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Readers’ toolbox
Understanding Research Methods

SUMMARY
There are an increasing number of “big data” studies in anesthesia that seek 
to answer clinical questions by observing the care and outcomes of many 
patients across a variety of care settings. This Readers’ Toolbox will explain 
how to estimate the influence of patient factors on clinical outcome, address-
ing bias and confounding. One approach to limit the influence of confounding 
is to perform a clinical trial. When such a trial is infeasible, observational 
studies using robust regression techniques may be able to advance knowl-
edge. Logistic regression is used when the outcome is binary (e.g., intracra-
nial hemorrhage: yes or no), by modeling the natural log for the odds of an 
outcome. Because outcomes are influenced by many factors, we commonly 
use multivariable logistic regression to estimate the unique influence of each 
factor. From this tutorial, one should acquire a clearer understanding of how 
to perform and assess multivariable logistic regression.
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Clinical Scenario
You have just received a STAT call for anesthesia to your 
emergency room. You are asked to administer general anes-
thesia to a 33-year-old pregnant woman who requires an 
urgent cesarean section delivery after transfer from a remote 
hospital. The patient’s level of consciousness decreases, and 
there is concurrent fetal distress. The woman has a history of 
obesity (body mass index, 32.5 kg/m2), pregnancy-induced 
hypertension (ambulatory blood pressure, 146/92 mmHg), 
and gestational diabetes mellitus (HbA1c, 48 mmol/mol). 
You perform a rapid sequence induction, endotracheally 
intubate her, and stabilize her systems while the obstetric 
surgical team performs a cesarean section. A postoperative 
computerized tomography scan reveals intracranial hemor-
rhage. Both mother and neonate are transferred to intensive 
care units for further management.

Rationale for Investigating Factors Associated 
with Outcomes
This patient’s experience and both maternal and neonatal 
outcomes motivates the exploration of a clinical question: 
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what factors are associated with life-threatening conditions 
of pregnant or postpartum women? For the highlighted 
patient, did she have preexisting comorbidities contributing 
to her illness? What factors other than patient character-
istics were influential and potentially led to the delay of 
initial assessment and treatment, for example, the distance 
between the hospital and her residence? Did the hospital 
have the resources to manage her deteriorating condition? 
Did resuscitation choices influence outcomes? Ultimately, 
one wants to understand the potentially preventable or 
reversible factors, and how one could have intervened upon 
them to improve maternal and perinatal neonatal outcomes.

In this Readers’ Toolbox, we will explore the mecha-
nisms and techniques to estimate the potential influence of 
a myriad different “systems” factors (i.e., patient, practitioner, 
hospital, and healthcare region factors) on outcomes of our 
patients (fig. 1). Drawing on the clinical scenario presented, 
we will address techniques to estimate mainly the influ-
ence of patient factors on outcome. Although we will briefly 
explain how to consider multiple levels of influence, including 
variability in practice among clinicians (e.g., differences in 
primary training, volume, or experience in their own prac-
tice) or hospitals, a detailed examination of this is beyond the 
scope of this Readers’ Toolbox. From this Readers’ Toolbox, 
a clearer understanding will be provided of how to perform 
and assess a multivariable regression analyses to advance 
understanding of common clinical questions (box 1).

In clinical and health services research, investigators ide-
ally wish to appreciate, measure, and appropriately account 
for all factors potentially related to clinical outcomes. As 
such, the adaptation of these associations to clinical anes-
thesia may enable prediction of clinical outcomes of our 
patients with more accuracy and certainty.

Determining Associations and the Challenges in 
Estimating Causation
Although some clinical events may be caused by “bad luck” 
(that is, random chance), certain patient, hospital, or process 
of care factors can influence whether an event happens or 
not. Although some such influential factors (called “predic-
tors,” “exposures,” or “independent variables”) may be asso-
ciated with an event (“outcome” or “dependent variable”), 
the association is often insufficient to attribute to a causal 
relation between the two.1,2 In health services research, one 
common goal is to scientifically explore the potential of 
certain exposure variables to “cause” events of interest. For 
this purpose, a number of causation concepts exist to help 
explore the question of causation (Supplemental Digital 
Content, eText 1, http://links.lww.com/ALN/C408).1–4

Several factors must be considered to even attempt to 
establish an association rather than causation. First, one 
must address the many potential forms of bias, defined as 
any systematic error occurring in the design or in the con-
duct of clinical research (box 2). Information bias is due to a 
systematic error in the assessment of a variable. Selection bias 
implies that the study sample is not representative of the 
population intended to be analyzed5,6 and can be used to 
describe the selection of certain patients who subsequently 
receive treatments based on characteristics that differ from 
patients in the general population. Sampling bias is system-
atic error caused by a nonrandom sampling of a population 
that sometimes occurs if a portion of the entire popula-
tion is chosen as potential participants for a study. Indication 
bias can occur when the certain indication for choosing a 
particular intervention (e.g., status of health insurance) also 
impacts the outcome (e.g., tendency of healthier outcome). 
Last, other variables may be related to the exposure of 
interest that have their own unique association(s) with the 

Box 1. What to Look for in Research Using 
This Method

When assessing associations and effects derived from regres-
sion analyses in clinical research articles, ask the following 
questions:

•	 How reliable are the associations?
•	 Are the associations generalizable to other populations?
•	 Does exposure or intervention precede outcomes?
•	 Is there a dose–response or an exposure–response 

relationship?
•	 Are the associations relevant based on current scientific 

evidence?
•	 How are the potential biases, including confounding, con-

sidered and adjusted?
•	 Are the variables of the regression models selected 

based on the study hypothesis?
•	 How is the model’s fit assessed?
•	 Are the number of variables in the regression models 

appropriate?
•	 Is there any interaction among the variables of the 

regression models?
•	 Is there any hierarchical structure related to the 

associations?
•	 How meaningful and confident are the findings of the 

regression models?
•	 Does the study adhere to consensus reporting guidelines?

Box 2. Bias in Clinical Research

Bias: a systematic error in the design, selection of patients or 
recruitment (e.g., selection bias), data collection (e.g., measure-
ment bias), or analysis resulting in an incorrect estimation of the 
true effect of one variable upon another

Confounding: a variable that influences both the dependent 
variable and independent variable causing a spurious or altered 
association

Effect modification: occurs when a variable modifies an actual 
association of an independent variable on a dependent variable
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outcome of interest. Confounding occurs when two factors, 
themselves related, are associated with the same outcome or 
effect, and the measure of association of one variable with 
the outcome is distorted by this other, confounding variable 
(fig. 2).7

One approach to limit the influence of confounding is 
to use an experimental design such as a randomized clinical 
trial. In such a design, individuals are randomly allocated 
to particular groups of sufficient size so that such potential 

confounding variables are also randomly, but evenly, distrib-
uted among the groups. Some of these confounding vari-
ables will be prespecified and measured, whereas others may 
remain unknown and unmeasured. Regardless of measured 
or unmeasured confounding variables, when between- 
or among-group comparisons are made, the influence of 
these potential confounding factors “cancel” each other 
out with only the allocation to treatment being different 
between groups. Aside from minimizing the chance of bias 

Fig. 1.  Conceptual framework of multilevel factors.
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and confounding, there are related constructs that may help 
assess associations (box 2 and Supplemental Digital Content, 
eText 1, http://links.lww.com/ALN/C408).2,4,6

To provide a standard framework for designing and 
reporting observational studies, there are a number of 
guidelines for specific study designs to help authors and 
readers understand the information required to rational-
ize and justify putative associations.8–10 These guidelines 
include Strengthening the Reporting of Observational 

Studies in Epidemiology (STROBE) statement guidelines 
for reporting observational studies, the Reporting of studies 
Conducted using Observational Routinely-collected health 
Data (RECORD) statement, and Transparent Reporting of 
a multivariable prediction model for Individual Prognosis 
Or Diagnosis (TRIPOD), to name a few.8–10 Note that 
the development of all analysis plans is encouraged before 
accessing the data set(s) to reduce the potential impact of 
biases.11 Box 3 summarizes other approaches to address 

Fig. 2.  Causal diagram: Confounding.
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potential confounding, such as matching and stratifica-
tion.12 In this Readers’ Toolbox, we will focus on tackling 
the issue of establishing associations and the challenges of 
confounding at the patient level with a focus on the most 
commonly used approach called regression.13 Note that the 
regression described here is not the foundation of estab-
lishing causality but is rather one approach to assess the 
association between an exposure variable and an outcome 
of interest.

Establishing Associations: Regression
Regression analyses assist in estimating the magnitude and 
direction of the association between variables and clinical 
or statistical significance. A common first approach is to 
examine the relationship between an independent variable 
(or exposure variable) and a dependent variable (or out-
come variable). This is called a univariate regression equa-
tion, which refers to when there is a single exposure. The 
association of many independent variables with the depen-
dent variable of interest can be assessed simultaneously in a 
“multivariable” or multiple regression equation. We employ 
regression to evaluate the association between an exposure 
and an outcome of interest, accounting for the influence of 
(measured) confounding (box 3). Note that this is different 
from the development of prediction models using regression 
where the aim is to identify all of the factors that best pre-
dict whether an outcome will occur.

Regression can also be classified based on the nature of the 
outcome of interest. When the outcome is continuous (e.g., 
blood pressure, measured in mm Hg), linear regression is typi-
cally used. This is where the regression assumes a linear relation 
between the outcome and the exposure variable. When the 
outcome is binary (e.g., intracranial hemorrhage or not), logistic 
regression is typically used by modeling the natural log for the 
odds of an outcome. Although linear regression can be used for 
a binary outcome in certain situations,14 a detailed discussion of 
that approach is the beyond the scope of this Readers’ Toolbox. 
When the outcome is “counts,” Poisson regression may be 
employed. For cases in which the outcome is continuous and 
a linear relationship may not be appropriate to use, other types 
of regression that take into account the structure of the data 
may be more appropriate. “Robust” regression is when there 
is concern about extreme or outlying data points, and non-
parametric regression is when the distribution of outcomes 
is not normal, for example in the case where the distribution 
is not on a bell curve.13,15 Ideally the type of regression model 
is selected in direct response to the nature of the relationship 
between the outcome and the exposure and distribution of the 
raw data that will be modeled.13

Linear Regression

Suppose one wishes to explore an association between 
pregnancy week (that is, gestational age of the fetus) as the 
“exposure” variable and maternal degree of proteinuria as 

the “outcome” variable, because the pregnancy-induced 
hypertension of the patient in the case scenario often causes 
proteinuria. Because the outcome can be considered a con-
tinuous variable (measured in grams/day), a simple linear 
regression might be applied to obtain an estimate of the mag-
nitude of association between gestational age and proteinuria.

Now suppose one also wants to include the influence of 
obesity (measured as body mass index in kg/m2) because there 
may also be a dose–response relationship between body mass 
index and protein loss in the urine. In this case, a multivariable 
regression analysis might be used to include body mass index 
together with gestational age. In this regression model, you 
would assume a straight-line (linear) relationship between one 
continuous exposure variable (i.e., gestational age) and the 
continuous outcome measure (i.e., proteinuria), keeping the 
other exposure variable constant (i.e., body mass index; fig. 1).

Univariate Logistic Regression

Suppose one is interested in the outcome of intracranial 
hemorrhage during pregnancy, a binary outcome rather 

Box 3. Methods of Addressing Potential 
Confounding

In Design
•	 Randomization: In randomized trials, the distribution 

of measured and unmeasured confounding should be 
similarly distributed between groups if the sample size is 
sufficiently large.

•	 Matching: In observational studies, forcing comparison 
groups to have similar distributions of critical characters 
can achieve the adjustment of measured confounding. 
Inevitably, matching reduces the sufficient sample size of 
comparisons.

In Analysis
•	 Stratification: Stratifying data based on measured 

confounders can minimize the effect of measured con-
founding, but stratification is challenging when multiple 
confounders exist (which is usually the case).

•	 Regression: Regression analysis can incorporate multi-
ple measured potential confounders to attempt to identify 
the independent influence of a variable on the outcome of 
interest. Regression models vary in the degree to which 
they fully explain the outcome of interest.

•	 Propensity scores: Somewhat similar to matching, 
propensity scores attempt to address confounding by 
accounting for the covariates that predict receiving the 
treatment and creating more similar groups of patients 
who differ only on the exposure of interest. The propen-
sity score is the probability that a patient would receive 
the treatment – a way to simulate the randomization 
of patients to two groups of exposures.9 Multivariable 
regression models can compute the probability, where 
the treatment is the outcome, and the covariates are 
predictors.

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/133/3/500/514826/20200900.0-00011.pdf by guest on 17 April 2024



	 Anesthesiology 2020; 133:500–9	 505

Determining Associations in Clinical Anesthesia

Aoyama et al.

than a continuous outcome, and having this life-threatening 
condition or not, in relation to preexisting systolic blood 
pressure (in mm Hg). Other factors might also influence the 
outcome, such as preexisting diabetes (measured by HbA1c) 
and obesity (in kg/m2). In this case, the relationship between 
the variables is not linear because the binary outcome does 
not vary the “degrees” of the issue along a straight line, so 
a logistic regression model is more appropriate. A univar-
iate logistic regression includes one exposure variable only, 
whereas a multivariable logistic regression includes mul-
tiple exposure variables. We will explore both of these in 
the context of the example presented above. The patient 
in our clinical scenario may have a risk of developing an 
intracranial hemorrhage because of her pregnancy-induced 
hypertension. As such, there may be an association between 
intracranial hemorrhage (here a binary outcome of “yes” or 
“no”) and systolic blood pressure (a continuous indepen-
dent variable in mm Hg). The intracranial hemorrhage as an 
outcome can be coded as 0 (“no”) or 1 (“yes”). However, 
systolic blood pressure is a continuous variable, which 
makes developing an association where the outcome is 0 or 
1 a challenge, because there is not a straight-line relation-
ship between this variable and the binary outcome. Plotting 
0/1 values on the y axis and systolic blood pressure on the 
x axis and fitting it with a regression line (Supplemental 
Digital Content, fig. 2, http://links.lww.com/ALN/C408) 
shows that a patient with systolic blood pressure of less than 
80 mmHg will have a predicted probability of intracranial 
hemorrhage of less than 0. This situation is clinically very 
unlikely. Further, the patient in the clinical scenario with a 
systolic blood pressure of 146 mmHg will have a predicted 
probability of intracranial hemorrhage greater than 1, and 
although clinically possible, it is likely that not all patients 
have this probability.

Because this analysis provides situations that are not 
realistic clinically, one can use a logistic regression model 
and take the log odds of the outcome. The “odds” of the 
event happening (intracranial hemorrhage in this case) is 
the probability of the event divided by the probability of 
no event (p / [1 – p]). By applying the natural log to the 
odds, the probability is transformed from (0,1) to (−∞,+∞), 
which is the fitted red curve for the logistic regression 
with systolic blood pressure in the model (Supplemental 
Digital Content, fig. 2, http://links.lww.com/ALN/C408). 
Although logistic regression is the most common type of 
regression relationship in the medical literature, there are 
other models that might be a more accurate reflection of 
the real relationship, for example, probit regression and lin-
ear probability modeling.14,16 In addition, when considering 
marginal effects, which are defined as how the predicted 
probability of a binary outcome changes with a change 
in a risk factor, selection of linear versus logistic regression 
matters little.17 Logistic regression is more popular in part 
because the coefficients can be interpreted in terms of odds 
ratios and can imply the probability outside of 0 to 1.

Multivariable Logistic Regression

Multivariable logistic regression is used when more than 
one factor, called covariates, may have an association with 
the outcome of interest in addition to the main exposure of 
interest. In the clinical scenario presented, this would be the 
case when it is believed that HbA1c of diabetes and body 
mass index of obesity (measured as BMI in kg/m2) should 
be included because of their potential dose–response rela-
tion with intracranial hemorrhage and hence their impor-
tance as covariates for the exposure variable of interest, the 
systolic blood pressure.

In logistic regression, coefficients have a simple inter-
pretation. For example, logistic regression may be used 
to answer the questions about the odds ratio associated 
with a unit increase in systolic blood pressure leading to 
intracranial hemorrhage. By exponentiating both sides of 
association above while controlling for the other variables 
in the model, the odds ratio associated with systolic blood 
pressure can be computed. With an odds ratio of 1.20, 
each additional unit (for example, 10 mmHg) of systolic 
blood pressure increases the odds of intracranial hem-
orrhage by 20%, when the other variables in the model 
are controlled for. Note that negative coefficients trans-
late into odds ratios less than 1, whereas positive coeffi-
cients translate into odds ratios larger than 1. A distinction 
between “multivariable,” when there is more than one 
independent variable in a regression model, must be made 
with “multivariate,” when there is more than one outcome 
in a regression model. Importantly, odds ratios are neither 
probabilities nor risk ratios, but the probability of event 
divided by the probability of no event. Another limitation 
of odds ratios is that because they are conditional on the 
sample and the model specification, odds ratios should not 
be compared across different studies with different sam-
ples. More details of practical aspect of odds ratios can be 
found elsewhere.18

How to Select Variables for a Regression Model

This is a topic of great debate. The most important and 
primary principle of variable selection is that variables 
chosen to examine for associations should be based on 
the research question and a sense of what is clinically or 
biologically plausible, based upon existing literature or 
clinical experience. In terms of selecting the maximum 
number of variables in a model, one rule of thumb is that 
there should be 5 to 10 outcome events for each variable 
added to the model. If 50 patients experienced an intra-
cranial hemorrhage in the clinical scenario data set, then 
one might be justified in exploring associations of 5 to 
10 variables with that outcome. One of the downsides of 
having too many variables in a model is that the model 
becomes too complex and too tailored to an individual 
data set, both to the individual data points and to the noise 
in the data set. Although the goal is often to have results 
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representative or generalizable to the population, when 
the model is “overfitted” to a specific data set, this will 
usually not be the case.

How to Determine the Importance and Confidence of 
Variables Included in a Regression Model

One mechanism for this is to decide which and how many 
variables are believed to be associated with the outcome. In 
a multivariable regression equation, statistical software aids 
in learning the coefficients and P values.

Another commonly used method is to perform a stepwise 
regression, for example, when unsure about which variables 
to investigate.19 This refers to an automated selection algo-
rithm performed by statistical software according to certain 
preset rules. Variables are entered and/or removed from a 
regression model, sequentially and one by one on the basis 
of their relative statistical significance. There are three com-
mon types of stepwise regression: (1) forward selection, (2) 
backward selection, and (3) stepwise selection (which is a 
combination of forward and backward selection). A major 
challenge to this automated approach is that the clinical 
context and relevance of the relationships are not known 
to the statistical software, so it may be misleading or come 
up with putative and statistically significant associations that 
do not make clinical sense. For example, clinically relevant 
factors may be dropped from the model if the statistical 
significance is below a prespecified threshold, which may 
impact the most clinically valid estimate of the association 
between an exposure and outcome. Given the large data 
sets available, hypothesis-driven variable selection is often 
preferred.

How to Assess Relationships between the Exposure 
Variables in a Regression Model

Sometimes two variables that one might think are “differ-
ent” and decide to include in a model are actually very sim-
ilar (for example, body mass index and body weight). When 
one exposure variable in a multiple regression model can be 
linearly predicted from the others with a substantial degree 
of accuracy, this is referred to as “collinearity” (i.e., one vari-
able is collinear with the other). When collinearity exists to 
a large degree, it is hard for statistical software to know how 
to best assign coefficients to each variable. The amount of 
collinearity between all pairs of variables in a collinearity 
matrix can be assessed. If two variables are collinear with 
values greater than 0.5 to 0.8, one might consider choosing 
only one of the pair for inclusion in the regression equation.

Although collinearity means correlation among vari-
ables in a regression model, if two variables interact, the 
relationship between each of the interacting variables and 
the outcome variable depends on the value of the third 
interacting variable.20 This relationship makes it more dif-
ficult to predict the consequences of changing the value of 
a variable. For example, in the clinical scenario, there are 

two variables of hypertension and obesity that may increase 
the risk of intracranial hemorrhage. One may be concerned 
about an interaction between hypertension and obesity, 
and if that is the case, it can be determined whether the 
measure of association from one variable is influenced by 
another variable by creating and adding an interaction variable 
(Hypertension*Obesity) into the model. If the coefficient 
of this interaction variable is clinically important and statis-
tically significant, it can be concluded that the relationship 
between intracranial hemorrhage and hypertension may 
depend on the presence of obesity (or vice versa).

Key Questions to Consider When Developing or 
Interpreting Regression Analyses
Logistic regression needs to be developed based on four 
key assumptions, which are slightly different from the 
assumptions used for linear regression (Supplemental 
Digital Content, eText 2, http://links.lww.com/ALN/
C408): (1) the model adequately fits the data – assessed 
by the Hosmer–Lemeshow statistical goodness-of-fit test 
and C-statistics; with an appropriate fit indicating that the 
model adequately predicts the outcome; (2) the model is 
not overspecified or overfitted – as a conservative rule of 
thumb, the number of variables should be at least 5 to 10 
events per variable; otherwise the model may be less precise 
through producing biased estimates and under- or overes-
timated variance; (3) there are no overly influential obser-
vations – influential data points may artificially skew the 
regression line especially in small data sets; there are many 
different statistics via plots to visually identify pattern of 
the data; and (4) the observations need to be independent 
of each other – with the same caveats as linear regression 
(Supplemental Digital Content eText 2, http://links.lww.
com/ALN/C408].21,22 A more detailed discussion of these 
and other considerations for assumptions to develop regres-
sion models is detailed well in recent reviews.13,21,23,24

How to Assess Performance (Goodness-of-Fit) of a 
Regression Model

The coefficient of determination, or R2, is a goodness-of-
fit measure for a linear regression model. R2 is a statistical 
measure of how close the data are fitted to the regression 
line, interpreted as the amount of variation in the depen-
dent variable that is explained by the independent variable 
and expressed as a percentage (R2 can vary from 0 to 1). A 
useful guide is that an R2 value between 0 and 0.5 indicates 
a poor fit, between 0.51 and 0.70 indicates a moderate fit, 
and between 0.71 and 1.00 indicates a good fit. Note that 
one could have statistically significant results with a poor fit, 
and it is important to know that statistical significance does 
not imply a good fit.

The C-statistic is a goodness-of-fit measure for a logistic 
regression model that investigates how well the model dis-
tinguishes the outcome and referred to as the discrimination 
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of a model. The C-statistic is also referred to as the area 
under the receiver operating characteristic curve (abbrevi-
ated as AUC). The closer the C-statistic is to 1, the better 
the model is at distinguishing an outcome. The set of val-
ues described above for R2 also applies to the C-statistic. 
In certain circumstances of uncommon and rare outcomes 
(defined as those that occur less than 10% of the time) that 
are often faced in the field of anesthesia, the area under 
the precision-recall curve (abbreviated as AUPRC) reflects 
better discrimination than the area under the receiver oper-
ating characteristic curve.25 The Hosmer–Lemeshow test 
is another goodness-of-fit measure for a logistic regression 
model that investigates how close values expected by the 
model are to the observed values, also known as the cal-
ibration of a model. When the Hosmer–Lemeshow test is 
not statistically significant, it indicates that the numbers of 
events is not significantly different from that expected by 
the model, demonstrating that the overall model fit is good.

How to Assess Your Confidence in the Results of a 
Regression Model

Regression coefficients of the exposures of interest demon-
strate the relationship between an exposure and the 
response. In a linear regression model, the coefficient value 
represents the mean change in the response given per one-
unit change in the exposure. As described previously, in a 
logistic regression, exponentiating the coefficient of the 
exposure provides the odds ratio associated with the expo-
sure. Negative coefficients translate into odds ratios less than 
1, whereas positive coefficients translate into odds ratios 
greater than 1. Regression coefficients should be accompa-
nied by 95% CI (also written as 95% Cis), which provides 
the range of values within which the coefficient is likely to 
reside. Narrower CI values denote greater precision of the 
point estimate (i.e., the coefficient or odds ratio calculated). 
In either linear or logistic regression, if the 95% CI of the 
coefficient of the exposure is across 0, the exposure is not 
statistically significant, at least at that level of confidence.

Why Clinically Meaningful Difference Is Preferred 
to Statistical Difference
In contemporary medical clinical research, effect sizes and 
CI are preferred over the use of P values.26,27 Effect sizes 
represent the magnitude of an effect from either an expo-
sure or intervention, and CI values represent the certainty 
or precision around the magnitude of the effect.26 P values 
represent the probability of the observed finding, measuring 
the statistical inference of the observed finding based on 
the study hypothesis. P values indicate statistical difference, 
which indicates whether the findings are statistically signif-
icant, based on the prespecified value (conventionally set at 
0.05). However, using effect sizes with CI, one may observe 
the clinical impact of the observed finding. Effect sizes are 
reported in various ways, including mean differences, risk 

ratios, odds ratios, and variations of correlation. Clinically 
meaningful difference (also called minimal clinically important 
difference) expressed as effect size is an estimation that sur-
passes a minimally important cutoff point based on clini-
cal perspective. This measure provides the patient with the 
smallest effect that is beneficial in the presence of an inter-
vention or the absence of exposure.27 Clinically meaningful 
difference is vital to interpret study findings in a clinical 
context. It is essential to predetermine the clinically mean-
ingful difference when developing a study protocol so as to 
calculate the sample size required to show the difference 
and choose the appropriate candidate variables in regres-
sion models.11 Sample size for a study is determined by 
effect sizes, significance level (conventionally set at 0.05), 
and power (conventionally set at 0.8), with power being a 
probability of finding a real effect.

When evaluating regression models, the following ques-
tions are important to consider in the interpretation of the 
analyses: (1) Were important confounders adjusted in the 
study design and the models? (2) Was the sample size of the 
study prespecified based on effect sizes, significance level, 
and power? (3) Was the number of covariates in the model 
appropriate in light of the number of events in the study? 
(4) Other than statistical difference, what is the clinically 
meaningful difference (i.e., magnitude) of the findings, and 
are the findings large enough to change practice? (5) What 
is the certainty (i.e., precision) of the findings? (6) If there 
is no significant statistical difference, is this truly due to no 
effect or due to a lack of precision? (7) Were sensitivity anal-
yses prospectively defined and robust enough to assure the 
validity of the findings?

What to Do When There Are Multiple “Levels” of 
Exposures That May Influence Outcomes
When data collection is longitudinal in nature and contains 
multiple, repeated observations per participant over time, 
it is highly likely that these measures will not be indepen-
dent of one another.28,29 For example, in a woman with 
preeclampsia in whom blood pressure is repeatedly mea-
sured over the course of her pregnancy, an elevated blood 
pressure observed once is likely to be high again at another 
time. This leads to a problem where the standard error of 
the estimates in a regression model can be underestimated, 
and the precision can be overestimated. Longitudinal stud-
ies need to account for the possible correlation between the 
repeated measurements within an individual as described 
elsewhere.30

When there is a hierarchical structure to the data, in 
which observations are seen within individuals and those 
individuals are clustered together in groups, individ-
uals within a cluster may be more similar to each other 
than those individuals in different clusters (fig.  1).28,29,31 
For example, blood pressure among patients in a high-
risk pregnancy outpatient program is likely to be higher 
than blood pressure readings for patients in a midwifery 
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practice. This effect can lead to an underestimation of the 
influence of correlated error in a regression model and an 
overestimation of the association of an exposure variable 
with the outcome of interest.

Individual patients with pregnancy-induced hyperten-
sion have their own individual characteristics (e.g., weight, 
age, parity) that influence an outcome, but influential fac-
tors may also exist at the hospital level (e.g., a blood pres-
sure clinic, a specific approach to blood pressure control, 
or a high-risk obstetrician). Together, different variables are 
structured within a more complex hierarchy that might 
better represent real-world care.

Ignoring issues of nonindependence may result in an 
incorrect estimation of the magnitude of a relation between 
a list of variables and an outcome. The issues may be due to 
temporally related data or data that are clustered (hierarchi-
cal).32 Fixed effects analysis is one way to analyze temporally 
related (repeated measures) data to account for unmeasured 
time-invariant factors.33 The challenge of correcting regres-
sion modeling to account for such a structure (i.e., use of 
mixed models) is described elsewhere.29,34

Conclusions

This Readers’ Toolbox has provided explanations of how 
to estimate associations of patient factors with clinical out-
come of interest, considering bias and confounding, as well 
as how to determine and quantify the degree of associa-
tions using common regression models. The importance 
of choosing appropriate variables for a regression model 
is highlighted, underscoring the need to ensure that the 
baseline assumptions of a selected model are correct and 
to assess model performance and your confidence in the 
results as derived from regression analyses (box 4).
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