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Readers’ toolbox
Understanding Research Methods

The causal relationship between smoking and lung can-
cer is firmly established; however, this was not always 

the case. In fact, Ronald Fisher, the eminent statistician, 
fervently rejected the notion that smoking caused lung 
cancer1—a denial perhaps fuelled by his own significant 
tobacco habit. He instead asserted that the strong associa-
tion could be due to a smoking gene responsible for both 
smoking behavior and lung cancer (i.e., a case of simple 
confounding). It took many years for clinicians and scien-
tists to finally resolve the issue; a delay that cost many lives.

Many of the questions we strive to answer with anes-
thetic research are also of a causal nature; for example, does 
hypotension cause perioperative stroke? or does total intravenous 
anesthesia improve survival after cancer surgery? To improve clin-
ical outcomes, it is imperative to determine cause–effect 
relationships, rather than simply describe associations. If we 
fail to do so, we risk subjecting patients to futile or harmful 
interventions or missing beneficial treatments.

Systematic error—comprising confounding and other 
bias—is a key barrier to the valid estimation of causal effects. 

SUMMARY
Making good decisions in the era of Big Data requires a sophisticated approach 
to causality. We are acutely aware that association ≠ causation, yet untangling 
the two remains one of our greatest challenges. This realization has stimu-
lated a Causal Revolution in epidemiology, and the lessons learned are highly 
relevant to anesthesia research. This article introduces readers to directed 
acyclic graphs; a cornerstone of modern causal inference techniques. These 
diagrams provide a robust framework to address sources of bias and discover 
causal effects. We use the topical question of whether anesthetic technique 
(total intravenous anesthesia vs. volatile) affects outcome after cancer surgery 
as a basis for a series of example directed acyclic graphs, which demonstrate 
how variables can be chosen to statistically control confounding and other 
sources of bias. We also illustrate how controlling for the wrong variables can 
introduce, rather than eliminate, bias; and how directed acyclic graphs can 
help us diagnose this problem.

This is a rapidly evolving field, and we cover only the most basic elements. 
The true promise of these techniques is that it may become possible to make 
robust statements about causation from observational studies—without the 
expense and artificiality of randomized controlled trials.
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Random error can also mislead us but is generally over-
come by increasing sample size. Systematic error, however, 
is not eliminated by increasing sample size (in fact a biased 
estimate might misleadingly appear to be more certain due 
to the ensuing lower P values) and so alternative strategies 
are required. We heavily rely on randomization to minimize 
selection bias and confounding and to establish causation, 
with blinding to minimize measurement bias. However, 
randomized, controlled trials are not immune from bias, and 
they are a limited resource due to the expense, effort, and 
large numbers of participants required. Thus, there is a patent 
need to obtain better estimates of causal effects from obser-
vational studies, particularly with the advent of Big Data.2 
Recent years have seen a flurry of interest in causality and 
refinements of causal inference techniques—particularly in 
the fields of epidemiology and the social sciences—which 
could address this need in perioperative research.

The main focus of this article is directed acyclic graphs, 
which have been popularized by Judea Pearl3 and others.4,5 
These causal diagrams visually capture the complex interre-
lationships between important variables, and offer a robust 
framework to comprehensively address bias. Readers are 
increasingly likely to encounter these diagrams, as some 
journals have already recommended their inclusion to 
authors reporting observational studies.6,7 We introduce the 
components and taxonomy of directed acyclic graphs in 
general terms and follow with specific examples relevant to 
anesthesiology, to illustrate how these diagrams might help 
researchers with study design and analysis and clinicians 
with interpretation of analyses reported in the literature. 

The underlying ideas are fairly simple but do require the 
reader to devote some time to diligently think about the 
sometimes-subtle nuances within the relationships of all the 
factors that influence the outcome of any study under con-
sideration. Box 1 is a brief summary of important points for 
the reader to consider when encountering causal diagrams 
in scientific reports. Because some of the terminology is 
quite technical and will be unfamiliar to most readers, a 
glossary is included at the end of this article.

Causal Diagram Essentials
The primary research question defines the causal relation-
ship of interest. This relationship typically takes place within 
a wider system of interrelated variables. The directed acy-
clic graph is a visual representation of this causal structure. 
The directed acyclic graph is constructed around the exposure 
(variable which exerts influence) and the outcome (affected 
variable). Arrows represent causal relationships between vari-
ables, which (with sufficient sample size) generate statistical 
associations. The arrows are always directed from the variable 
exerting the influence toward the affected variable. Figure 1 
is a simple example which illustrates the three basic elements 
(A–C) of directed acyclic graphs, and how these might come 
together to form a complete directed acyclic graph (D).

A pathway refers to any series of arrows that connects two 
variables, regardless of the direction of the arrows. Pathways 
may be open or closed. Open pathways generate statistical 
associations, but closed pathways do not. The exposure and 
outcome may be linked by causal pathways and noncausal 
pathways. The research aim is to quantify the strength of the 
causal pathway, which can only be done if any noncausal 
pathways are closed or (equivalently) blocked.

Causal Pathways (e.g., X→M→Y)

The exposure (X) might cause the outcome (Y) directly or 
through an intermediate process or variable called a mediator (M). 
The causal relationship (fig. 1A) can therefore be represented 
by a single arrow (X→Y), or by a chain of arrows containing 
one or more mediators (e.g., X→M→Y). The single arrow 
indicates that X influences Y directly, whereas the chain indi-
cates that X influences Y first by influencing an intermediate 
variable M, which in turn influences variable Y. For example, 
smoking (X) might cause lung cancer (Y) directly, or indi-
rectly by first causing inflammation and chronic obstructive 
pulmonary disease (M), which is also thought to play a causal 
role in the development of lung cancer.

A causal pathway is defined as one in which all arrows 
point in the same direction from the exposure toward the 
outcome. There may be more than one causal pathway 
between the exposure and outcome if there is more than 
one potential mechanism of action, and the choice of how 
many mediators to include will depend on the question at 
hand. The total effect of the exposure on the outcome is the 
sum or net effect of all direct and indirect causal pathways.

Box 1. What to Look for in Research Using 
This Method

Is the primary causal question clearly stated?

Is the causal diagram consistent with existing knowledge?

Are there any important variables missing from the causal 
diagram?

The diagram must include:
•	 All relevant variables (not just those easily available or 

measured)
•	 Any variables which influence any two variables in the 

directed acyclic graph
•	 Any variables used for statistical control

Is the causal diagram consistent with the data-generating process?
•	 Consider study design and inclusion and exclusion criteria.

Have any arrows been omitted? Absent arrows represent strong 
assumptions.

Check that no feedback loops exist.

Are the statistical methods used consistent with the directed 
acyclic graph?
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Confounding Pathways (e.g., X←C→Y)

Confounding pathways occur when the exposure and the 
outcome have shared causes or parents. These noncausal 
pathways are naturally open and represent associations 
already present in the populations we study. In figure 1B, 
X and Y will vary together in response to the confounder 
(C) and the association generated by this pathway will bias 
the estimated causal effect, unless it is addressed somehow. 
For example, Fisher postulated a smoking gene (C) might 
both influence smoking behavior (X) and cause lung cancer 
(Y). This could not be confirmed or refuted in his time—
but such a gene has since been found to exist; however, it 
accounts for only a small fraction of the overall association 
between smoking and lung cancer.8

Confounding pathways begin with an arrow directed 
toward the exposure, and the arrows don’t all point in the 
same direction. As with causal pathways, there may be mul-
tiple confounding pathways between the exposure and the 
outcome, and the confounding bias is the sum or net effect 
of all these pathways.

Collider Pathways (e.g., X→Z←Y)

A variable which is caused or influenced by (a descendant 
of) two other variables is known as a collider. Equivalently, 
a collider is any variable in a directed acyclic graph that has 
two arrows colliding into it, for example variable Z in fig-
ure 1C. Pathways are blocked by colliders, meaning that path-
ways containing colliders do not naturally generate statistical 

associations between the variables they link. Extending 
our example, smoking (X) and lung cancer (Y) could both 
decrease weight (Z); smoking because of appetite suppressant 
effects of nicotine, and lung cancer because of cachexia. As 
expected intuitively, weight doesn’t affect the observed asso-
ciation between smoking and lung cancer. In directed acyclic 
graph terms, this is because weight is a collider, so the pathway 
is closed and does not generate a statistical association.

Path Rules and Bias
An open pathway is any pathway which generates a statistical 
association between the connected variables; the simplest 
special case of this being a causal pathway. A closed pathway 
is a pathway which does not generate a statistical association; 
the simplest example being when two variables are linked 
by a collider. Any noncausal pathways that do not contain 
collider variables are open and represent the phenomenon 
known as confounding. Conversely, noncausal pathways 
that contain colliders are closed and do not generate bias.

Correct specification of the direction of arrows in a 
directed acyclic graph is critical due to the distinct prop-
erties of collider variables. For example, in figure 1D the 
pathways X→M→Y and X←C→Y are open, and the 
pathway X→Z←Y is closed. The observed association is 
the net effect of all open pathways, so the causal X→Y asso-
ciation is confounded by the open X←C→Y pathway, but 
not by the closed X→Z←Y pathway.

Fig. 1.  Elements of directed acyclic graphs. (A) A causal pathway between the exposure (X) and the outcome (Y). X influences Y through 
its effect on the mediator (M). (B) A noncausal pathway between X and Y due to a shared cause (the confounder-C). (C) A closed pathway 
between X and Y due to a shared effect (the collider-Z). (D) A complete causal graph of these pathways. The causal relationship of interest 
(blue pathway) cannot be quantified because of confounding (red pathway). The green pathway does not bias the relationship because it 
closed by the collider (Z).
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Conditioning

The status of pathways can be changed by conditioning. 
Conditioning refers to any action which renders an associ-
ation conditional on other variables; essentially by restrict-
ing the variable or variables to a particular level or range of 
values. Some common forms of conditioning are listed in 
table 1. Conditioning includes most statistical control (and 
we use these terms interchangeably); for example, when vari-
ables are included in multivariable models or used to classify 
participants into subgroups for analysis. Conditioning is indi-
cated graphically by drawing a box around the variable.

Closing Pathways

Conditioning on a variable on an open pathway will block 
that pathway. The aim is usually to remove bias arising 
from confounding pathways. If we consider figure  1D, 
controlling for C closes the X←C→Y pathway and 
removes the confounding. For example, when examining 
the association between smoking (X) and lung cancer (Y), 
performing the comparison after first dividing participants 
into groups according to their genotype—or alternatively 
including the genotype in a multivariable statistical model— 
would remove the confounding by smoking gene (C). 
Conditioning on a mediator is generally detrimen-
tal, as this blocks a causal pathway and will usually bias 
the estimation of the causal effect toward the null. For 
instance conditioning on chronic obstructive pulmonary 
disease (M) would remove part of the causal association 
between smoking (X) and lung cancer (Y) by blocking the 
X→M→Y pathway.

Opening Pathways

Conditioning on a collider variable has a quite different 
effect (see box 2 for a comparison of confounder and 
collider variables). Conditioning on a collider variable 
opens the pathway where it was previously closed, and the 
opened pathway will introduce bias as it is noncausal. For 
instance, if we were to control for variable Z in figure 1D, 
we would open the previously closed pathway (X→Z←Y). 
Returning to our smoking example, if we were to control 
for the collider weight (Z), we would introduce bias by 

erroneously opening a noncausal pathway between smoking 
(X) and lung cancer (Y).

With the causal diagram approach, selection bias is defined 
broadly as any associations arising from pathways opened by 
conditioning on collider variables.9,10 Selection bias is often 
introduced before analysis, for example when participant 
inclusion is based on specific inclusion or exclusion criteria, 
or restricted or influenced in other ways. For instance, if we 
examined the association between smoking and lung cancer 
in patients attending a hospital respiratory clinic, then clinic 
attendance would act as an alternative collider variable (Z) 
for our example, because patients might attend owing to lung 
cancer or lung cancer symptoms or to other smoking relating 
diseases. The association between smoking (X) and lung (Y) 
cancer in our sample would be biased because we condi-
tioned on clinic attendance (Z) as we collected our data, and 
in doing so created a noncausal pathway. Box 3 provides a 
more detailed explanation and example of this phenomenon, 
which is somewhat less intuitive than confounding.

Table 1.  Forms of Conditioning: Essentially Any Action That 
Renders an Association Conditional on a Particular Variable by 
Limiting That Variable to a Certain Level or Range

Common Forms of Conditioning

  Restriction/selection
  Standardization/weighting
  Stratification/subgroups
  Matching
  Inclusion in multivariable regression models

Box 2. Important Differences between 
Confounder and Collider Variables

Confounder Variable (C) Collider Variable (Z)

When left unadjusted  
creates a noncausal  
association between  
X and Y—confounding.

When left unadjusted  
does not create any  
noncausal association 
between X and Y.

Adjustment for the  
confounder removes the 
noncausal association 
between X and Y.

Adjustment for the  
collider creates a noncausal 
association between X and 
Y—selection bias.
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Using Directed Acyclic Graphs to Make Causal 
Inferences
The directed acyclic graph must be complete to allow valid 
estimation of causal effects. The steps involved in construct-
ing a complete directed acyclic graph are outlined in box 4. 
It is important to include all shared causes of the exposure 
and the outcome, and any shared causes of any two variables 
already in the DAG. All relevant variables must be included, 
even those which cannot be measured. The directed acyclic 
graph should accurately depict the structure of confound-
ing pathways and any pathways opened by conditioning 
during data collection or analysis. The term acyclic refers to 
the rule that feedback loops are not permitted; you can-
not follow a pathway forward from a variable back to itself. 
The directed acyclic graph encodes the assumptions which 
underpin the analysis, and also the implied statistical rela-
tionships between variables. Of note, omission of an arrow 
between a pair of variables represents a strong assumption 

Box 3. Colliders – Why Conditioning on a Common Effect Can Introduce Bias 

Imagine a prospective observational study investigating factors affecting postoperative mortality. To reduce the burden of data collection 
and ensure a reasonable event rate, participants are selected according to certain inclusion criteria; namely at least one of (1) age over 60 
yr or (2) surgical duration over 2 h. We assume here for simplicity that there is no baseline association between age and surgical duration 
(they are completely independent). However, when we come to analyze our data, we are likely to observe a negative association between 
these two variables due to our participant selection process. 

Why does this happen? The data-generating process is depicted in the first directed acyclic graph A; and we can see that inclusion (in 
the study) is a collider between age and surgical duration that has already been conditioned on when selecting participants. Our inclusion 
criteria mean that knowing some information about one variable confers information about the other variable. If the patient is not aged over 
60 yr, then they must have surgical duration of more than 2 hr to be included. Conversely those patients with surgical duration under 2 hr 
must be aged over 60 yr to be included. Having one of the inclusion criteria reduces your likelihood of having the other relative to those who 
don’t have the first criterion. Hence, the variables age and surgical duration will be negatively correlated within our sample; in the language 
of directed acyclic graphs this is due to the pathway we opened by conditioning on inclusion criteria. These associations are sometimes 
represented by a dashed line on a directed acyclic graph.

If we examine the association between age and mortality (directed acyclic graph B), we will find ourselves with a biased estimate of the 
causal effect. This is because the crude (unadjusted) association consists of not only the causal pathway of interest (age→mortality) but 
also the spurious pathway (shown in red) that was induced by conditioning on inclusion criteria (age→inclusion←surgical duration→mor-
tality), which is shown in red. To recover the causal effect of age on mortality, we would need to also condition on surgical duration to block 
the noncausal pathway. 

A.							      B.

This phenomenon can also occur whenever we statistically control for a variable. If the variable is caused or influenced by two parent vari-
ables (i.e., is a collider variable), adjustment will introduce a spurious association between the parent variables. This is because statistical 
adjustment has a similar effect as selection by essentially limiting the adjustment variable to a certain level; this links the parent variables 
because the collider is statistically dependent on both. 

Box 4. How to Build a Directed Acyclic 
Graph in Seven Steps

1.	�Define the primary causal relationship of interest and begin 
the causal diagram with the exposure and the outcome.

2.	�Insert important mediators; there may be more than one 
causal path between the exposure and the outcome.

3.	�Consider important causes of the exposure and important 
causes of the outcome (both measured and unmeasured).

4.	�Consider whether any two variables already on the directed 
acyclic graph share a common influence; if so this variable 
should be included.

5.	�Review variables in a pairwise manner—should any arrows 
be added? Absent arrows represent strong assumptions.

6.	�Ensure that any selection procedures are adequately captured.
7.	�Ensure that there are no feedback loops present; it may be 

necessary to include a variable at different time points (e.g., 
baseline, t1, t2) to maintain causality.
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of no effect, and needs to be just as carefully considered as 
those arrows that are present.

The directed acyclic graph identifies which pathways 
must be closed for valid estimation of the causal effect. The 
aim is to isolate the causal pathway of interest by:

1.	 Blocking all open noncausal paths between the exposure 
and the outcome;

2.	 Leaving the causal paths between the exposure and the 
outcome unperturbed;

3.	 Avoiding methods which might open spurious non-
causal pathways between the exposure and the outcome.

Directed acyclic graphs can be used to streamline data col-
lection by identifying the most efficient sets of variables to 
accomplish this. Pathways need only be blocked in one place 
if the controlled variable is measured accurately, and it may be 
possible to close more than one pathway by adjusting for a 
single variable. A pathway opened by conditioning on a col-
lider can be closed by conditioning on another variable in the 
pathway. The status of a variable within a particular system is 
not fixed; rather, it depends upon the causal relationship of 
interest. A variable might act as a confounder or mediator on 
one pathway and a collider on another, and so it is quite pos-
sible to simultaneously open one pathway and close another 
with adjustment, as we demonstrate in some later examples.

It should also be noted that conditioning on a descen-
dant of a variable has a similar effect to conditioning on the 
variable itself—but the effect will be reduced. This includes 
imperfect markers or measures of the variable. Conditioning 
on a descendant of a variable on an open pathway (i.e., 
mediators or confounders) will partially close the pathway, 
and conditioning on a descendant of a collider can partially 
open a pathway. The extent to which the pathway is closed 
or opened depends upon how closely the variable and the 
descendant are associated; the stronger the association, the 
greater the effect. Our ability to close noncausal pathways 
therefore relies on the measurement accuracy of the vari-
ables we use for statistical control. If measurement error is 
suspected, it may be prudent to close the pathway by condi-
tioning on more than one variable along the pathway.

Interpretation of Reported Statistical Analyses

Anyone reading papers using multivariable analysis is often 
struck by uncomfortable and nonsensical results. Why are 

some predictive variables clearly counterintuitive? Why do 
different studies obtain correlations in opposite directions? 
Why do some variables lose (or gain) significant effects 
depending on which other variables are included in the 
model? Some common misconceptions about multi-
variable adjustment are summarized in table 2. Although 
adjustment for variables on confounding pathways will 
generally remove bias, adjustment for mediators and col-
liders will generally introduce bias. Typically multivariable 
analyses implicitly assume a causal structure resembling 
figure 2A, when in reality the included variables are often 
an assortment of independent causes, confounders, media-
tors, and colliders. The true causal association can be better 
assessed if adjustment is guided by causal structures such as 
that shown in figure 2B, which account for the relation-
ships between variables as well as the direct relationships 
to the outcome.

Often it is assumed that controlling for more variables 
is better, but injudicious inclusion of variables can make 
the adjusted associations awkward to interpret. This prob-
lem has been dubbed the table 2 fallacy,11 because the second 
results table in observational studies customarily contains the 
adjusted associations between all of the variables included in 
the statistical model and the outcome. The adjusted associa-
tions are often interpreted as the independent effect of each 
explanatory variable on the outcome; however, the type of 
effect represented is entirely dependent on the other vari-
ables included in the model. The adjusted association will be 
the net effect of any pathways between the explanatory vari-
able and the outcome remaining open after conditioning on 
the other included variables. The adjusted association might 
therefore represent either a total or partial (direct) causal 
effect, which could be distorted by residual confounding or 
opened collider pathways. Causal diagrams are immensely 
useful in diagnosing which of these is the case and can facil-
itate constructive critique and discussions such as those held 
in a journal club or at a scientific conference.

Worked Examples: Anesthetic Technique and 
Mortality following Colon Cancer Surgery
We have created a set of example directed acyclic graphs, 
which are inspired by a recent retrospective observational 
study reported in Anesthesiology by Wu et al.12 This study 

Table 2.  Three Common Misconceptions about Multivariable Statistical Adjustment with Explanation

Misconception Explanation

Increasing sample size will reduce bias Increased sample size decreases random error and may result in narrower CIs but will not correct structural bias. You will 
simply achieve a more precise estimate of the wrong effect.

Controlling for more variables will 
reduce confounding

Controlling for variables on confounding pathways will generally remove bias and improve validity, but controlling for 
mediators and colliders can introduce bias.

The model with the best predictive 
ability should be used

The estimate for the causal association between a particular variable and the outcome will only be unbiased if appropriate 
covariates have been carefully selected for that particular relationship. A directed acyclic graph is needed to ensure this.
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examined the association between anesthetic technique 
and mortality in patients having surgery for colon cancer. 
The main finding was that the use of propofol-based total 
intravenous anesthesia was associated with an approximately 
threefold reduction in long-term mortality compared to des-
flurane-based anesthesia. We use this topical example to illus-
trate the concepts around the applications of causal diagrams.

We first show how a directed acyclic graph might be 
developed around the causal question, and discuss how vari-
ables might be selected to control confounding, beginning 
with simplified diagrams and then adding complexity. We 
follow with some examples from the study analysis, which 
illustrate how controlling for some variables might be harm-
ful rather than helpful. Our last examples use causal diagrams 
to explain some striking differences in the reported univari-
able and multivariable associations between explanatory vari-
ables and mortality. Note that we do not mean to conduct a 
full critique of the analyses conducted, which would require 
access to the raw data; rather, we hope to highlight the utility 
of causal diagrams in guiding and interpreting analyses.

Building a Directed Acyclic Graph: Defining the Causal 
Question

The causal question is Does propofol-based total intravenous anes-
thesia reduce postoperative mortality in patients having colon can-
cer surgery? The directed acyclic graph therefore begins with 
an arrow from propofol to mortality (fig. 3A). The authors 
hypothesized that propofol might reduce mortality by two 
mechanisms: (1) reducing intraoperative metastasis and (2) 
reducing postoperative cancer recurrence. Intraoperative 
metastasis and postoperative recurrence are therefore added 

as possible mediators (fig. 3B). The decision of how many 
mediators to include in the diagram involves a careful balance 
of the needs for parsimony, versus full elucidation (fig. 3C).

Closing Confounding Pathways by Statistical Control

The unadjusted association should always be regarded as 
potentially confounded. In this case, the exposure (propofol 
vs. desflurane) was chosen by the treating clinician. Although 
this may seem a somewhat arbitrary form of treatment 
allocation, we see that there were significant imbalances 
in important baseline variables between the propofol and 
desflurane groups. Anesthetic technique is often influenced 
by patient and surgical factors of prognostic importance. 
Indeed, many factors associated with a better progno-
sis (younger average age; lower comorbidity score; lower 
tumor-node-metastasis stage; greater functional capacity 
[metabolic equivalents]) were associated with propofol 
use. Therefore, the crude association would be expected to 
erroneously show an apparent mortality benefit of propofol, 
even if there were no causal effect.

Figure 4 shows how the problem of confounding might 
be approached for this example. Some pathways are relatively 
simple, involving only single confounders. For example, the 
date of surgery (relative to the first included surgical case) was 
included as a variable in the multivariable analysis conducted 
in the study (fig. 4A). Propofol use became more prevalent 
over the time-course of the study, but it is also reasonable 
to expect that medical and surgical management of cancer 
improved over this time and reduced the mortality rate. Date 
of surgery—though not technically a cause—acts as a good 
proxy for medical advances across the time course of the 

Fig. 2.  Multivariable regression models typically assume a causal structure such as A, whereas a more realistic causal structure is depicted 
in B. X, exposure; Y, outcome; C, confounders; M, mediators; Z, colliders.
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study that might confound the propofol and mortality rela-
tionship, and was appropriately controlled for in the study.

Often confounding has a more complex structure and 
variables may be interrelated, such as age and comorbidities 
(fig. 4B). As more variables are included, the directed acyclic 
graph can start to resemble a web-like structure (fig.  4C). 
Variables are selected for the statistical model in an attempt to 
close the confounding pathways and reveal the causal associa-
tion of interest (fig. 4C). The emphasis is on closing pathways 
rather than needing to consider whether each individual 
variable should be classified as a confounder. This differs 
from the classical statistical approach, as is elaborated in box 4. 
Provided we have carefully considered the causal structure, it 
may be possible to close pathways using fewer covariates than 
we regularly see used in multivariable analyses, which often 
include all available variables. For example, in figure 4C, the 
variable noncancer mortality need not be included because 
those confounding pathways it lies on are already blocked.

Note that our example directed acyclic graphs are not 
intended to comprehensively account for confounding of 
the propofol-mortality association; instead, we use them to 
illustrate how the usual goal of statistical adjustment (elim-
ination of confounding) might be achieved. A further two 
studies (Williamson et al.13 and Staplin et al.14) are included 
in the references as examples of the application of causal 
diagrams to select confounders for multivariable regression 
models in different settings.

When Statistical Adjustment Can Be Harmful
The goal of statistical adjustment is usually to reduce con-
founding, as illustrated in the previous examples. It is not 
widely recognized that adjustment is not always benign. If 
putative confounders are in fact mediators or colliders, such 

control will instead introduce bias. The next few illustrative 
examples are based around variables included in the analysis 
by Wu et al.12 to control for confounding of the association 
between propofol total intravenous anesthesia and mortality.

Conditioning on a Known Mediator: Overcontrol Bias

One of the variables included in the multivariable model was 
postoperative recurrence, which is a mediator on one of the causal 
pathways between propofol and mortality. Conditioning on 
postoperative recurrence blocks this causal pathway (fig. 5A), 
and essentially removes the contribution of cancer recurrence 
from the estimated total causal effect. We might therefore 
expect to see a diminished apparent causal relationship. This 
can be referred to as overcontrol, overmatching, or overadjust-
ment bias.15 It is therefore not advisable to include mediators 
in the covariate set used for statistical analysis.

Conditioning on a Known Mediator: Collider Bias

Controlling for mediators can have additional undesirable 
consequences. If we extend this example and consider the 
presence of unmeasured factors (U) that might influence both 
cancer recurrence and mortality, we realize that not only has 
one of the causal pathways of interest been closed, but another 
spurious noncausal pathway (the red pathway in fig. 5B) has 
been opened by controlling for postoperative recurrence.

The unmeasured causes of the outcome do not normally 
bias the propofol-mortality relationship, because recurrence 
is a collider on the noncausal pathway (propofol→recur-
rence←U→mortality) and so the path is closed; propofol 
and the unmeasured factors are statistically independent. 
However adjusting for recurrence opens the pathway 
because recurrence is caused by (and is therefore statistically 

Fig. 3.  The causal pathways between the exposure (propofol) and the outcome (mortality) can be expressed simply (A) or in greater detail 
including mediators (B and C).
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dependent upon) both propofol and the unmeasured fac-
tors. Adjustment for recurrence therefore creates a new 
statistical association or link between propofol and the 
unmeasured factors. This association extends to mortality 
because of the causal relationship between the unmeasured 
factors and mortality, resulting in a misleading estimate of 
the propofol–mortality association.

We included this example to highlight how adjusting for 
mediators can be particularly harmful, because it can close 
causal pathways and open spurious pathways. With these 
dual effects, the adjusted association becomes unintelligible.

Conditioning on a Postexposure Variable: Unrecognized 
Mediator

Any descendants of the exposure, not just known mediators, 
should be treated with caution. Typically, several agents are 
administered during the course of anesthesia. These adjuncts 
are usually treated as simple confounders, but this can be 
a harmful oversimplification of their role. Dexamethasone 

Fig. 4.  The causal structure of confounding. A simple example of a classic confounding pathway (A) involving date of surgery. A more com-
plex example (B) might involve interrelated confounders such as age and comorbidities, which may affect outcome via mediators along the 
pathway of interest (cancer mortality) or by alternative pathways to the outcome (noncancer mortality). As more confounders are included, 
the directed acyclic graph begins to resemble a web (C). All noncausal pathways must be blocked to derive the causal association of interest. 
Red arrows show open pathways; grey arrows show pathways which have been closed by adjustment (indicated by box around the variable). 
TNM, tumor-node-metastasis.

Fig. 5.  Controlling for a mediator (recurrence) blocks one of the 
causal pathways of interest (A). If there are any unmeasured fac-
tors (U) which influence both cancer recurrence and noncancer 
mortality, a spurious pathway (red) is opened between propofol 
and mortality (B).
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is one such adjunct, which (quite appropriately) wasn’t 
included in the analysis by Wu et al.12 Dexamethasone is 
not a simple confounder because propofol influences the 
use of dexamethasone by reducing the need for antiemetic 
therapy, so the direction of the arrow in the directed acy-
clic graph is from propofol toward dexamethasone (fig. 6A). 
If we speculate that dexamethasone might also have causal 
or preventative actions or cancer metastasis, then dexa-
methasone becomes another mediator of the causal effect 
of propofol. This effect is indirect and may not be of pri-
mary interest, but it forms a covert causal pathway from 
the exposure toward the outcome. If we adjust for dexa-
methasone in an attempt to isolate the propofol→immune 
modulation→mortality pathway, we risk opening a false 
noncausal pathway (fig. 6B) containing unmeasured factors 

(U). This is why the advice not to include mediators might 
be extended to caution against including any postexposure 
variables—particularly known descendants of the exposure.

Conditioning on a Collider: M-bias
Even when not influenced directly by the exposure of inter-
est, the administration of adjuncts may be influenced by 
some of the same unmeasured factors that influence selec-
tion of the primary exposure; for example, individual clini-
cian preferences. Such preferences may lead to associations 
between certain combinations of anesthetic agents. Wu et al.12 
included postoperative nonsteroidal antiinflammatory drugs 
(NSAIDs) in their multivariable model; however, propofol 
and NSAIDs are associated because of the shared influence of 
clinician preference. Furthermore, it is plausible that another 

Fig. 6.  Choice of anesthesia adjuncts may be affected by the exposure. The adjuncts are often regarded as confounders; however, they may 
in fact be mediators on an alternative causal pathway (A) between the exposure (propofol) and the outcome (mortality), which may not be 
of primary research intent. Adjustment for dexamethasone (B) in an attempt to isolate the causal pathway of interest may open a spurious 
pathway (red) involving unmeasured factors (U) that influence dexamethasone use and mortality.

Fig. 7.  Adjusting for a variable (the collider – nonsteroidal antiinflammatory drug [NSAID]) that is influenced by an unmeasured cause of 
the exposure and an unmeasured cause of the outcome, creates a spurious noncausal pathway (A). The spurious pathway created (red) 
is M-shaped if variables are arranged in this pattern, and so this is sometimes referred to as M-bias. The unmeasured cause of propofol 
exposure might be clinician preferences (U1) and the unmeasured cause of mortality might be frailty or renal impairment (U2) which relatively 
contraindicates NSAID. If NSAID were thought to be a cause of mortality, then controlling for NSAID will simultaneously block a confounding 
pathway (B) and may be of net benefit.
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unmeasured patient factor that influences mortality might 
also specifically influence NSAIDs use, such as frailty or renal 
impairment. Conditioning on postoperative NSAIDs could 
therefore open up a spurious noncausal pathway (fig.  7A) 
involving the unmeasured variables because NSAIDs is a col-
lider. The bias arising from this sort of pathway is sometimes 
referred to as M-bias because the pathway can be drawn in 
the directed acyclic graph as a distinctive M-shape (fig. 7). 
Any factor that is influenced by both unmeasured causes of 
the exposure and unmeasured causes of the outcome has the 
potential to act in this way. The degree of bias induced by 
these pathways is unpredictable, because the collider variable 
may also (at least partially) block confounding pathways at 
the same time. This would be the case if we believed postop-
erative NSAIDs affect mortality; conditioning on NSAIDs 
would close a confounding pathway as well as opening the 
M-bias pathway (fig. 7B) and so could reduce bias overall.16,17

Explaining Contrasting Univariable and 
Multivariable Associations
When multivariable models are selected, variables are often 
added or removed depending on the predictive ability of the 
model. If the goal is unbiased estimation of true causal effects, 
rather than an exercise in prediction, then this strategy is likely 
to fail. The specific combination of variables included deter-
mines the estimated association between each variable and 
the outcome, and how these effects should be interpreted. 
There can be quite striking differences between unadjusted 
(univariable) and adjusted (multivariable) associations, and it 
may be unclear which associations, if any, to trust. We now 
take some interesting examples of such changes from table 2 
of Wu et al.12 (summarized in our table 3) and show how 
directed acyclic graphs may help us explain them.

Pre-exposure Collinearity: Loss of Causal Association

Our first example examines the associations between the 
tumor-node-metastasis stage of cancer and mortality. The stag-
ing criteria were developed to show a gradient in hazard and 
as such reflect features of tumors which are causally related to 
mortality. The expected relationship is evident in the unad-
justed associations (table 3), as the hazard ratio increases steadily 

with progressing cancer stage. However, the previously strong 
association between tumor-node-metastasis Stage 4 (which 
indicates metastatic cancer) and mortality essentially disappears 
in the multivariable model (table 3). So, are we really to believe 
that the crude relationship between metastatic disease and 
mortality was all attributable to confounding, and that meta-
static disease doesn’t affect cancer survival? Clearly, the adjusted 
association is implausible. This is an extreme example, but it 
forcibly demonstrates why adjusted associations are not neces-
sarily more valid than unadjusted ones.

We suspect this dramatic change was attributable to condition-
ing on a collider in the presence of collinearity (high correlation) 
of certain baseline variables; the directed acyclic graph allows us 
to diagnose this problem. Composite scores of pre-existing illness 
are often used as covariates for statistical control in perioperative 
research. Usually these scores are regarded as simple confounder 
variables; however, they are also liable to act as colliders because they 
are descendants of multiple factors. The Charlson Comorbidity 
Index score,18 a composite score used to predict 10 yr survival, was 
included in the multivariable model by Wu et al.12 Cancer metas-
tasis contributes strongly to the score, so tumor-node-metastasis 
Stage 4 and the Charlson Comorbidity Index score will be highly 
correlated because of mathematical coupling. Noncancer comor-
bidities contribute most of the remainder of the score and will also 
be highly correlated with the Charlson Comorbidity Index score, 
again due to mathematical coupling. The noncancer comorbid-
ities are not included as a separate variable in the multivariable 
model, so controlling for the Charlson Comorbidity Index score  
creates a spurious pathway between tumor-node-metastasis 4 and 
mortality via the comorbidities (the red pathway in fig. 8). This 
problem could have been avoided by including noncancer comor-
bidities separately in the model, which would close the spurious 
pathway. The difference between univariable and multivariable 
hazard ratios was so pronounced because all of the correlations 
between the variables involved in this pathway were strong.

Baseline variables are often considered safe for adjust-
ment purposes; however, this example shows why this is not 
necessarily the case. This is why it is traditionally advised 
to avoid including highly correlated variables (muliticol-
linearity)19 in statistical adjustment models and reinforces 
the need for caution with any descendants of the exposure 
as they may act as colliders.

Table 3.  Variables with Extreme Differences between Univariable (Unadjusted) and Multivariable (Adjusted) Hazard Ratios for Mortality: 
Selected Findings from Table 2 by Wu et al.12

Univariable HR (95% CI) P Value Adjusted HR (95% CI) P Value

TNM 1 1 ref 1 ref
TNM 2 8.9 (5.3–15.1) < 0.001 4.6 (2.6–7.9) < 0.001
TNM 3 10.2 (6.1–17.3) < 0.001 5.9 (3.4–10.3) < 0.001
TNM 4 46.9 (27.8–78.8) < 0.001 1.12 (0.54–2.33) 0.754
Age 1.03 (1.02–1.04) per yr < 0.001 0.95 (0.94–0.97) per yr < 0.001

Bold text indicates major change in hazard ratio following multivariable adjustment which might result in misinterpretation of causal effects. HR, hazard ratio; TNM, tumor-node- 
metastasis stage.
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Inclusion of Mediators: Reversal in Direction of 
Association

A second example from table 2 of Wu et al.12 is the rela-

tionship between age and mortality. In this case there was a 

complete reversal of the direction of association (table 3). The 
unadjusted association showed increased mortality with 
advancing age, which largely reflects a causal relationship 
mediated predominantly by physiologic decline and accu-
mulated comorbidities. However, for the adjusted associa-
tion, younger age was associated with increased mortality 
(table 3). A directed acyclic graph can help us to explain 
why this might be the case. Aggressive cancer genotypes, 
which cause greater mortality, often present when patients 
are younger; so there is a confounding pathway (fig. 9A), 
because age of cancer presentation and age at time of sur-
gery will closely correspond. The unadjusted association is 
likely dominated by the expected causal relationship, but 
when the mediators of this causal relationship—comor-
bidities (the Charlson Comorbidity Index score) and func-
tional reserve (metabolic equivalents)—are included in the 
model, the causal pathways are largely blocked (fig.  9B). 
The confounding pathway remains open because cancer 
genotype was not measured, and the adjusted association is 
likely largely attributable to this residual confounding effect. 
Unlike our previous example, the Charlson Comorbidity 
Index score doesn’t cause a problem as a collider variable in 
this example, because tumor-node-metastasis stage is also 
included in the model (fig. 9B).

Fig. 8.  The Charlson Comorbidity Index (CCI) score is strongly 
mathematically coupled to both tumor-node-metastasis (TNM) 
Stage 4 cancer (metastatic disease) and to other noncan-
cer comorbidities of prognostic importance. Adjustment for 
CCI score  can therefore open a spurious pathway between 
TNM Stage and mortality through the noncancer comorbidities 
(Ucomorbidities), which are not included separately in the model.

Fig. 9.  Age plays a causal role in mortality which is largely mediated by the comorbidities accumulated with increasing age and general phys-
iologic decline (A). These pathways dominate the unadjusted association and increasing age is associated with increased mortality. Adjustment 
for Charlson Comorbidity Index (CCI) score and metabolic equivalents (METs; a marker of functional capacity), which are mediators (or close 
descendants of the mediators) of the causal effects of age on mortality (shown in B) mostly blocks the causal association (grey arrows). This 
leaves the adjusted association (B) dominated by a noncausal pathway (red) caused by an unmeasured confounder (Ugene)—an aggressive 
genotype of cancer which presents at a younger age and increases mortality. The adjusted model therefore suggests increased mortality with 
younger age; a complete reversal of the unadjusted association. TNM, tumor-node-metastasis; Umorb, unmeasured morbidities.
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This example highlights the importance of interpret-
ing adjusted associations in the context of the other variables 
in the model. If the causal effects of several variables are 
of interest, a number of different statistical models may 
be required, depending on the directed acyclic graph for 
each effect.

Suggested Approaches to Confounding in 
Anesthesia Research
The structure of confounding can be highly complex with 
variables interacting to form a web of many interlinking path-
ways. A simplified causal framework for anesthesia-related 

research is presented in figure 10A. Important potential con-
founding factors could broadly be categorized as:

1.	 Patient factors: demographic and illness related vari-
ables (e.g., age, American Society of Anesthesiologists 
Physical Status)

2.	 Anesthesia factors (e.g., technique, dose, etc.)
3.	 Surgical factors: intra- and perioperative variable (e.g., 

duration, type of surgery)

Each group might be considered a nested structure with 
variables linking with each other and to variables from other 

Fig. 10.  A suggested framework for considering confounding (red) pathways for anesthesia interventions (A). Each group might include sev-
eral factors. Intraoperative factors such as anesthesia adjuncts and surgical factors are particularly likely to act as colliders because they are 
influenced by many other factors. The anesthesia exposure may induce alternative causal pathways (blue), which are not of primary interest. 
Randomized controlled trials can minimize both these problems (B) because (1) exposure is random (removes all other arrows into the expo-
sure) and (2) blinding will prevent the exposure having effects other than those of primary interest (removes arrows arising from the exposure).
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groups and interacting with mediators along the causal path-
way. Of particular note, anesthetic and surgical factors have 
clear potential to act as colliders, because they are subject to 
multiple influences. It is also important to consider down-
stream consequences of the exposure, which may result in 
additional bias (e.g., the blue pathway in fig. 10A).

Careful choice of primary outcome might reduce the 
number of confounding pathways. Shorter pathways con-
taining fewer mediators will generally provide less oppor-
tunity for confounding. In our worked example (fig. 4), if 
cancer mortality is specified as the primary outcome rather 
than all-cause mortality, we do not have to worry about 
the confounding pathways containing noncancer mortality. 
Similarly, composite outcomes will have greater potential for 
confounding than more specific outcomes, because there 
will be more pathways between the exposure and outcome.

Attempting to close all noncausal pathways by statistical 
adjustment can be a formidable task; we have summarized 
some guidance in table 4. The ability to remove confound-
ing is only as good as the measurement of the variables 
used for adjustment,20 and it may be prudent to condition 
on more than one variable to block a pathway if signif-
icant measurement error is suspected. Categorization of 
continuous variables can have the same effect as measure-
ment error and allow residual confounding and so should 
be avoided where possible.21 Different pathways may bias 
the association of interest in different directions and will 
sometimes cancel out. The magnitude of bias arising from 
each pathway may be difficult to predict—it will depend on 
the strengths of relationships and the number of variables 
within the pathway. Longer pathways tend to generate less 
bias because the overall association will reduce with each 
additional step in the pathway, and the overall association 
cannot exceed the weakest association within the pathway. 
This is only general guidance, however, and in practice 

difficult informed subjective choices will need to be made 
around the relative importance of the different pathways.

Often only a limited selection of measured variables 
is available, particularly with retrospective observational 
studies. It is extremely important to consider any relevant 
unmeasured factors which might give rise to bias. The clin-
ical decision-making process is one such factor which may 
be very hard to measure. Further examples might include 
psychologic, lifestyle, socioeconomic, and genetic factors, 
intraoperative events, and surgical intensity and duration; 
these may affect the exposure or outcome or both. The 
unmeasured factors might result in classic residual con-
founding or bias from spurious noncausal pathways created 
if we mistakenly adjust for collider variables that link them. 
Adjustment for mediators (or other descendants of the 
exposure) is particularly likely to introduce collider bias and 
should be carefully avoided as the spurious pathways gener-
ated tend to be quite short and contain strong associations.

Sometimes the value of the causal diagram may lie in rec-
ognition that the causal effect cannot be identified using sta-
tistical adjustment, and that an alternative approach is required. 
Figure 10B demonstrates the elegance of randomized, con-
trolled trials using a directed acyclic graph. Because the expo-
sure becomes solely dependent on randomization, all other 
arrows into the exposure can be removed so there are no 
confounding pathways to worry about. This is why random-
ized, controlled trials are usually considered the gold standard 
in causal inference; however, they can suffer other forms of 
bias, which can be illustrated using directed acyclic graphs. 
The randomized exposure might influence the measurement 
of the outcome, such as with observer bias, or patient ascer-
tainment or recall bias. Blinding is commonly used to address 
these problems (fig. 10B); however, it is often impractical or 
impossible to blind the clinicians caring for the patient to the 
exposure (or consequences of the exposure), which may influ-
ence subsequent patient management and bias the outcome.

Advantages and Limitations of Causal Diagrams
Causal diagrams require us to clearly define our primary 
research question, and they intuitively and efficiently 
communicate our existing understanding of relationships 
between important variables. Directed acyclic graphs can 
identify confounding and selection bias, and enable research-
ers to find strategies to overcome these. Furthermore, 
directed acyclic graphs can facilitate constructive critique 
of study design and analyses by making any underlying 
assumptions explicit—and therefore open to debate; they 
can also help us to make sense of adjusted associations we 
see reported in studies.

Composing directed acyclic graphs is not always easy; 
even with seemingly simple causal questions the diagram 
can soon evolve into a large complex network. The accuracy 
of any causal inferences made will be limited by the fidel-
ity of the causal diagram on which they are based, which 
in turn relies upon existing subject matter knowledge. The 

Table 4.  Guidance for Selection of Variables for Statistical 
Adjustment Using Causal Diagrams

Selection of Covariates for Statistical Adjustment

1. Define the primary causal relationship of interest.
- Construct a directed acyclic graph around the exposure and outcome.
- Ensure the directed acyclic graph is complete (box 2).

2. Identify any open noncausal pathways between the exposure and outcome.
- �Select the minimum set of variables necessary to close the open 

noncausal paths, without closing the causal pathway.
- �If measurement error is likely you may elect to block a pathway at 

additional points using further variables.
- Avoid collinear explanatory variables.

3. Caution when including any postexposure variables:
- Do not include mediators or colliders.
- �Carefully consider the implications of including any descendants of the 

exposure.
4. Consider causes (particularly unmeasured) of any variables you are including.

- Any collider pathways that are opened should be closed.
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direction of arrows or even the presence or absence of rela-
tionships may be uncertain. This may necessitate sensitivity 
analyses, adjusting for different variables for each putative 
causal structure. Directed acyclic graphs are qualitative rather 
than quantitative, showing the presence or absence, and the 
direction of relationships; they do not reveal the nature or 
strength of relationships and may fail to capture interactions. 
Causal diagrams cannot protect us from unknown unmea-
sured confounding, and it is unclear whether the assumption 
of no residual or unmeasured confounding ever holds in real-
world situations. Nevertheless, the directed acyclic graph at 
least makes these, and other important assumptions, explicit.

Directed acyclic graphs have well understood mathemat-
ical properties that are useful and readily exploited in more 
complex causal contexts that presented here. Examples include 
parametric and nonparametric structural equation modeling,22 
instrumental variable analysis,23 quantitative bias analysis,24 and 
mediation techniques.25 Causal diagrams are testable, in that 
the causal structure implies certain statistical associations and 
independences that can be confirmed or refuted with data; 
however, this is not a simple endeavor as data may be consistent 
with multiple causal diagrams. Also, we cannot ignore random 
error, and because the first iteration of causal diagrams will 
rarely contain definitive information about magnitudes of the 
associations represented, the information required to power a 
study will be even more subjective than conventional single 
variable power analyses. An iterative process of using data to 
test models, and using the models to determine causal effects, 
is likely to be the way forward.

The Future of Causal Diagrams in Anesthesiology 
Research
We are in the midst of a reproducibility crisis in the scientific 
and clinical literature. Where causal effects truly exist, the evi-
dence from different methodologies should converge; but we 
often see unexpected and conflicting results from random-
ized, controlled trials and observational studies, which might 
contradict our understanding of basic science principles. 
More rigorous handling of random error is typically seen 
as the solution to this problem; however, this usually only 
addresses error arising from sampling variation. Currently 
much emphasis is placed on rigid prespecification of anal-
ysis plans,26 with relatively little attention paid to rigorous 
assessment of potential sources of bias and how this will be 
managed. In contrast, we believe that much of the problem 
lies in poor study design and analysis of data, and that the use 
of causal diagrams could raise standards considerably.

Anesthesiology and perioperative medicine is particu-
larly fraught with confounding, given the wide variety of 
patients, surgeries, and anesthesia techniques encountered. 
We are often looking to identify relatively small effects 
within complex causal systems. Indications and selection 
criteria for surgery itself might produce unexpected baseline 
associations between important variables within our surgi-
cal populations, and we are susceptible to the introduction 

of odd collider biases when variables are included in statis-
tical models without careful consideration. Observational 
anesthesia research is always potentially compromised by 
selection bias, measurement error and confounding; but 
with careful study design and analysis this need not be the 
case. The era of Big Data will bring us more information 
than ever before and great opportunity, but needs a consis-
tent framework or we will be drawn to wrong conclusions. 
Causal diagrams can provide this framework and give us 
more confidence in the validity of our results.

Directed acyclic graphs have been largely absent from 
our literature thus far, and they may be unfamiliar to most 
clinicians and researchers. Box 1 contains a checklist readers 

Box 5. Confounding – Traditional versus 
Causal Approach

Confounding has historically been defined in terms of individual 
confounder variables rather than conceptually as confounding 
pathways. Statistically, confounders have often been defined as 
variables associated with both the exposure and the outcome. 
Unfortunately this definition encourages the inclusion of media-
tors and colliders as covariates in statistical models, and makes 
interpretation of the adjusted associations near impossible.

The causal approach incorporates subject matter knowledge 
about the nature of associations between variables and focuses 
on blocking noncausal pathways, rather than considering each 
variable individually. One advantage of this approach is that data 
collection can be streamlined by avoiding unnecessary and mis-
leading variables. Collider variables need not always be avoided 
if the pathway can be blocked using another variable, but gener-
ally this needs very careful consideration.

Box 6. Where to Find More Information on 
This Topic

1.	 �The Book of Why: The New Science of Cause and Effect, 
by J. Pearl and D. MacKenzie. An accessible, plain-language 
introduction to the Causal Revolution that includes further 
examples of causal diagrams.

2.	 �www.DAGitty.net is a website where you can create your own 
directed acyclic graphs, visualize causal and noncausal path-
ways, and identify variable sets for statistical adjustment. It 
also provides the statistical independences implied by your 
directed acyclic graph that can be tested with data to support 
or refute your causal model. It also contains links to further 
articles and freely available R-based statistical packages.

3.	�https://online-learning.harvard.edu/course/causal-diagrams-
draw-your-assumptions-your-conclusions (accessed August 
2019). Miguel Hernan presents a series of introductory videos 
in this course from Harvard University (basic content free of 
charge).
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may wish to refer to should they encounter causal diagrams 
in the literature, and box 6 contains some links to further 
introductory material. Causal diagrams are not featured in 
the Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) recommendations for the report-
ing of observational research27; however, a consortium of 
clinical journals has recently recommended their inclusion 
in reports of observational studies,6 and they are well-es-
tablished in the epidemiology literature. Many anesthesia 
reports would benefit from inclusion of causal diagrams.

Conclusions

Modern causal inference techniques promise to take us 
beyond the paralyzing association ≠ causation mantra, which 
has limited the advancement of clinical knowledge from 
observational research in recent times. By providing a rig-
orous approach to bias, causal diagrams can inform better 
study design and analyses and potentially allow us to make 
robust statements about causation from observational data. 
When we properly understand causal structures, the clini-
cian will be clearer about what—and what not—to worry.
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GLOSSARY OF TERMS
 
Term (Alternative) Meaning

Adjusted association The association observed after statistical analysis. This will consist of causal pathways, any residual confounding pathways that 
exist, and any pathways that have been opened due to conditioning.

Ancestor (cause) A factor which influences another specific variable, no matter how distantly along a pathway. A direct cause of another variable 
can be referred to as a parent.

Arrow (directed edge) In graphs represents a directed causal relationship between two variables
Bias Systematic deviation from the true causal relationship. Nonrandom error.
Collider A variable which is a common effect of two other variables. It is the variable at an inverted fork in a directed acyclic graph (e.g., 

variable Z in the pathway  X→Z←Y). The collider blocks the pathway.
Conditioning Refers to a variety of actions which essentially limit a variable to a certain level or range (e.g., selection criteria, stratification, 

matching, inclusion in multivariable regression model). Conditioning is denoted in a directed acyclic graph by a box around the 
variable.

Confounder A shared cause of two variables or indeed any variable on a confounding pathway which is not a collider on that pathway.
Confounding Noncausal association which occurs because the exposure and the outcome share common causes. Evident in directed acyclic 

graphs as any open noncausal pathway between the exposure and the outcome, which begins with an arrow directed into the 
exposure.

Crude (unadjusted) association The association observed in the data before any statistical adjustment. This is the net association generated by all open pathways 
between the exposure and outcome of interest (i.e., the causal pathways, any confounding pathways that exist, and any path-
ways that have been opened as a result of selection factors).

Descendant (effect) A factor that is influenced by another specific factor. In the path C→X, X would be regarded as a descendant of C. A direct 
descendant is sometimes referred to as a child.

Directed Acyclic Graph A diagram consisting of variables linked by arrows which indicate directed causal relationships. No feedback loops are present.
Exposure (treatment, cause) The causal variable of interest.
Mediator (intermediary variable) Any intermediate on the causal pathway between the exposure and the outcome; this factor is responsible for part of the causal 

effect of the exposure.
Outcome (effect) The effect of interest.
Pathways Any series of arrows and variables linking two variables.
  Open pathway A pathway which generates a statistical association.
  Closed pathway A pathway which does not generate s statistical association.
  Causal pathway A pathway in which all arrows are directed from the exposure to the outcome.
  Noncausal pathway Any pathway between variables which is not causal.
Selection bias Statistical association generated by a noncausal pathway opened by conditioning on a collider variable.
Variable (node, covariate) A factor or construct that can take different values and is considered to be of importance in the causal system.
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