to nonexistent effect on 
hypoxic vasoconstriction, because no blunting has been 
found with propofol,132 ketamine,133 or fentanyl,134 
whereas others found even oxygenation improvement 
with propofol.133,135 During general anesthesia, the 
significant correlation between shunt and atelectatic 
area calculated from computed tomography in patients 
without significant lung disease indicates that hypoxic 
pulmonary vasoconstriction is not complete and con-
tributes to hypoxemia even in normal lungs.110 In dis-
ease conditions, a strong correlation between shunt and 
atelectatic volume suggests more compromised hypoxic 
pulmonary vasoconstriction such as observed after 
mitral valve surgery when compared to coronary artery 
bypass graft surgery.136

In normal humans, increases in the mean pulmonary 
artery pressure of ~10 mmHg are observed due to hypoxic 
vasoconstriction with arterial oxygen saturation changes 
from more than 95% to 85 to 90% and of ~16 mmHg with 
arterial oxygen saturation of 75 to 80%, corresponding to 
a duplication and more of the pulmonary vascular resis-
tance.137 In severe cases, right ventricular dysfunction can 
ensue as a consequence of the afterload elevation during 
atelectasis.138,139 Accordingly, alveolar recruitment reduces 
pulmonary vascular resistance and increases pulmonary 
blood flow in patients after cardiopulmonary bypass140 and 
in dogs with healthy or injured lungs,141,142 subsequently 
improving right ventricular function.

regional Molecular and Cellular response

Molecular (e.g., cytokine, chemokine, and pathways) 
and cellular (e.g., alveolar endothelial, epithelial, and 
inflammatory) changes during atelectasis imply significant 
local biologic responses and allow for insights into the 
mechanisms of lung injury. Atelectasis-associated lung 
injury could relate to direct or indirect, independent or 

�Q
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synergistic local biologic effects such as inflammation, 
structural damage, hypoxic injury, surfactant dysfunction, 
and susceptibility to infection (fig. 6).

Inflammatory Response. Links between atelectasis and 
inflammation have been indicated by clinical and 
experimental studies. Indeed, normal lungs exposed to 
16 h of atelectasis and mechanical ventilation with low 
tidal volumes presented metabolic changes suggestive of 
incipient inflammation in large animals with aeration 
heterogeneity comparable to that of humans.65 The 
hallmarks of atelectasis-related inflammatory response 
include the presence of cytokines and immune cells and 
their functional alteration (table 1).

Cytokine response

Atelectasis is often associated with local production of 
inflammatory cytokines. Multiple clinical studies of 

one-lung ventilation145,146,153 have reported increased levels 
of proinflammatory cytokines in the atelectatic lung, such 
as interleukins 1, 6, and 8 and tumor necrosis factor α, all 
involved in inflammatory injury. These cytokine levels 
were directly related to the duration of atelectasis146,153 
and potentially increase the susceptibility to postoperative 
pulmonary complications in patients undergoing lung 
resection surgery.145 Moreover, atelectasis could result 
in significant concentrations of chemotactic cytokines, 
including chemokine (C-X-C motif) ligand 1,144 a potent 
neutrophil chemoattractant; platelet-activating factor,147 
a mediator of platelet aggregation and degranulation, 
and leukocyte chemotaxis; and keratinocyte-derived 
chemokine,143 another immune cell chemoattractant 
particularly for neutrophils. As a result, cytokines increased 
in atelectatic areas may cause direct injury and additionally 
act as homing molecules recruiting cells (e.g., neutrophils) 
into these regions that could further magnify damage, for 
example by releasing injurious cytokines.

Fig. 5. Pressure–volume relationship for the chest wall, lungs, and their combination (respiratory system) in normal (A) and obese (B) sub-
jects in supine positions. (A) The shape of the respiratory system pressure–volume curve reflects the balance of the forces from the chest 
wall and lung parenchyma. In normal subjects, functional residual capacity (FrC) is reduced as compared to the upright position but large 
enough to locate an operating range of the respiratory system pressure–volume curve within a region of high compliance (dashed yellow 
rectangle). (B) In obese subjects, increased weight of the chest wall and abdomen shift the chest wall pressure–volume curve to the right at 
similar chest wall compliances. Combined with the substantial reduction of functional residual capacity, the operating range of the respiratory 
system pressure–volume curve moves to a region of low compliance (dashed yellow rectangle). This occurs even in the presence of the 
same normal pressure–volume curve of the lungs. CrS, compliance of the respiratory system; ΔP, change in pressure; ΔV, change in volume. 
Modified from Behazin et al.104
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Inflammatory Cell response

Atelectasis contributes to inflammatory cell infiltration, at 
least in part through the inflammatory cytokines described 
above. For example, neutrophils, key immune cells in the 
inflammatory response and tissue damage are increased 
in bronchoalveolar lavage fluid of atelectatic regions 
in mechanically ventilated patients or spontaneously 
breathing dogs when compared to fluid obtained before 
atelectasis.147,149,154 Those inflammatory infiltrates related 
to atelectasis duration154 and were further magnified by 
systemic endotoxemia.155 Additionally, atelectasis by itself 
can alter cellular immune function; for example, it can 
enhance alveolar macrophage cytokine secretion in rats,151 
impair macrophage phagocytosis against bacteria in vitro in 
piglets,152 and reduce local bronchoalveolar lymphocyte 
function in dogs.149

Current evidence reinforces the concept that atel-
ectasis produces an inflammatory response with patho-
physiologic mechanisms different from those occurring 
in aerated lung regions. Indeed, different transcriptomic 
patterns in immunity have been documented recently 
in the atelectatic versus ventilated sheep lung, with fewer 
NF-κB–related genes in sterile lungs and more interfer-
on-stimulated genes in the presence of systemic endotox-
emia.148 Such regional differences have also been found in a 
one-lung ventilation rat model showing increased myelop-
eroxidase, a neutrophil marker, in atelectasis and CCL2, a 

macrophage chemoattractant, in aerated lung regions.144 
Accordingly, findings reporting the similarity of inflamma-
tory injury between atelectatic and ventilated lung either in 
humans145,153,156 or in animals144,150 may actually derive from 
different underlying cytokine and genomics responses in 
aerated and atelectatic areas. Understanding such regional 
responses to atelectasis could help to identify potential 
treatments beyond the usual ventilatory interventions. For 
example, nanoparticle delivery of micro-RNAs (i.e., miR-
146a) mitigated mouse lung injury during mechanical 
ventilation.157

Structural Dysfunction. Pulmonary structure disruption is 
a hallmark of lung injury. Immobility (lack of cyclic stretch) 
associated with atelectasis could contribute to structural 
damage potentially by disorganization of actin networks,158 
loss of adherens junction,159 and impairment of barrier 
properties.160,161 A recent sheep study also provided genomic 
support to these findings by revealing in initially healthy 
atelectatic lungs dysfunction of the lung tissue transcriptome 
related to structural components: endothelium, epithelium, 
and actin cytoskeleton.154

Other factors potentially present during atelectasis such 
as inflammation and ischemia can also lead to structural dys-
function, such as impairment of sodium and chloride chan-
nels (i.e., ENaCα),162 an ATP-dependent process involved 
in alveolar fluid clearance; and injury of the endothelial 

Fig. 6. Atelectasis-associated regional biologic injury. (A) Normally aerated lung. (B) Atelectatic lung. There is local immune dysfunction with 
dysregulated cytokine secretion and impaired function of immune cell and surfactant, in part associated with local hypoxia and lack of cyclic 
stretch. Endotoxemia (systemic lipopolysaccharide [LPS]) enhances inflammatory responses characterized by marked immune cell infiltration 
and activation. In addition, atelectasis leads to structure dysfunction accompanied by a loss of alveolar fluid clearance and increased protein 
permeability, flooding of the airspace with protein-rich pulmonary edema fluid and potentially increased susceptibility to infection. ENaCα, 
epithelial sodium channel alpha subunit; HIF-1α, hypoxia-inducible factor 1-alpha; ISGs, interferon-stimulated genes; NF-κB, nuclear factor 
kappa B; rOS, reactive oxygen species; YAP, yes-associated protein.
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glycocalyx layer,163 a critical component for lung barrier 
homeostasis. Re-expansion of atelectatic lung, a common 
process after one-lung ventilation, could be another con-
tributing factor to structural damage caused by oxidative 
stress and inflammation.164,165 Increased capillary transmural 
pressure from reversal of hypoxic pulmonary vasoconstric-
tion after re-expansion and decreased pulmonary vascular 
resistance could mechanically injure the basement mem-
brane of the alveolar–capillary lining.166

Yes-associated protein 1 (YAP) signaling is a key path-
way in the control of cell proliferation, apoptosis, and fate167 
and related to regulation of actin cytoskeleton dynamics168 
and alveolar epithelium repair and regeneration.169 YAP 
signaling has been reported to be less activated in static 

pulmonary epithelial cells170 and in atelectatic lung than in 
normally ventilated lung.154 Together, these experimental 
studies suggest the potential role of YAP signaling and its 
possible use as a treatment target in structural dysfunction 
during atelectasis.

In line with those findings, microvascular endothelial 
disruption has been documented in atelectatic rat lung.138 
Such structural compromise could lead to lung edema,156 
microvascular protein leakage,147,171 and even bacterial 
translocation to the bloodstream,172 suggesting an additional 
mechanism contributing to increased lung permeability 
and decompartmentalization of the lung inflammatory 
response, increasing the risk for multiorgan dysfunction.173 
Potential therapies for structural dysfunction, such as β2 

table 1. Atelectasis-associated Inflammatory response in Clinical and Animal Studies

inflammatory 
Response Subject Model/Design

Mechanical  
ventilation Samples Results Reference

Cytokine 
production

C57BL/6 mice Ex vivo model of 
isolated, buffer-
perfused lungs

VT = 7 ml/kg, PEEP = 0 cm 
H2O, no recruitment

Bronchoalveolar 
lavage fluid

↑ Keratinocyte-derived chemokine Wakabayashi  
et al. 2014143

Sprague–Dawley 
rats

One-lung ventilation 
model

VT = 8 ml/kg, PEEP = 4 cm 
H2O, two-lung venti-
lation, and one-lung 
ventilation

Lung 
homogenates

↑ Myeloperoxidase
↓ Chemokine (C-C motif) ligand 2

Tojo et al. 2015144

Patients, lung 
resection 
surgery

Prospective, 
observational

Two-lung ventilation:  
VT = 8 ml/kg, PEEP = 
3–5 cm H2O; one-lung 
ventilation: VT = 6 ml/
kg, PEEP = 5 cm H2O

Bronchoalveolar 
lavage fluid

↑ Interleukins 1, 2, and 6, tumor necrosis 
factor α, nitric oxide, carbon monox-
ide, and matrix metalloproteinase 2

de la Gala et al. 
2015145

Patients, lung 
resection 
surgery

Prospective, 
observational

VT = 10 ml/kg, rr to 
maintain normal Paco2

Epithelial lining 
fluid 

↑ Interleukin 8 Komatsu et al. 
2012146

ICu patients with 
atelectasis and 
no cardiopul-
monary disease

Prospective controlled 
study

VT = 9–11 ml/kg with 
PEEP = 3–5 cm H2O

Bronchoalveolar 
lavage fluid

↑ Platelet-activating factor Nakos et al. 
2003147

Sheep Left lung collapse 
and right lung 
ventilated model 
with or without 
systemic LPSs

VT = 10 ml/kg with PEEP 
= 2 cm H2O

Lung tissue 
mrNA

↓ Chemokine (C-X-C motif) ligand 8 and 
coagulation factor II (thrombin) recep-
tor-like 1 (without systemic LPSs)

↑ Chemokine (C-X-C motif) ligands 9 and 
10, chemokine (C-C motif) ligand-5, 
interleukin 12B, interferon-induced 
GTP-binding proteins 1 and 2

(with systemic LPSs)

Zeng et al. 
2020148

Cell infiltration Dogs Lobar atelectasis  Bronchoalveolar 
lavage fluid

↑ Neutrophils Nguyen et al. 
1991149

ICu patients with 
atelectasis and 
no cardiopul-
monary disease

Prospective controlled 
study

VT = 9–11 ml/kg with 
PEEP = 3–5 cm H2O

Bronchoalveolar 
lavage fluid

↑ Neutrophils Nakos et al. 
2003147

Wistar albino rats Pneumothorax model  Lung tissue ↑ Neutrophils Sivrikoz et al. 
2002150

Cellular  
function

Sprague–Dawley 
rats

Left main stem 
bronchus ligation

VT = 2.5 ml/kg, rr = 90 
breaths/min

Alveolar 
macrophages

↑ Activation with increased interleukin 1 
and tumor necrosis factor release

Kisala et al. 
1993151

Yorkshire swine right upper lobe 
atelectasis

 Alveolar 
macrophages

↓ In vitro phagocytosis against Pseudo-
monas aeruginosa

Shennib et al. 
1984152

Dogs Lobar atelectasis  Bronchoalveolar 
lymphocytes

↓ Cytotoxic activity Nguyen et al. 
1991149

ICu, intensive care unit; LPS, lipopolysaccharide; NO, nitric oxide; Paco2, partial tension of carbon dioxide; PEEP, positive end-expiratory pressure; rr, respiratory rate; VT, tidal volume .
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agonists directed at accelerating fluid clearance attempted 
in an acute lung injury trial, are examples of treatment tar-
gets derived from basic knowledge,174 which illustrate the 
relevance of advancing the area.

Ultraprotective ventilation (limiting stress and strain 
with limited tidal volume and pressure) during extracor-
poreal membrane oxygenation (ECMO) for respiratory 
failure175–177 is a recently discussed strategy in which the 
biologic effects of static and dynamic stretch may be rele-
vant. The expected advantages of “lung rest” could benefit 
from barrier (e.g., epithelial and endothelial cells) protective 
effects of low cyclic stretch178,179 and yet conflict with the 
damaging effects of lung immobility as well as the injurious 
effects of large static stretch on alveolar epithelial cells and 
extracellular matrix.180,181 A recent trial reported no associ-
ation of mechanical ventilation settings during the first 2 
days of ECMO with survival of patients with severe lung 
injury.182 A possible explanation is that the severity of the 
inflammatory response in these patients is so high that the 
ventilatory intervention would not be able to generate a 
biologic response. Thus, optimal ventilatory settings and 
length of their application for best lung recovery strategies 
in ECMO patients, including the best balance between 
immobility and cyclic load, remains an open question.

Hypoxic Injury. Lung collapse results in local hypoxia, a 
potent inducer of lung inflammation,183 and microvascular 
injury.184 Attenuating hypoxia or eliminating atelectasis by 
lung recruitment reverses lung injury induced by alveolar 
hypoxia.171 Experimental data suggest that such hypoxia-
related lung injury may be associated with NF-κB–
dependent chemokine (C-X-C motif) ligand 1 secretion 
from lung epithelial cells146; macrophage recruitment and 
activation183; decreased expression of lung neprilysin (a 
neutral endopeptidase)184; and excess reactive oxygen and 
nitrogen species (superoxide anion radical O2•- and nitric 
oxide NO•).185

The hypoxia activated transcription factor hypoxia-in-
ducible factor 1 could be another important regulator in 
atelectatic tissue associated both with pro- and anti-in-
flammatory mechanisms.186 Hypoxia-inducible factor 
1α is increased and activated in nonventilated atelectatic 
rat lungs,146 with distinct cellular effects. In myeloid cells, 
hypoxia-inducible factor 1α promotes acute inflammatory 
response through the regulation of glycolytic capacity.187 
In endothelial cells, hypoxia-inducible factor 1α reduces 
mitochondrial respiratory capacity and activates vascular 
inflammation by promoting glycolysis.188,189 In contrast, in 
lung epithelial cells, hypoxia-inducible factor 1 contributes 
to anti-inflammation146 and barrier protection.190

Surfactant Dysfunction. Although surfactant dysfunction 
produces atelectasis as discussed above, conversely, atelectasis 
can lead to surfactant dysfunction. Classic studies reported 

that surfactant compression beyond 50% of its initial area, 
as potentially present during atelectasis, could result in film 
rupture on re-expansion and loss of function,191,192 in line 
with increased surface forces associated with low PEEP (i.e., 
deaerated lung) during in vitro ventilation.193 High surface 
forces in the alveoli causes transudation of proteinaceous 
fluid from capillaries into alveoli, further contributing 
to surfactant dysfunction.194 Such dysfunction after 
atelectasis has been reinforced by clinical data from patients 
without cardiopulmonary disease, showing that surfactant 
phospholipids in bronchoalveolar lavage of atelectatic 
regions were lower after onset of atelectasis and remained 
low even after its resolution.147

Atelectasis-related Pneumonia. Pneumonia is a major 
postoperative pulmonary complication. Its incidence 
has been reported as 1.8% in American Society of 
Anesthesiologists status III patients undergoing 
noncardiothoracic predominantly abdominal and pelvic 
surgery,195 3.5% after cardiac surgery,196 and up to 25% after 
major lung resection.197

Atelectasis has been often suggested as associated with 
pneumonia. The biologic compromise of the atelectatic 
lung immune defenses could facilitate the development of 
pneumonia, as detailed under “Inflammatory Response” 
above. Local depletion and dysfunction of surfactant sec-
ondary to significant atelectasis or after pulmonary edema 
could further compromise the anti-infectious response 
because surfactant possesses antimicrobial properties198 and 
enhances macrophage phagocytosis and bacterial clear-
ance.199 Additionally, mucus plugging or impaired mucus 
clearance after long periods of atelectasis can increase the 
risk of infection by compromising mucociliary clearance 
against organisms entering the lung and trapping them 
within collapsed regions.200,201

Experimental studies support that atelectasis was associ-
ated with larger bacterial growth and pneumonia when bac-
teria were present or instilled into collapsed lungs.172,200,201 
Similarly, mechanical ventilation settings facilitating atelec-
tasis (PEEP = 0 cm H

2
O) increased lung bacterial burden in 

rabbits after tracheal bacterial instillation when compared 
with spontaneously breathing controls.202 Also, after the sys-
temic intravenous injection of bacteria, the susceptibility to 
bacterial infection of atelectatic regions was greater than 
that of aerated regions.200 Of note, such effects of atelecta-
sis might not be present when collapsed lung tissue is not 
exposed to any infectious agent, because atelectasis did not 
increase the incidence of pneumonia in dogs with nonin-
fected lungs in a historical study.200

Clinical evidence has been more conflicting than such 
experimental studies. A large trial during major abdomi-
nal surgery indicated the high incidence of atelectasis and 
pneumonia in patients with ventilation settings predisposing 
to atelectasis (PEEP = 0 cm H

2
O).3 However, the specific 
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role of atelectasis or even an association could not be deter-
mined because large tidal volumes were combined with 
PEEP = 0 cm H

2
O, and subsequent trials comparing high 

vs low PEEP in patients at different risk for alveolar col-
lapse in similar settings did not show an effect of PEEP on 
postoperative pneumonia.203,204 A potential explanation for 
those findings could be that the short-lasting intraoperative 
reduction of intraoperative atelectasis might not be enough 
for a longer-lasting effect in preventing infections through 
the first 5 to 7 days after surgery. Indeed, use of interven-
tions addressing not only intraoperative but also immediate 
postoperative lung expansion resulted in less postoperative 
atelectasis and infectious complications in patients receiv-
ing lung expansion, suggesting a clinical effect.205 Such-
hypothesis generating clinical results together with the basic 
science and translational findings suggest that interventions 
to at least minimize atelectasis could be relevant and require 
further investigation.

regional Mechanical Injury

Lung tissues are continuously subjected to different 
mechanical forces associated with lung inflation during 
spontaneous and mechanical ventilation, as discussed above 
under “Physiologic Principles of Bronchiolar and Alveolar 
Expansion.” During atelectasis, lung mechanical forces con-
tributing significantly to lung injury might be ascribed to 
different biomechanical processes, including cyclic opening 
and closing, stress concentration, and overdistension of the 
nonatelectatic lung (fig. 7).

Cyclic Opening and Closing. Cyclic opening and closing 
of lung units (i.e., bronchioles and alveoli), presumably 
resulting from the unfavorable balance of forces acting on 
airways and alveoli, is a frequently cited but still incompletely 
understood mechanism for lung injury associated with 
atelectasis. Different processes potentially present during 
repeated opening and closing have been studied to explain 
the resulting injury, such as cyclic airway and/or alveolar 
reopening, the propagation of air–liquid interfaces with 
production of injurious longitudinal gradients of pressure, 
and shear stress.

Airways and/or Alveoli reopening

Histological injury in lungs ventilated with PEEP below 
the inflection point of the pressure–volume curve (fig. 4), 
representative of PEEP insufficient to maintain lung units 
open,206 led to the concept of mechanical trauma caused by 
cyclic opening and closing. The critical opening pressure of 
an airway depends directly on airway fluid surface tension 
(γ) and inversely on airway radius (R; P

crit
 = 8.3γ/R).207 

Such a relationship suggests a distribution of opening 
pressures along the airway tree with higher critical pressures 
and presumably injury from tidal recruitment at smaller 
airways.

Airway closure has been documented in vivo by com-
puted tomography imaging in injured experimental lung 
models.208,209 Cyclic opening and closing of airways results 
in bronchiolar injury as reported in animal models venti-
lated with zero210 or negative end-expiratory pressure.211 In 
addition, repetitive alveolar collapse and expansion, directly 
visualized in surfactant-deactivated lung using in vivo 
microscope,212 produces histologic injury with thickened 
alveolar walls, significant intra-alveolar edema, and numer-
ous neutrophils.212,213 Experiments document significant 
regional ventilation heterogeneity in poorly aerated regions 
in healthy lungs comparable with those of humans com-
patible with intermittent airway closure and reversible with 
PEEP.214 The extent to which cyclic opening and closing 
occurs in human lungs and contributes to injury remains 
to be defined.

Surface Forces during Propagation of Gas–Liquid Interfaces

Surface forces can importantly contribute to epithelial 
injury during ventilation of atelectatic regions and 
associated opening–closing of airways and alveoli.215,216 
Secretions, surfactant dysfunction, and alveolar edema affect 
the fluid lining the airway and can lead to the formation 
of liquid plugs or liquid bridges in the airway lumen in 
association with lung collapse. Mechanical or spontaneous 
ventilation of such airways and underlying alveoli produces 
the propagation of these gas–liquid interfaces; that is, 
movement of the liquid plugs/bridges by the incoming air 
(fig.  7). The mechanical forces acting on the epithelium 
lining of airways and alveoli resulting from this movement 
have been advanced as a key mechanism of cell injury 
in mechanical ventilation of atelectatic regions.215,216 The 
relevance of this mechanism has been experimentally 
supported in large tidal volume ventilation of normal rat 
lungs by observation of more wounded epithelial cells 
when gas–liquid interfaces were present (partial lung 
instillation of normal saline) than when lungs were either 
exclusively overdistended or completely saline-filled (i.e., 
no gas–liquid interface).217

Cellular injury produced by propagation of gas–liq-
uid interfaces include cell detachment and necrosis,218 cell 
membrane fracture,219 impairment of cell–cell adhesion,220 
and deterioration of cytoskeletal structure.221 Such damage 
increased with reduced airway compliance222 and diame-
ter.218 The rupture of liquid plugs can also lead to epithelial 
cell injury caused by fluid mechanical stresses in the vicinity 
and downstream of plug rupture216 with associated inflam-
matory response.223 Different mechanical forces generated 
during interface propagation and acting on the epithelial 
cells lining opening airways include pressure and pressure 
gradients, shear stress, and shear stress gradients (fig. 7), with 
the pressure gradient likely being the primary determinant of 
mechanical damage.215,224

Surfactant treatment reduces the mechanical stress 
imparted by the propagation of gas–liquid interfaces.225 This 
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is consistent with its success in neonatal use.226 In adults, 
failure of surfactant trials may have resulted from inade-
quate surfactant delivery to the distal airways and alveoli 
because of low instilled dose volume.227

Shear Stress

Shear stress is defined as the force divided by the area parallel 
to the applied force (fig.  7). Cyclic opening and closing 
of the small airways or alveolar ducts could generate shear 
stress, acting on the collapsed and surrounding lung.215,218 
Although frequently mentioned as a common cause of 
injury during repeated opening and closing, no studies 
directly assessed shear stress in vivo. During the propagation 

of gas–liquid interfaces in vitro, shear stress at the air bubble 
cap was estimated as far greater than that in the regions 
upstream or downstream of the bubble tip.215 However, 
theoretical investigations as detailed above suggested that 
shear stress is less important than the longitudinal pressure 
gradient in producing cell injury.215,224

Stress Concentration. Atelectasis-related mechanical 
injury can also be produced by “stress concentration,” first 
proposed by Mead et al.4 It is due to the distribution of 
mechanical forces in the three-dimensional lung structure 
around a region whose initially surrounding area is reduced 
by atelectasis. Stress concentration occurs in normal regions 

Fig. 7. Atelectasis-associated regional mechanical injury. Airway or alveolar injury can occur during tidal recruitment-derecruitment. 
Propagation of gas–liquid interfaces is a potential mechanism. During inhalation, air propagates into a fluid-filled airway (top right) or a 
collapsed airway (middle right), generating mechanical forces at the interface of air bubble and airway with resulting cell deformations due 
to normal pressure, shear stress, and their gradients. The pressure gradient is likely the major determinant of injury. Propagation of liquid 
plugs and rupture of the liquid menisci also generate abnormally large mechanical forces in the area of smallest film thickness where the 
front meniscus converges to a precursor film (bottom right). Stress concentration (bottom left) is another potential mechanism for atelecta-
sis-related lung injury. In normally expanded lungs, the alveoli are ventilated homogeneously. During atelectasis, however, collapsed areas 
may result in stress concentration, locally multiplying the stress around the atelectatic regions. Atelectasis also leads to the redistribution 
of tidal volume from atelectatic to aerated areas, resulting in remote tidal overdistension (top left). Copyright (2007) National Academy of 
Sciences, u.S.A.
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at the interface between open and closed lung, which 
are thus exposed to exaggerated stress (e.g., tethering 
stress described in physiology section) during ventilation 
(fig. 7).228,229

This mechanism could explain the injury observed 
around the atelectatic lung tissues, as presented in an ex vivo 
isolated, perfused rat lung model.230 Acting as a stress con-
centrator, atelectasis can generate structural alveolar injury 
and inflammation in the surrounding lung tissue.231 Even 
microatelectasis can lead to histological epithelial injury 
caused by stress concentration as reported in a bleomy-
cin-injured rat lung when ventilated with low PEEP and 
large tidal volume for 3 h.232 In addition, such stress con-
centration around atelectasis helps explain the clinical phe-
nomenon of increased local neutrophilic activation at the 
interface between inflated and noninflated tissue in patients 
detected by positron emission tomography.233

Remote Injury–Tidal Overdistension. Atelectasis leads to 
loss of aerated lung volume with redistribution of tidal 
lung volume during ventilation to the remaining smaller 
aerated lung (fig.  7).151 Thus, regional strain increases in 
such ventilated areas, with susceptibility to hyperinflation 
detectable by computed tomography.234–236 This 
hyperinflation of aerated regions could promote higher 
lung inflammation than atelectasis at comparable low tidal 
volume and lower driving pressure.237 Consistent with 
these considerations, experimental findings in a rat lavage 
model of dependent atelectasis showed the coexistence of 
dependent atelectasis and remote nondependent lung injury 
characterized by distal airway injury and increased alveolar 
epithelial mRNA expression of inflammatory cytokines 
(e.g., interleukins 6 and 1 and macrophage inflammatory 
protein 2).238 Also, in initially healthy sheep with lung size 
and heterogeneity comparable to that of humans, receiving 
protective ventilation in the presence of mild systemic 
inflammation progressive atelectasis was associated with 
lung strain increased to areas of high aeration.151 Of note, 
these regions showed increased inflammation as assessed 
by positron emission tomography both in large animals151 
and in patients with inflamed lungs,239 suggesting their 
contribution to ultimate clinical lung injury.

closing Remarks
The perioperative period is associated with a profound 
imbalance of the physical forces that maintain, in the 
awake conditions, the physiologic expansion of the lung. 
Accordingly, pulmonary atelectasis, most frequently located 
in the dorso-caudal regions, represents an almost constant 
feature of general anesthesia. Hypoxemia and lowered 
respiratory system compliance are classical presentations 
of atelectasis at the bedside. Prolonged lung collapse and 
the associated biomechanical processes secondary to the 
ventilation of a heterogeneously aerated lung may actively 

participate in significant lung injury. The biologic response 
associated with atelectasis, before and after re-expan-
sion, could further compound the injurious process. The 
impact of intraoperative pulmonary atelectasis on postop-
erative outcomes such as pneumonia and acute lung injury 
while presumed is still in need of high-level evidence. 
The presented information is expected to provide a basis 
for future inquire and physiologic-based clinical practice. 
Although the current focus on preventing postoperative 
pulmonary complications lies on using ventilator strate-
gies to prevent atelectasis or overexpansion of atelectatic 
lungs, future approaches may take advantage of common 
or novel perioperative medications, which would address 
some of the sequalae of significant atelectasis at the cellular 
and molecular levels.
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