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ABSTRACT
Background: Neurophysiologic complexity in the cortex has been shown 
to reflect changes in the level of consciousness in adults but remains incom-
pletely understood in the developing brain. This study aimed to address 
changes in cortical complexity related to age and anesthetic state transitions. 
This study tested the hypotheses that cortical complexity would (1) increase 
with developmental age and (2) decrease during general anesthesia.

Methods: This was a single-center, prospective, cross-sectional study of 
healthy (American Society of Anesthesiologists physical status I or II) chil-
dren (n = 50) of age 8 to 16 undergoing surgery with general anesthesia at 
Michigan Medicine. This age range was chosen because it reflects a period 
of substantial brain network maturation. Whole scalp (16-channel), wireless 
electroencephalographic data were collected from the preoperative period 
through the recovery of consciousness. Cortical complexity was measured 
using the Lempel–Ziv algorithm and analyzed during the baseline, premedi-
cation, maintenance of general anesthesia, and clinical recovery periods. The 
effect of spectral power on Lempel–Ziv complexity was analyzed by compar-
ing the original complexity value with those of surrogate time series generated 
through phase randomization that preserves power spectrum.

Results: Baseline spatiotemporal Lempel–Ziv complexity increased with age 
(yr; slope [95% CI], 0.010 [0.004, 0.016]; P < 0.001); when normalized to 
account for spectral power, there was no significant age effect on cortical 
complexity (0.001 [–0.004, 0.005]; P = 0.737). General anesthesia was 
associated with a significant decrease in spatiotemporal complexity (median 
[25th, 75th]; baseline, 0.660 [0.620, 0.690] vs. maintenance, 0.459 [0.402, 
0.527]; P < 0.001), and spatiotemporal complexity exceeded baseline levels 
during postoperative recovery (0.704 [0.642, 0.745]; P = 0.009). When nor-
malized, there was a similar reduction in complexity during general anesthesia 
(baseline, 0.913 [0.887, 0.923] vs. maintenance 0.851 [0.823, 0.877]; P < 
0.001), but complexity remained significantly reduced during recovery (0.873 
[0.840, 0.902], P < 0.001).

Conclusions: Cortical complexity increased with developmental age and 
decreased during general anesthesia. This association remained significant 
when controlling for spectral changes during anesthetic-induced perturba-
tions in consciousness but not with developmental age.

(ANESTHESIOLOGY 2021; 135:813–28)

Neurophysiologic 
Complexity in Children 
Increases with 
Developmental Age and 
Is Reduced by General 
Anesthesia
Michael P. Puglia II, M.D., Ph.D., Duan Li, Ph.D.,  
Aleda M. Leis, M.S., Elizabeth S. Jewell, M.S.,  
Chelsea M. Kaplan, Ph.D., Megan Therrian, B.S.,  
Minkyung Kim, Ph.D., UnCheol Lee, Ph.D.,  
George A. Mashour, M.D., Ph.D., Phillip E. Vlisides, M.D.

Anesthesiology 2021; 135:813–28

This article is featured in “This Month in Anesthesiology,” page A1. Supplemental Digital Content is available for this article. Direct URL citations appear in the printed text and are 
available in both the HTML and PDF versions of this article. Links to the digital files are provided in the HTML text of this article on the Journal’s Web site (www.anesthesiology.org). 
This article has a visual abstract available in the online version.

Submitted for publication February 1, 2021. Accepted for publication July 14, 2021. Published online first on September 7, 2021. From the Department of Anesthesiology (M.P.P., 
D.L., A.M.L., E.S.J., C.M.K., M.T., M.K., U.L., G.A.M., P.E.V.), the Center for Consciousness Science (M.P.P., D.L., M.K., U.L., G.A.M., P.E.V.), and the Neuroscience Graduate Program 
(G.A.M.), University of Michigan Medical School, Ann Arbor, Michigan.

Copyright © 2021, the American Society of Anesthesiologists. All Rights Reserved. Anesthesiology 2021; 135:813–28. DOI: 10.1097/ALN.0000000000003929

EDITOR’S PERSPECTIVE

What We Already Know about This Topic

•	 Cortical complexity refers to the differentiation or diversity of neural 
activity patterns in the cerebral cortex

•	 In adults, changes in cortical complexity have been shown to reflect 
changes in the level of consciousness across different classes of 
general anesthetics

•	 Changes in cortical complexity with age and during general anes-
thesia in pediatric populations are incompletely understood

What This Article Tells Us That Is New

•	 Using the Lempel–Ziv algorithm, a mathematical method for 
assessing neural signal complexity, a positive correlation of cortical 
complexity with age was found in awake, 8- to 16-yr-old children

•	 During anesthetic state transitions in this pediatric population, 
cortical complexity decreased during the maintenance phase and, 
upon recovery of consciousness, remained reduced when com-
pared with preanesthesia baseline levels

Although the brain is a major target organ of gen-
eral anesthetics, there remains no standard neuro-

physiologic monitor in the perioperative period. The 

lack of a standardized monitoring strategy likely reflects 
an incomplete understanding of the precise neural cor-
relates of consciousness. Identifying neurobiological pro-
cesses underlying consciousness is particularly challenging 
in the pediatric population, because the brain undergoes 
considerable structural and functional changes during 
development, resulting in substantial brain network for-
mation and refinement.1,2 Cortical oscillatory patterns and 
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spectral properties can thus vary considerably with age3,4 
and during general anesthesia.5–8 In addition, network hubs 
(highly connected brain regions that facilitate information 
transfer) undergo significant developmental maturation9–11 
and are highly susceptible to functional disruption with 
general anesthesia.12 As such, identifying age-invariant 
markers of anesthetic-induced unconsciousness is difficult 
for pediatric patients.

Candidate strategies for perioperative brain monitoring 
in the pediatric population need to account for neurodevel-
opmental changes that occur with age. One such strategy is 
the measure of neurophysiologic complexity in the cortex, 
hereafter referred to as cortical complexity. Cortical com-
plexity can be broadly thought of as representing the differ-
entiation or diversity of neural activity and can be analyzed 
using mathematical algorithms.13–22 The Lempel–Ziv algo-
rithm serves as one such method for assessing neural signal 
complexity. It is a method of symbolic sequence analysis 
used to measure the “compressibility” or variability of a data 
series. In adults, previous studies have demonstrated a cor-
relation between changes in Lempel–Ziv complexity with 
changes in the level of consciousness across different classes 
of anesthetic agents.14,15,21,23 However, cortical complexity 
has not been rigorously studied in pediatric populations 
requiring surgery and anesthesia. Analyzing Lempel–Ziv 
complexity thus serves as a candidate strategy for identi-
fying changes in cortical signal complexity across various 
ages of neurodevelopment and during anesthetic-mediated 
perturbations in states of consciousness.

The objectives of this empirical and theoretical study 
were to determine the changes in cortical complexity 
with age and during general anesthesia. Specifically, this 
study tested the hypothesis that cortical complexity would 
increase with developmental age and decrease during gen-
eral anesthesia. We studied a population of children 8 to 16 
yr old because this age range reflects a period of dramatic 
brain network maturation. Additionally, children of this age 
are more likely to participate in preanesthetic assessment of 
baseline consciousness.

Materials and Methods
This was a prospective, single-center, cross-sectional, obser-
vational study assessing cortical complexity in children 
undergoing general anesthesia for elective outpatient sur-
gery. The study was approved by the University of Michigan 
Medical School Institutional Review Board (Ann Arbor, 
Michigan; approval No. HUM00142298). After careful 
discussion, written informed consent by parents/guard-
ians and verbal or written assent by pediatric patients were 
obtained before study enrollment. All study operations 
were conducted at C.S. Mott Children’s Hospital, Michigan 
Medicine, University of Michigan. Recruitment took place 
from November 2018 to March 2020. This study adheres to 
the Strengthening the Reporting of Observational Studies 
in Epidemiology (STROBE) guidelines.24 Statistical analysis 

plans for the primary and secondary outcomes and mean-
ingful effect size were defined a priori.

Study Population

Pediatric patients aged 8 to 16 yr old, with American Society 
of Anesthesiologists physical status I or II, and scheduled 
for outpatient elective surgery with a halogenated ether as 
the primary anesthetic were eligible for study enrollment. 
Exclusion criteria included a patient history of seizure dis-
order, developmental delay, neurologic disease, current use 
of stimulant medications (e.g., amphetamine, dextroam-
phetamine), surgery above the neck (which might preclude 
neurophysiologic monitoring), history or suspicion of a dif-
ficult airway, physical characteristics that prevent electrode 
contact with scalp, enrollment in conflicting research proto-
col, or where English was not the primary language.

Anesthetic and Perioperative Management

The goal of this study was to determine the changes in cor-
tical complexity across age in the preoperative, baseline state 
of consciousness and through the perioperative period. As 
such, no protocol was implemented for altering patient care. 
Clinical teams provided care as indicated, based on standard 
perioperative protocols, and were blinded to the electroen-
cephalogram data to prevent additional sources of bias.

Electroencephalographic Data Acquisition

The electroencephalogram was recorded from 16 Ag/
AgCl scalp electrodes using a wireless electroencepha-
lographic system (mobile 128 system, Cognionics Inc., 
USA) and applied based on the international 10-20 system 
(Supplemental Digital Content, fig. 1, http://links.lww.
com/ALN/C668). Head circumference was measured to 
ensure proper cap size (EASYCAP, Germany). Cap place-
ment was based on electrode position Cz, which was local-
ized to half of the distance between the nasion and inion 
and the preauricular notch measurements. Data recordings 
were sampled at 500 samples/s and referenced to the mas-
toid. Electrode impedances were continuously monitored 
and maintained at less than 100 kΩ per manufacturer rec-
ommendations. The raw electroencephalogram signals were 
exported into MATLAB (version 2019b; MathWorks, Inc., 
USA) and downsampled to 250 Hz. The 60-Hz power-line 
interference, if present, was removed using a multitaper 
regression technique and Thomas F-statistics implemented 
in CleanLine plugin for EEGLAB toolbox.25

Epoch Selection and Preprocessing

Electroencephalogram epochs selected for data analysis are 
shown in figure 1. Baseline (n = 50) electroencephalogram 
data (range, 3.27 to 5.97 min) were recorded in the pre-
operative eyes-closed resting state. Premedication electro-
encephalogram data for all subjects were extracted from a 
2-min segment that was recorded within 5 min before and 
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as close as possible to the induction of general anesthesia. 
If premedication was administered, the selected segment 
was at least 2 min after intravenous administration (n = 18) 
or 20 min after oral administration (n = 3). Maintenance  
(n = 49) electroencephalogram data (5 min) were recorded 
during the maintenance of general anesthesia and approx-
imately halfway between surgical incision and cessation of 
the anesthetic maintenance agent. The specific time epoch 
chosen was based on the following additional criteria: con-
stant age-adjusted minimum alveolar concentration value 
(greater than 0.7 and less than ±0.1% change) and electro-
encephalogram data suitable for analysis (i.e., free from arti-
fact by visual inspection). During this maintenance period, 
the mean age-adjusted minimum alveolar concentration 
value was 1.26 ± 0.35. Recovery (n = 45) electroenceph-
alogram data (range, 1.18 to 5.75 min) were recorded in a 
postoperative, eyes-closed resting state after clinical recov-
ery determined by achieving a University of Michigan 
Sedation Scale score of 0 to 1.26 For the maintenance phase, 
one patient was excluded because of a minimum alveolar 
concentration below selection criteria, and five patients in 
the recovery phase were excluded because of data loss (e.g., 
associated with emergence delirium).

For each epoch, the electroencephalogram signals were 
preprocessed as previously described.27 First, bad chan-
nels and noisy time segments with obvious artifacts were 
rejected by visual inspection; the data after artifact removal 
had an average length (mean ± SD) of 4.88 ± 0.39 min with 
15 to 16 channels for the baseline, 5 ± 0 min with 14 to 16 
channels for the maintenance, and 3.06 ± 1.21 min with 11 
to 16 channels for the recovery epochs. Second, the signals 
were detrended using a local linear regression method with 
a 10-s window at a 5-s step size in the Chronux analysis 
toolbox,28 and low-pass-filtered at 50 Hz using the eeg-
filtnew function in the EEGLAB toolbox.25 Third, the sig-
nals underwent independent component analysis using the 
extended-Infomax algorithm in the EEGLAB toolbox.25 
Independent components representing cardiac, eye, mus-
cle, or other transient artifacts were identified and removed 

using visual inspection of the time-domain waveform, 
power spectrum, and spatial scalp topography. The number 
of independent components removed were (median [25th, 
75th]) 3 [2, 4] for the baseline epochs, 0 [0, 0] for the main-
tenance epochs, and 4 [2, 5] for the recovery epochs.

Spectral Power

The power spectrogram was estimated using the multitaper 
method in the Chronux analysis toolbox,28 with a window 
length of 4 s with 50% overlap, a time-bandwidth product 
of 2, and a number of tapers of 3; the estimates were then 
averaged over all available windows to obtain the averaged 
power spectrum for each available channel. The normal-
ized power spectrum was further calculated as the absolute 
power spectrum divided by the total power at 0 to 50 Hz. 
Electroencephalogram power was calculated for delta (0.5 
to 4 Hz), theta (4 to 7 Hz), alpha (7 to 13 Hz), beta (13 to 
25 Hz), and gamma (25 to 50 Hz) from both absolute and 
normalized power spectra. The topographic maps of group-
level spectral power across all subjects were constructed for 
each frequency band using the topoplot function in the 
EEGLAB toolbox.25

Complexity Analysis

We used the Lempel–Ziv algorithm to determine the com-
plexity of cortical dynamics across different states. Lempel–
Ziv complexity is a method of symbolic sequence analysis18 
that serves as a surrogate measure of temporal and spatio-
temporal complexity of brain activity.14–16,21,23 In this study, 
we assessed both spatiotemporal complexity across multiple 
channels and temporal complexity in individual channels.

The spatiotemporal complexity was measured as previ-
ously described.23 Specifically, the instantaneous amplitude 
was estimated by applying the Hilbert transform, which was 
then segmented into 4-s windows with 50% overlap (addi-
tional analysis was performed to test the effect of window 
length; Supplemental Digital Content, fig. 2, http://links.
lww.com/ALN/C668). The data were then converted to a 

Fig. 1.  Study paradigm. Purple squares represent epochs of electroencephalogram data that were extracted for analysis. PACU, postanes-
thesia care unit.
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binary value using the mean value as the threshold for each 
channel. The data window was then converted into a binary 
matrix in which rows represent channels and columns 
represent time points. The complexity of the matrix was 
assessed by spatiotemporal Lempel–Ziv algorithm, which 
reflects the number of different spatial patterns across time. 
If the matrix is random, the spatiotemporal Lempel–Ziv 
complexity tends to be high; if channels behave similarly 
(or identically), Lempel–Ziv complexity is low. Because 
the Lempel–Ziv complexity value for a sequence of fixed 
length is maximal if it is entirely random, we normalized the 
raw spatiotemporal Lempel–Ziv complexity by the mean of 
those from n = 50 surrogate data generated by randomly 
shuffling the original spatial order for each time point; thus, 
the resultant spatiotemporal Lempel–Ziv complexity values 
range from 0 to 1. To test whether the Lempel–Ziv com-
plexity is accounted for by spectral changes, we normalized 
the spatiotemporal Lempel–Ziv complexity by the mean 
of those from a surrogate time series (n = 50) generated 
through phase randomization that preserves the spectral 
profiles of the signal for each channel. If the complexity 
change is entirely due to spectral changes, the difference in 
the Lempel–Ziv complexity values across the states will be 
completely preserved in the Lempel–Ziv complexity values 
from the surrogate data; thus, the normalized spatiotem-
poral Lempel–Ziv complexity will be close to 1 and equal 
across the states. If the change in complexity is not due to 
spectral changes, the alterations of Lempel–Ziv complexity 
values from the surrogate data will be distinct from those of 
spatiotemporal Lempel–Ziv complexity, and the normal-
ized spatiotemporal Lempel–Ziv complexity will reflect the 
signal diversity beyond the spectral changes. Last, the spa-
tiotemporal Lempel–Ziv complexity and normalized spa-
tiotemporal Lempel–Ziv complexity values were averaged 
across all available windows as the final estimate for each 
state and participant.

To measure individual-channel temporal complexity, the 
number of different temporal patterns in each individual 
channel was analyzed. These data were then normalized by 
the mean of those from n = 50 surrogate data generated 
by randomly shuffling the temporal order for each chan-
nel to obtain temporal Lempel–Ziv complexity. We further 
tested whether the difference in the Lempel–Ziv complex-
ity across states is due to spectral changes by comparing 
the temporal Lempel–Ziv complexity with the mean of 
those from n = 50 surrogate time series generated through 
phase randomization. The temporal Lempel–Ziv complex-
ity and normalized temporal Lempel–Ziv complexity val-
ues were averaged across all available windows as the final 
estimate for each channel, state, and participant. The topo-
graphic maps of group-level temporal complexity across all 
subjects were constructed using the topoplot function in 
the EEGLAB toolbox.25 For each epoch and subject, the 
mean temporal complexity was further obtained by averag-
ing the temporal Lempel–Ziv complexity (and normalized 

temporal Lempel–Ziv complexity) in prefrontal (Fp1, Fp2), 
frontal (F5, F6, Fz), central (C3, C4, Cz), parietal (P5, P6, 
Pz), and occipital (O1, O2) regions, as well as all further 
channels across the scalp.

Human Brain Network Simulations of Maturation

To assess the general relationship between brain network 
maturation and complexity, a large-scale functional brain 
network was simulated using a coupled Stuart–Landau 
model implemented in a neuroanatomically informed 
scaffolding derived from human diffusion tensor imaging. 
Complexity values of oscillations in the simulated brain 
network models were compared to assess the effect of 
developmental changes in the network hub structure. We 
chose the Stuart–Landau model because it can replicate the 
oscillatory dynamics of different types of brain signals.29–32 
The coupled Stuart–Landau model is defined as follows:

z t i z t z t A K z t tj j j j j k

N

jk jk k jk j
� ( ) = + − ( ){ } ( ) + −( ) +

=∑λ ω τ βξ
2

1
1( ) ( )

Here, the complex variable z tj ( )  determined a state of the 
node (brain region) j at time t, j N= …1 2, , , . The anatomi-
cal structure A was acquired from group-averaged diffusion 
tensor imaging with n = 82 nodes.33 The A

jk
 is determined 

by the connection weight between brain regions j and k. 
We modulated A

jk
 to simulate brain network maturation 

based on previous studies demonstrating that hub structure 
is associated with the developmental age.9–11,34 Therefore, 
we additionally used weak (one tenth lower in connection 
strength compared with the ten strongest hubs) and strong 
(five times larger in connection strengths compared with the 
ten strongest hubs) hub structures to simulate the effect of 
brain network maturation. The brain network model simu-
lation described below was performed with three different 
brain anatomical structures. The dynamics of the oscilla-
tor settle on a limit cycle if λ j > 0  and on a stable focus 
if λ j < 0 . We modulated the λ λj =  from –3 to 3 with 
δλ = 0 2. .The ω j  is an initial angular natural frequency of 
each oscillator j. To simplify the model, we used a Gaussian 
distribution for natural frequency with a mean frequency of 
10 Hz and SD of 0.3 Hz to simulate the narrow bandwidth 
of human electroencephalogram activity in the eyes-closed 
resting state.30–32,35 We controlled a coupling term K Kjk =  
between oscillators j and k from 0 to 0.5 with δK = 0 01. ,  
which determines the global connection strength among 
brain regions. To make the model more realistic, we intro-
duced a time delay between brain regions, τ jk jkD s= / , 
with the average speed of axons in brain areas, s = 7 ms36 and 
the distance D

jk
 between brain regions. The brain region j 

receives input from connected region k after the time delay 
τ jk . The model results are not qualitatively different if the 
time delay is smaller than a quarter of the period of oscil-
lation.31 A Gaussian white noise ξ j t( )  for each region was 
added with the SD β = 0 005. . We numerically solved the 
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differential equations of the Stuart–Landau model using the 
Stratonovich–Heun method with 1,000 discretization steps. 
The first 10 s of the generated signals were discarded, and 
the last 50 s were used for the analysis of each simulation. 
Each brain region generates its own spontaneous oscillatory 
dynamics in a network at each bifurcation parameter λ  and 
coupling strength K for one simulation. The simulation was 
repeated 50 times with different frequency configurations 
to obtain statistical robustness.

Among the simulated brain signals at various bifurcation 
parameter λ  and coupling strength K, we selected brain 
states at certain parameter sets that can represent conscious 
states. A variance of the level of global synchronization in 
a network, termed the pair correlation function, was cal-
culated, and the state at certain coupling strength K with 
the largest pair correlation function was chosen as the state 
that can represent the conscious state for each bifurcation 
parameter λ .32 The instantaneous global synchronization 
level r t( )  at time t was calculated using phase difference 
∆θ θ θjk j kt t t( ) ( ) ( )= −  at each coupling strength K.

r t
N

e
k

N i tjk( ) ( )= 〈 〉
=∑1

1

∆θ

�
(2)

Here r t( ) = 1  if all phases are equal, but r t( )  is nearly 0 if all 
phases are randomly distributed.

Global pulsatile stimuli to the whole brain network were 
induced at the states with the largest pair correlation func-
tion to observe the complexity from the response to the 
stimuli. The coupled Stuart–Landau model with the stimu-
lation term u t( )  is as follows:

z t i z t z t A K z t

t u

j j j j j k

N

jk jk k jk

j

� ( ) = + − ( ){ } ( ) + −( )
+ ( ) +

=∑λ ω τ

βξ

2

1

(tt )
�

(3)

u t
p t t t

otherwise
( )

,

,
=

< <



1 2

0 �
(4)

Here p is the strength of the stimulus during a period 
T t t= −2 1 . We fixed p = 30  and set duration of the stim-
ulus as T = 100 ms. We induced the stimulus at 10 different 
random timings for one iteration. Each stimulus was applied 
independently to generated signals within one frequency 
configuration.

A significant response was calculated by comparing the 
instantaneous amplitude values I t( )  before and after the 
stimuli. For each iteration, the I t( )  of each node j after 
stimuli was normalized by the mean and SD of the baseline 
amplitude values of node j. Baseline values were obtained 
by using a total of 100 s, consisting of 10 trials of a 10-s 
prestimulus segment for each iteration. We considered the 
one tail ( )1 100− ∗α th  quantile with α = 0 05.  as a sig-
nificantly increased amplitude. A perturbation response 
(represented in equations as PR) of node j at time t was 
defined in a binary fashion: PR tj ( ) = 1 , for the significantly 

increased amplitude for node j, and PR tj ( ) = 0 , otherwise. 
The complexity was calculated by measuring Lempel–Ziv 
complexity LZc t( )  of the PR(t)  over 1 s after the stimuli. 
The Lempel–Ziv complexity was calculated for brain net-
work models with low, intermediate, and high hub struc-
ture connectivity.

Effect of Premedication on the Resting 
Electroencephalogram

To assess the effects of premedication on cortical com-
plexity and spectral properties, the resting electroen-
cephalogram data during the preinduction period were 
analyzed. The electroencephalogram signals were pre-
processed as described for the primary analysis and, after 
preprocessing, 12 to 16 channels remained for n = 50 
subjects. The spectral power and cortical complexity 
measures were calculated as described for the complex-
ity analysis.

Statistical Analysis and Power Calculation

Statistical analyses were performed using MATLAB, and 
the data were tested for normality of distribution by 
Lilliefors corrected Kolmogorov–Smirnov tests. Because 
the null hypothesis of normality of distribution was 
rejected in some of the data sets (P < 0.05), the two-sided 
Wilcoxon signed rank test was used to compare the elec-
troencephalogram measure (spectral power and cortical 
complexity) across baseline, maintenance, and recovery. 
With Bonferroni correction, P < 0.017 (0.05/3; 3 pairs) 
was considered statistically significant. Spearman correla-
tion was used to investigate the relationship between age 
and each electroencephalogram measure. Univariate lin-
ear regressions, with age as the independent variable and 
complexity measures as the dependent exposure variables, 
were used to determine the slope [95% CI] of the associa-
tions, with R2 used to assess goodness-of-fit. For the effect 
of premedication, the two-sided Wilcoxon rank sum test 
was used to compare the electroencephalogram measure 
(median [25th, 75th]) between subjects without (n = 29) 
and with premedication (n = 21). A Kruskal–Wallis test 
was used to calculate the statistical differences (median 
[25th, 75th]) across simulated brain networks, and P < 
0.05 was considered statistically significant.

A sample size of 41 achieved 80% power to detect a 
change in slope between complexity and age from 0.000 
under the null hypothesis to 0.011 under the alternative 
hypothesis when the statistical hypothesis is two-sided, the 
significance level is 0.050, the variance of age is 1.0816, 
the variance of complexity is 0.0009, the error variance of 
complexity is 0.5, and the correlation between observations 
within an individual is 0.25, assuming a compound symme-
try correlation structure. This was a conservative estimate 
based on a previous study of complexity in healthy control 
patients of similar ages.19
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Results
In total, 175 children were screened for study eligibility. Of 
the 175 who met the study criteria, 36 children declined 
participation, 52 were excluded because of operative time 
change or time constraints, 37 because of enrollment in 
another study, 21 because of research staff availability, 10 
because of cancellation or no show for surgery, 3 because 
of changes in anesthetic plan, and 2 because of technical 
complications, leaving 50 participants who completed the 
study and were included for analysis. The participant demo-
graphic, anesthetic, and surgical characteristics are presented 
in table 1. Five participants had incomplete data for race.

Spectral Analysis

Age-related changes in spectral properties are shown in 
figure 2. Baseline normalized gamma power in the frontal 
and parietal region and beta in the parietal region were 
correlated with age (gamma: frontal r = 0.30, P = 0.034, 
and parietal r = 0.31, P = 0.027; beta: parietal r = 0.40,  
P = 0.003), whereas baseline theta was inversely correlated 
with age (r = –0.45, P = 0.001 and r = –0.57, P < 0.001 
for frontal and parietal regions, respectively). Total power 
decreased with age, with a peak observed at 8 yr, and sub-
sequent decreases were present during the baseline (slope 
[95% CI], –0.63 [–0.91, –0.35]; P < 0.001; R2 = 0.29), main-
tenance (–0.65 [–0.94, –0.35]; P < 0.001; R2 = 0.28), and 
recovery phases (–1.2 [–1.6, –0.79]; P < 0.001; R2 = 0.43);  
Supplemental Digital Content, fig. 3, http://links.lww.
com/ALN/C668). Total power also tended to decrease 
across regions and frequency bands with increasing age 

(Supplemental Digital Content, fig. 3, http://links.lww.
com/ALN/C668). During maintenance, there was an 
inverse correlation for normalized theta power in the pari-
etal region (r = –0.32, P = 0.027). During recovery, there 
was an inverse correlation for normalized delta power  
r = –0.44, P = 0.002 and r = –0.35, P = 0.020 for frontal 
and parietal regions, respectively). Conversely, higher (beta 
and gamma) frequencies were positively correlated during 
recovery (beta: frontal r = 0.45, P = 0.002 and parietal  
r = 0.57, P < 0.001; gamma: frontal r = 0.51, P < 0.001 and 
parietal r = 0.53, P < 0.001; fig. 2, A and B).

Group-level changes in spectral properties are shown 
in figure  3 (and Supplemental Digital Content, fig. 4, 
http://links.lww.com/ALN/C668). Overall, during gen-
eral anesthesia, there were global increases in delta power 
and alpha anteriorization and decreases in the higher fre-
quency band power (beta and gamma; fig. 3, A and B). In 
terms of total power, general anesthesia induced an overall 
increase in power (except for gamma), which returned to 
baseline level after recovery for most frequencies (except 
alpha; Supplemental Digital Content, fig. 4, http://links.
lww.com/ALN/C668).

Age-related Changes in Cortical Complexity

In the preanesthetic baseline state of consciousness, there 
was a positive correlation with age and spatiotemporal 
Lempel–Ziv complexity (r = 0.41, P = 0.003), as well as age 
and averaged temporal Lempel–Ziv complexity (r = 0.39,  
P = 0.005). Likewise, there was a significant linear associ-
ation with age for both measures (slope [95% CI], 0.010 
[0.004, 0.016], P < 0.001, R2 = 0.20; and 0.007 [0.003, 
0.011], P < 0.001, R2 = 0.20, respectively; fig. 4, A and B). 
When these data were normalized to account for spectral 
effects, there was no correlation for the normalized spatio-
temporal Lempel–Ziv complexity or normalized averaged 
temporal Lempel–Ziv complexity (r = 0.02, P = 0.916 and 
r = 0.08, P = 0.572). Likewise, the linear association was 
not statistically significant (slope [95% CI], 0.001 [–0.004, 
0.005], P = 0.737, R2 < 0.01, and 0.002 [–0.001, 0.004],  
P = 0.234, R2 = 0.03, respectively; fig. 4, C and D). Regional 
analysis of temporal Lempel–Ziv complexity and normal-
ized temporal Lempel–Ziv complexity mirrored the find-
ings above for the whole brain average (data not shown). 
The results were qualitatively similar when we applied 
robustness testing by varying the duration of window anal-
ysis (Supplemental Digital Content, fig. 2A, http://links.
lww.com/ALN/C668).

Effect of Brain Network Maturation on Complexity in 
Simulated Human Brain Models

Because our study design presumed but did not measure 
brain network development in the cohort of participants, 
we employed a principled approach to assess complexity 
in developing networks, as defined by networks that had 

Table 1.  Participant Characteristics

Participant Characteristics (n = 50)

Age, yr (mean ± SD) 13 ± 2.4
Age, no. (%)
  8 to 10 15 (30)
  11 to 13 21 (42)
  14 to 16 14 (28)
Female sex, no. (%) 21 (42)
Race, no. (%)
  White 41 (82)
 B lack or African American 4 (8)
  Other/unknown 5 (10)
Anesthetic duration, min (mean ± SD) 85 ± 44.7
Surgical type, no. (%)
  Orthopedic 25 (50)
  Urology 14 (28)
  General 10 (20)
  Gynecology 1 (2)
Age-adjusted minimum alveolar concentration (mean ± SD) 1.26 ± 0.35
Maintenance agent, no. (%)
  Sevoflurane 24 (48)
  Sevoflurane + nitrous oxide 5 (10)
  Isoflurane 15 (30)
  Isoflurane + nitrous oxide 6 (12)
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progressively increased hub structures. After a simulated 
perturbation, complexity was measured in computational 
brain models informed by human neuroanatomy and com-
pared across weak, intermediate, and strong hub structures 
(as quantitatively defined under “Materials and Methods”). 
Lempel–Ziv complexity significantly increased across simu-
lated brain models with increasing strength of connectivity 
in the network hub structure (P < 0.001; fig. 5).

Effect of Midazolam Premedication on 
Electroencephalogram Power and Cortical Complexity

Midazolam premedication was not associated with a change 
in cortical complexity when measured across the entire 
brain (fig. 6A). However, regional increases in complexity 
were found for both the temporal Lempel–Ziv complexity 
and normalized temporal Lempel–Ziv complexity in the 

central region (median [25th, 75th], 0.384 [0.352, 0.418] 
vs. 0.434 [0.414, 0.452], P = 0.002; 0.915 [0.898, 0.933] 
vs. 0.945 [0.915, 0.961], P = 0.014, respectively) and pari-
etal region (0.377 [0.365, 0.401] vs. 0.420 [0.412, 0.456], 
P < 0.001; 0.923 [0.900, 0.939] vs. 0.938 [0.915, 0.958], 
P = 0.031, respectively; fig. 6, B and C). Midazolam pre-
medication was associated with frequency- and region- 
specific changes in normalized electroencephalogram 
power (Supplemental Digital Content, fig. 5, http://links.
lww.com/ALN/C668). In all brain regions, there was a 
decrease in theta and increase in beta power, as well as a 
decrease in frontal and prefrontal alpha power (P < 0.05).

Effects of General Anesthesia on Cortical Complexity

During the stable maintenance phase of general anesthesia, 
cortical complexity decreased from baseline values for both 

Fig. 2.  Age-related changes in normalized spectral properties. (A) Group-level spectra of normalized electroencephalogram power as a 
function of age in the frontal (top row) and parietal (bottom row) brain regions across the baseline, maintenance, and recovery periods. (B) 
Spearman correlation between age and normalized electroencephalogram power in the frontal and parietal brain regions for each frequency 
band across the baseline, maintenance, and recovery periods. *Significant correlation with P < 0.05.
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complexity measures tested, with the greatest decrease from 
baseline in spatiotemporal Lempel–Ziv complexity (median 
[25th, 75th] for baseline 0.660 [0.620, 0.690] vs. mainte-
nance 0.459 [0.402, 0.527], P < 0.001; fig. 7; Supplemental 
Digital Content, fig. 6, http://links.lww.com/ALN/C668). 
Changes in complexity were independent of spectral power 
during the maintenance phase of general anesthesia. During 
recovery, spatiotemporal Lempel–Ziv complexity exceeded 
the baseline level (0.704 [0.642, 0.745], P < 0.001); how-
ever, after controlling for spectral changes, the normalized 
spatiotemporal Lempel–Ziv complexity during recovery 
was significantly decreased compared with baseline (base-
line 0.913 [0.887, 0.923], vs. recovery 0.873 [0.840, 0.902],  
P < 0.001). Similar results were found for the average tem-
poral Lempel–Ziv complexity analysis, with the exception 
of the normalized average temporal Lempel–Ziv complexity 

when the recovery period returned to baseline levels (0.960 
[0.949, 0.966] vs. 0.957 [0.945, 0.965], P = 0.404, respec-
tively). Regional changes in normalized temporal Lempel–
Ziv complexity results were similar to data from the whole 
brain average (Supplemental Digital Content, fig. 7, http://
links.lww.com/ALN/C668). Overall, these results were 
consistent when we varied the analysis window duration 
(Supplemental Digital Content, fig. 2B, http://links.lww.
com/ALN/C668).

In a post hoc analysis of changes in spatiotemporal 
Lempel–Ziv complexity during the maintenance epoch 
with (n = 11) or without (n = 38) the use of nitrous oxide, 
there was no difference except that the normalized spa-
tiotemporal Lempel–Ziv complexity was higher in the 
nitrous oxide group (P = 0.045, Wilcoxon rank sum test; 
data not shown). In an additional post hoc analysis of the 

Fig. 3.  Group-level spectral properties of normalized power. (A) Normalized power as a function of frequency for the baseline, maintenance, 
and recovery periods in the frontal (top) and parietal (bottom) brain regions. The solid line represents the median value, with shading repre-
senting the interquartile range. (B) Topographical representation of the normalized power for each frequency band for the baseline, mainte-
nance, and recovery periods (note the differences in scale bars for each frequency band).
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association of spatiotemporal Lempel–Ziv complexity and 
the average age-adjusted minimum alveolar concentration 
(maintenance epoch) with or without the use of nitrous 
oxide, we found a negative correlation (with nitrous oxide  
r = –0.64, P = 0.040, without r = –0.36, P = 0.028; 
Spearman correlation; data not shown), but this was not sig-
nificant after controlling for spectral changes (with nitrous 
oxide r = –0.37, P = 0.261, without r = –0.02, P = 0.916; 
similar results were found for average temporal Lempel–Ziv 
complexity; data not shown).

Discussion

This study of children undergoing surgical anesthesia 
tested the hypothesis that electroencephalogram cortical 
complexity would increase with developmental age and 
decrease with general anesthesia. Age was positively cor-
related with cortical complexity during baseline record-
ings, and further analyses revealed that this was attributable 
to spectral changes. We supported this empirical finding 
through a principled approach by investigating complexity 

in simulated brain networks representative of development. 
This analysis demonstrated increased complexity with 
increasing connectivity strength of the network hub struc-
ture. During anesthetic state transitions, we found that cor-
tical complexity decreased during the maintenance phase of 
general anesthesia compared with the eyes-closed baseline. 
Furthermore, after recovery of consciousness, normalized 
spatiotemporal complexity remained reduced compared 
with baseline. Overall, we found that age and anesthetic- 
mediated perturbations in the level of consciousness were 
associated with changes in cortical complexity, with age-re-
lated changes likely resulting from spectral changes and, 
as suggested by our simulation results, evolving functional 
architecture.

The hypothesis that cortical complexity would increase 
as a function of age was informed by the developmental 
maturation occurring through this period. Structural and 
functional changes, such as increased white matter density, 
long-range connections,1,37 and network connectivity,1,38 
could yield a less reducible and more “complex” brain 
network. Additionally, studies of childhood and adolescent 

Fig. 4.  Age-related changes in cortical complexity during the preanesthetic baseline. (A) Spatiotemporal Lempel–Ziv complexity. (B) Average 
temporal Lempel–Ziv complexity. (C) Normalized spatiotemporal Lempel–Ziv complexity. (D) Normalized average temporal Lempel–Ziv com-
plexity of electroencephalogram data from the eyes-closed preanesthetic baseline period. The blue line represents the linear regression for 
each complexity measure with the line equation in the bottom right of each box. *Significant linear association (P < 0.001).
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brain network development have demonstrated increased 
differentiation, specialization, and organization of network 
function,1,9,38 potentially leading to a greater diversity of 
neural oscillatory activity and measurable using complexity 
algorithms. Indeed, previous studies of resting state mag-
netoencephalogram data analyzed using the Lempel–Ziv 
complexity algorithm demonstrated a significant increase 
in complexity during childhood and adolescence that 
continued throughout the lifespan, peaking in the sixth 
decade.19,20 Our results are consistent with this, but the 
effect is attributable to changes in spectral properties, which 
were not controlled for in the studies by Fernández et al.19,20  
The lack of an age effect in complexity beyond spectral 
properties is somewhat surprising given the magnitude of 
brain network change occurring during this period but is 
possibly accounted for by several factors. First, we did not 
control for developmental heterogeneity. It also remains 
possible that the normalized measure of complexity is not 
sensitive enough to measure a developmental difference but 
requires significantly larger perturbations (e.g., anesthetic 
state transitions). The robust finding of significant decreases 
during general anesthesia, even when controlling for spec-
tral changes, supports this interpretation. It should also be 
considered that despite the large developmental changes 
occurring in children 8 to 16 yr old, it remains possible that 

this age range may not capture the structural and functional 
changes required for discernable differences in normalized 
complexity. Additionally, a developing network may give 
rise to both spectral and complexity changes that temporally 
align.39 Our computational brain model findings that net-
works with stronger hub structures yield a more complex 
network further support the empirical age-related results. 
Moreover, previous work from our group has shown that 
network hub structure is disrupted with propofol adminis-
tration and consistent with reductions in complexity with 
general anesthesia.12

Complexity analysis using the Lempel–Ziv algorithm 
yielded dynamic results. Preoperative midazolam administra-
tion increased complexity in the central and parietal regions, 
whereas complexity was globally reduced during general 
anesthesia. Previous studies from our group demonstrated a 
similar increase in complexity with subanesthetic ketamine 
administration and reduction during ketamine anesthesia.23 
Although the mechanism for increased complexity during 
subanesthetic states remains unknown, it has been shown 
that γ-aminobutyric acid type A receptor agonists, such as 
propofol, can induce paradoxical excitation.40 Additionally, 
benzodiazepines have been shown to increase beta activity in 
the central and parietal regions consistent with the increased 
beta activity we observed.41,42 In support, a post hoc analysis 

Fig. 5.  Lempel–Ziv complexity of simulated brain models with changes in the connection strength of network hubs. The central mark in each 
box represents the median value, with the edges representing the 25th and 75th percentiles. The extending whiskers are the most extreme 
data points determined by the MATLAB algorithm (version 2019b; MathWorks, Inc., USA) to be nonoutliers, and the red crosses are those 
values deemed to be outliers. *Significance was measured using the Kruskal–Wallis test (P < 0.001).
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Fig. 6.  Effect of premedication with midazolam on cortical complexity. (A) Spatiotemporal Lempel–Ziv complexity, normalized spatiotem-
poral Lempel–Ziv complexity, average temporal Lempel–Ziv complexity, and normalized average temporal Lempel–Ziv complexity of elec-
troencephalogram data before the first intraoperative anesthetic medication administration. (B) Topographical representation of temporal 
Lempel–Ziv complexity and normalized temporal Lempel–Ziv complexity with and without midazolam premedication. (C) Region-wise anal-
ysis of the temporal Lempel–Ziv complexity and normalized temporal Lempel–Ziv complexity. For (A) and (C), the central mark in each box 
represents the median values, with the edges representing the 25th and 75th percentiles. The extending whiskers are the most extreme data 
points determined by the MATLAB algorithm (version 2019b; MathWorks, Inc., USA) to be nonoutliers, and the red crosses are those values 
deemed to be outliers. *Significance (P value shown); Wilcoxon rank sum test.
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Fig. 7.  Effect of general anesthesia on cortical complexity. (A) Spatiotemporal Lempel–Ziv complexity (top left), average temporal Lempel–Ziv 
complexity (bottom left), normalized spatiotemporal Lempel–Ziv complexity (top right), and normalized average temporal Lempel–Ziv complexity 
(bottom right) of electroencephalogram data for the baseline, maintenance, and recovery periods. (B) Topographical representation of the tem-
poral Lempel–Ziv complexity and normalized temporal Lempel–Ziv complexity for the baseline, maintenance, and recovery periods. For (A), the 
central mark in each box represents the median value, with the edges being the 25th and 75th percentiles. The extending whiskers are the most 
extreme data points determined by the MATLAB algorithm (version 2019b; MathWorks, Inc., USA) to be nonoutliers, and the red crosses are those 
values deemed to be outliers. *Significance (P value shown); Wilcoxon signed rank test with Bonferroni correction for three pairwise comparisons.
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of temporal complexity and beta power demonstrated a pos-
itive correlation and after controlling for spectral changes, 
was mitigated in the no-premedication group, but remained 
significant for the midazolam group (Supplemental Digital 
Content, fig. 8, http://links.lww.com/ALN/C668). This 
suggests an association between complexity and beta power, 
which could be a concurrent effect of midazolam on the 
electroencephalogram. However, a recent study of subanes-
thetic nitrous oxide administration demonstrated decreased 
electroencephalographic complexity (Shannon complex-
ity).13 The effect of various subanesthetic medications on 
cortical complexity in children remains an open question. 
In addition, there may be region specific changes (fig. 7B), 
but further investigation including high-density recordings 
would be required to address this fully.

Leading theories of consciousness posit that the diver-
sity of information in both space and time is important 
for conscious processing.43,44 The biologic interpretation 
of decreases in cortical complexity may represent reduced 
information sharing or processing. In this study, decreases 
in cortical complexity induced by general anesthesia were 
similar to what has been shown in animal models16,45 and 
adult patients.14,17,21,23 The significant decrease during gen-
eral anesthesia of cortical complexity, independent of spec-
tral changes, suggests that measures of complexity may be 
helpful in the development of real-time monitoring modal-
ities across the adult and pediatric populations. It is import-
ant to note that complexity measures in this study reflect 
the level of consciousness despite the age-related changes 
in power occurring during this period of massive neurode-
velopment. When developing monitoring systems, measures 
of the conscious state need to be robust, have high fidelity, 
and be accurate across the population. In our study, there 
was a decrease in all children with both spatiotemporal and 
averaged temporal complexity; however, when the data were 
normalized, nine children in the spatiotemporal and seven in 
the averaged temporal complexity analysis groups had actual 
increases in complexity during the maintenance of general 
anesthesia (Supplemental Digital Content, fig. 6, http://
links.lww.com/ALN/C668). Additional post hoc analysis of 
age, anesthetic dose, or channel rejection did not account for 
this increase (data not shown). Recent work by our group in 
an animal model artificially dissociated the observed level of 
consciousness from various electroencephalographic mea-
sures, including complexity.16 However, as noted in this study, 
just because state-related and neurophysiologic dynamic 
changes can be dissociated in the laboratory setting does 
not mean that they are not correlated during spontaneous 
physiologic, pharmacologic, or pathologic state transitions. 
These findings suggest that a single quantitative surrogate of 
consciousness using normalized complexity analysis may be 
insufficient to reliably determine the level of consciousness 
in all patients and future developmental studies should also 
address combinatorial surrogate measures. In addition, the 
finding of decreased normalized spatiotemporal complexity 

after clinical recovery is not surprising considering that 
functional brain network recovery extends beyond the ini-
tial return of consciousness.46,47

In an effort to confirm that our findings were consistent 
with the spectral characteristics across development shown 
in previous works, we analyzed both the absolute and nor-
malized power of the electroencephalogram in this cohort. 
Similar to previous studies of school-age and adolescent chil-
dren, we observed an age-dependent decrease in absolute 
electroencephalogram power over most brain regions during 
general anesthesia.5,8 In addition, when the power data were 
normalized, regional differences were aligned with develop-
mental structural and functional changes occurring during 
this period.1,48 Specifically, there was a general shift toward 
faster oscillatory activity (i.e., decreased theta and increased 
beta and gamma power).3,4 When we analyzed the spectral 
data during general anesthesia, we found increased absolute 
power, increased delta power, decreased gamma power, and 
anteriorization of the alpha activity, consistent with what has 
been previously shown during this developmental period.5,49,50

Limitations

There are several limitations of this investigation. First, this 
was an observational study without a protocol for a standard 
anesthetic regimen, and although this was pragmatic, we are 
unable to dissect the role of individual anesthetic agents. 
We performed a post hoc analysis to investigate the role of 
nitrous oxide and minimum alveolar concentration values 
influence on complexity. Although we are cautious in inter-
preting these data because of the small subsamples, the find-
ings were consistent with the overall findings. Additionally, 
patient characteristics that may be present and attributable 
to heightened preoperative anxiety could also influence 
complexity and spectral properties. Further, sex differences 
have been shown to affect cortical complexity with devel-
opment, and future larger-scale studies should address this.20 
When considering the Lempel–Ziv complexity measure, 
there are several notable strengths: it is a nonparametric 
measure, can be applied to relatively short data segments, 
and can be used with nonstationary data. However, because 
the measure requires binarization of the original sig-
nal, there exists the possibility for the loss of information 
during the analysis as well as influence by slow waves in 
the electroencephalogram (Supplemental Digital Content, 
fig. 9, http://links.lww.com/ALN/C668). Additionally, this 
study was conducted in the perioperative environment 
and limited by a low electroencephalogram (16 channel) 
density and, in some instances, a loss of information from 
an electroencephalogram channel that has the potential to 
influence the assessment of cortically complexity. However, 
when we repeated our analysis excluding participants with 
channel rejection, the results were similar (data not shown).

In summary, cortical complexity increased with devel-
opmental age and decreased during general anesthesia. 
The age-related increase in cortical complexity could be 
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accounted for by spectral properties but, based on mod-
eling data, is consistent with a maturing brain network. 
By contrast, reductions in complexity during general anes-
thesia extended beyond spectral properties. Overall, these 
findings contribute to the growing body of literature on 
cortical complexity and how this potential neural correlate 
of consciousness is affected by age and anesthetic state 
transitions.
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After the Ether Dome, Bulfinch Drafted His Way to the  
U.S. Capitol

Boston’s Ether Dome (encircled, left), the crown of Massachusetts General Hospital’s Bulfinch Building (left), 
soared to fame 175 years ago after William T. G. Morton’s public demonstration of ether anesthesia. Designated 
a National Historic Landmark in 1965, the Ether Dome is more than a captivating copper cupola. Blending 
essential function with elegant form, the design featured windows (upper right) to illuminate the surgical 
theater below. Its draftsman was Charles Bulfinch, a Bostonian architect renowned for his neoclassical style.  
A year into construction of his namesake building, Bulfinch was recruited to be the “Architect of the Capitol” 
in Washington, D.C. His design for the United States Capitol Dome (lower right), in contrast to that of the 
Ether Dome, relied more on form than function. Its imposing size and aesthetic symbolized the strength of 
the young republic, while its problematic wooden construction required frequent repairs. Although dimin-
utive in its dimensions, the Ether Dome would prove to be Bulfinch’s more enduring legacy; his original 
Capitol Dome was replaced with a larger cast-iron version in 1863. (Copyright © the American Society of 
Anesthesiologists’ Wood Library-Museum of Anesthesiology.)
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