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What We Already Know about This Topic

• The ability to process anesthesiology procedure code data in an 
accurate manner is important for clinical and research consider-
ations. Advanced data science techniques present opportunities to 
improve coding and develop classification tools.

What This Article Tells Us That is New

• The application of machine learning and natural language process-
ing techniques facilitate a more rapid creation of accurate real-time 
models for Current Procedural Terminology code classification. The 
potential benefits of this approach include performance optimi-
zation and cost reduction for quality improvement, research, and 
reimbursement tasks that rely on anesthesiology procedure codes.

Anesthesiology professional fee billing is a complex 
process requiring accurate documentation by clinical 

providers and timely coordination among administrative 
personnel. Billing staff are responsible for selecting Current 
Procedural Terminology (CPT) codes to describe anesthe-
sia care provided during each procedure and enable reim-
bursement using relative base unit values.1–3 Anesthesiology 
base CPT codes are determined by surgical procedures per-
formed. The process of assigning CPT codes is complex and 

labor-intensive, requiring various resources including spe-
cialized coding personnel for health record data extraction, 
transcription, translation, assignment, validation, and audit-
ing.4 The process can be costly: Professional billing costs 
are estimated to represent 13.4% of professional revenue 
for ambulatory surgical procedures and 3.1% for inpatient 
surgical procedures, equating to an estimated $170 to $215 
per case for billing and insurance-related activities.5 Error 
rates in medical coding can be high: Even with specialized 
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Background: Accurate anesthesiology procedure code data are essential to 
quality improvement, research, and reimbursement tasks within anesthesiol-
ogy practices. Advanced data science techniques, including machine learning 
and natural language processing, offer opportunities to develop classification 
tools for Current Procedural Terminology codes across anesthesia procedures.

Methods: Models were created using a Train/Test dataset including 
1,164,343 procedures from 16 academic and private hospitals. Five super-
vised machine learning models were created to classify anesthesiology 
Current Procedural Terminology codes, with accuracy defined as first choice 
classification matching the institutional-assigned code existing in the periop-
erative database. The two best performing models were further refined and 
tested on a Holdout dataset from a single institution distinct from Train/Test. 
A tunable confidence parameter was created to identify cases for which 
models were highly accurate, with the goal of at least 95% accuracy, above 
the reported 2018 Centers for Medicare and Medicaid Services (Baltimore, 
Maryland) fee-for-service accuracy. Actual submitted claim data from billing 
specialists were used as a reference standard.

results: Support vector machine and neural network label-embedding 
attentive models were the best performing models, respectively, demonstrat-
ing overall accuracies of 87.9% and 84.2% (single best code), and 96.8% 
and 94.0% (within top three). Classification accuracy was 96.4% in 47.0% 
of cases using support vector machine and 94.4% in 62.2% of cases using 
label-embedding attentive model within the Train/Test dataset. In the Holdout 
dataset, respective classification accuracies were 93.1% in 58.0% of cases 
and 95.0% among 62.0%. The most important feature in model training was 
procedure text.

conclusions: Through application of machine learning and natural lan-
guage processing techniques, highly accurate real-time models were created 
for anesthesiology Current Procedural Terminology code classification. The 
increased processing speed and a priori targeted accuracy of this classifica-
tion approach may provide performance optimization and cost reduction for 
quality improvement, research, and reimbursement tasks reliant on anesthe-
siology procedure codes.
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teams, error rates as high as 38% for standard CPT coding in 
anesthesia have been described,6 well above the 2018 over-
all fee-for-service error rate reported from Comprehensive 
Error Rate Testing by the Centers for Medicare and 
Medicaid Services (8.1%).7 Modest gains in process effi-
ciency can have large effects on revenue: A decrease by 10 
days in accounts receivable resulted in a 3.0% revenue gain 
for a single academic anesthesiology practice.8 Although 
crosswalk from surgical to anesthesia CPTs exists, surgical 
CPT data are frequently unavailable real-time as a result 
of business, political, or technical obstacles; when available, 
surgical CPT data have similar lag times to anesthesia CPT 
generation. Efficient billing processes are key to maintain-
ing financial viability within departments. Additionally, 
billing data are vitally important in quality improvement 
and research projects to allow reproducible case inclusion, 
exclusion, and risk adjustment.9

As electronic health record adoption has increased, 
healthcare data have become more available. Data science 
techniques have also advanced, including methods for cre-
ating classification models using machine learning, and 
processing and analyzing human language using natural 
language processing. Machine learning and natural lan-
guage processing have been applied to a variety of clinical 
applications including disease prediction,10 gene expression 
profiling,11 and medical imaging.12 Such techniques are 
beginning to be applied within clinical anesthesiology13 and 
intensive care,14 including applications predicting bispec-
tral index,15 hypotension,16 and postoperative mortality.17 
Although applications exist in medical coding, including 
assignment of International Classification of Diseases diag-
nostic codes,18,19 there remains a paucity of work to apply 
these techniques to anesthesia billing. Anesthesia billing is a 
classification problem in which text and other variables are 
translated into a single numerical code from a limited set of 
choices. Natural language processing and machine learning 
tools excel at these tasks.

Using data science techniques applied to periopera-
tive electronic health record data across multiple centers, 
anesthesia CPT code classification models were developed 
via multiple machine learning methods and evaluated. We 
hypothesized that machine learning and natural language 
processing could be used to develop an automated system 
capable of classifying anesthesia CPT codes with accuracy 
exceeding current benchmarks. This classification modeling 
could prove beneficial in efforts to optimize performance 
and reduce costs for research, quality improvement, and 
reimbursement tasks reliant on such codes.

Materials and Methods

Study Design

Institutional Review Board approval for this multicenter 
study was obtained for this retrospective observational study 
(HUM00152875, Ann Arbor, Michigan) and followed 

multidisciplinary guidelines for reporting machine learn-
ing–based classification models in biomedical research.20 
The study design was presented, approved, and registered 
within the multicenter research committee on August 14, 
2017, before accessing the data.21 This design included study 
outcomes, data collection, and statistical analyses.

Case Selection

This study included all patients, adults and pediatrics, under-
going elective or emergent procedures with an institution-as-
signed valid anesthesia CPT code and an operative date between 
January 1, 2014 and December 31, 2016 from 16 contributing 
centers in the Multicenter Perioperative Outcomes Group 
database. This data set includes both academic hospitals and 
community-based practices across the United States. Methods 
for data collection, validation, and multicenter integration 
within the Multicenter Perioperative Outcomes Group are 
previously described,22,23 and data from this group have been 
used in multiple published studies.24–26 All sites submitting valid 
data were eligible for inclusion; cases with missing procedure 
text were excluded. No additional exclusion criteria were 
applied. This data set is called Train/Test.

A second and distinct data set was created using cases 
on patients undergoing elective or urgent procedures with 
a valid institution-assigned CPT code between October 
1, 2015 and November 1, 2016 from a single Multicenter 
Perioperative Outcomes Group institution not included 
in the Train/Test data set. This Holdout data set was used 
for external validation of the models created in this study. 
Figure 1 shows a flow diagram of the data sets used and the 
experimental design of this study.

Model Features

Features are model inputs, whereas labels are outputs. To 
maximize the number of cases included in the study and 

Fig. 1. Machine learning study design flowchart. Shown is a 
flow diagram of the experimental design of this study. The Train/
Test data set is used to create each model, whereas the Holdout 
data set is used as an external validation. Each model is trained 
using fivefold cross validation. parameter tuning occurred with 
each of the 20 iterations of model training. The single institution 
from the Holdout dataset was not included in the 16 institutions 
included in the Train/Test dataset.
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allow for broad and easy application of the models, the 
features used in each model were limited to perioperative 
electronic health record data commonly found in anesthe-
sia records: age, sex, American Society of Anesthesiologists 
(ASA; Schaumburg, Illinois) Physical Status, emergent sta-
tus, procedure text, procedure duration, and the derived 
procedure text length (number of words in procedure text). 
Institution-assigned anesthesia CPT codes were used as 
labels for each case, and each case represents an instance for 
machine learning modeling. Continuous features under-
went scaling through normalization to achieve properties 
of a standard normal distribution with a mean of zero and 
a SD of one.

primary Outcome

Submitted claim data from billing specialists was used as a 
reference standard to train and test models. The primary 
outcome of this study is classification accuracy of institu-
tion-assigned anesthesia CPT code. Accuracy is defined 
as (Number of Correct Anesthesia CPT Classifications) / 
(Total Number of Anesthesia CPT Classifications). To mea-
sure the quality of the reference standard, 500 random cases 
were randomly selected from the Train/Test data set and 
adjudicated by manual review of operative notes and anes-
thesia records, performed by an anesthesiologist domain 
expert (M.L.B.), and from which a sample of 50 cases were 
reviewed by the University of Michigan departmental bill-
ing manager.

Data preparation and Natural language processing

Procedural text is the short text assigned to each case, describ-
ing the procedure(s) carried out. Natural language processing 
techniques were used to process text data into forms usable 
for machine learning models. As procedure text is typically 
hand entered, it is subject to misspellings and frequently con-
tains medical abbreviations and acronyms. Top misspelled 
words by frequency were physician hand audited for validity 
and placed into a dictionary which was used for text process-
ing. To aid in processing and decrease vocabulary size, pro-
cedure text was standardized through removal of numbers, 
punctuations, and common English stop words (e.g., “a,” “an,” 
“the,” etc.). Common medical abbreviations and acronyms 
were expanded using domain knowledge from an anesthe-
siologist (M.L.B.), and a unique spelling correction library 
was created using approximate string distance and co-occur-
rence algorithms. The spelling correction library was then 
manually adjudicated by an anesthesiologist (M.L.B.). After 
text processing, term matrices were created with single and 
multi-word phrases using n-grams.27,28 Steps to transform 
text into numerical values used in machine learning models 
included term frequency-inverse document frequency and 
word2vec.29–31 Details of natural language processing and 
text transformation can be found in Supplemental Digital 
Content 1 (http://links.lww.com/ALN/C202).

Supervised Machine learning Methods

In supervised machine learning methods all data used in 
training have labels, meaning that each case used in train-
ing has inputs and outputs. Five unique supervised machine 
learning classification models were compared: random for-
est,32 long short-term memory,33 extreme gradient boost-
ing,34 support vector machine,35 and label-embedding 
attentive model.18 Each model was chosen for potential 
advantageous properties, including ease of implementation/
interpretation (random forest and support vector machine), 
reduction of bias via weighting of low sample observa-
tions (extreme gradient boosting), and ease of handling 
text and language inputs (long short-term memory and 
the label-embedding attentive model). Random forest was 
implemented using R, whereas long short-term memory, 
extreme gradient boosting, support vector machine, and 
the label-embedding attentive model were implemented in 
Python using TensorFlow and trained on an Amazon Web 
Services graphics processing units. After initial hyper-pa-
rameter tuning, all models were trained and tested 20 times 
using fivefold cross validation: 80% of data for training 
and the remaining 20% for testing. Further details of the 
machine learning packages used and their hyper-parameter 
tuning can be found in Supplemental Digital Content 2 
(http://links.lww.com/ALN/C203).

The deep learning methods in this study were the 
label-embedding attentive model18 and long short-term 
memory. Procedure texts for these models were encoded 
into vectors using word2vec embedding31 as input. The 
label-embedding attentive model encoded the descriptions 
for each anesthesia CPT from the CPT Professional Edition 
medical code set maintained by the American Medical 
Association (Chicago, Illinois).2 Most deep learning mod-
els for text classification only embed input (feature) text.36 
A compatibility matrix was computed between embedded 
words and labels via cosine similarity. From this matrix, an 
attention score was calculated for each word and the entire 
procedural text sequence was then derived as the average 
of embedded words, weighted by the attention scores. This 
score was used for CPT classification.

Feature importance

Within the support vector machine model, linear coeffi-
cients were used to investigate which features were most 
important for machine learning decisions. The higher the 
weight of the input feature, the more important the fea-
ture is to CPT classification. Within procedure text, weights 
were used to compare feature importance of individual 
words as well as the overall importance of the entire pro-
cedure text as the sum of the weights of individual words.

Confidence parameter

To identify specific cases for which the machine learning 
models demonstrated a prespecified level of accuracy, an 
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adjustable confidence parameter was created as a model out-
put for each case using methods similar to previous statisti-
cal studies such as density ratio estimations.37,38 Importantly, 
after machine learning model training, the confidence 
parameter is calculable for each case, before accessing the 
institution-assigned CPT code to ascertain classification 
accuracy. Support vector machine and the label-embedding 
attentive model were the selected machine learning meth-
ods to calculate the confidence parameter, given their rela-
tive amenability to handling procedure text, compared with 
other machine learning methods studied.

The confidence parameter was created by comparing 
the top two primary anesthesia CPT codes for each case 
using CPT probabilities in the support vector machine 
model and CPT scores in the label-embedding attentive 
model. The confidence parameter is calculated for each case 
as follows. For the support vector machine model, confi-
dence parameter is calculated as:

confidence parameter
P

P
CPT

CPT

      = −1

2

1

Where P
CPT1

 and P
CPT2

 are the highest and second highest 
probabilities of all CPTs for that case. For the label-em-
bedding attentive model, confidence parameter was cal-
culated as:

confidence parameter score scoreCPT CPT   = −1 2

Where score
CPT1

 and score
CPT2

 are the highest and second 
highest scores of all CPTs for that case. Cases were strati-
fied into three confidence parameter ranges to differentiate 
cases with high versus low classification confidence: High 
(confidence parameter at or above 1.6), Medium (less than 
1.6 and at or above 1.2), and Low ( less than 1.2; figs. 2 and 
3). The High category was targeted to return at least 95% 
accuracy (i.e., more than 5.0% misclassification rate), as was 
the goal for this study. The Medium and Low categories 
were targeted to achieve balanced classes. Although these 
strata were chosen for reporting purposes, it is worth noting 
that any confidence parameter threshold can be selected 
based on the desired accuracy.

Testing Generalizability, Calibration, and Model 
processing Speed

To determine the generalized ability of the models to clas-
sify anesthesia CPT codes, select models were tested on the 
Holdout data set (data from a distinct institution unseen by 
the Train/Test data set). For ease of assessing model calibra-
tion (as described further in the statistical analysis), CPT 
codes were transformed to a continuous variable via CPT-
specific anesthesia base unit values, as are currently used for 
anesthesiology reimbursement.39 The higher the assigned 
base unit value, the higher the reimbursement. Of note, each 
CPT code has a single base unit value, but multiple CPT 

codes may have the same base unit value. Finally, to assess 
the feasibility of an automated CPT classification model 
to be deployed in real time, potentially embedded into the 
perioperative electronic health record, the Holdout data 
set was processed 10 times on the support vector machine 
model, measuring processing time (in seconds).

Statistical Analysis

Exploratory data analysis techniques such as histograms, 
QQ-Plots, box-plots, scatterplots, and basic descriptive 
(means, medians, interquartile range) were used to assess 
the distribution of measures, to explore the most infor-
mative transformations, extreme values of the covariates, 
confounders, and relevant predictors considered in the 
analysis. These analyses were performed within the Train/
Test and Holdout data sets separately. Standardized differ-
ences were used to compare summary statistics across these 
two data sets. To reduce the dimensionality of the classifi-
cation model and to facilitate comparisons across clusters 
of CPT codes, a clinical approach was adopted in which 
CPT codes were grouped by anatomical region of the sur-
gical procedure.40 These are referred to as CPT categories 
in the text. Model performance was analyzed by assess-
ing accuracy—defined as a first choice CPT classification 
matching the institutional-assigned CPT code existing in 
the Multicenter Perioperative Outcomes Group database. 
Accuracy within the top three is defined as one of the top 
three CPT classifications from the model matching the 
institution-assigned CPT code; narrowing a billing special-
ist’s classification task from 285 possible CPT codes to only 
three may yield efficiency gains. In response to peer review, 
other metrics of classification such as the net reclassification 
index and calibration were also used to assess the quality of 
the classification models. Both of these metrics were appro-
priately modified from the classical binary classification to 
the multiclass classification case. To assess, we considered the 
following statistics:

net reclassification index
p p

p p

n

up down

up down

=
−





+

� �

� �

Where and p̂
up
 and p̂

down
 are the average of the probabil-

ity estimates for CPT codes for which the base unit value 
of the model-classified CPT codes went up or down with 
respect to the original CPT code, and n is the total num-
ber of CPT codes classified. The net reclassification index 
is then interpreted as the net change in base unit value of 
CPT codes reclassified by both models. Calibration plots 
were constructed using z scores for base unit values from 
reference standard CPT codes as well as base unit values 
from model-classified CPT code for both models.
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results
The Train/Test data comprised 1,164,343 unique cases 
across 16 institutions and spanning 262 anesthesia CPT 
codes (table 1). The 2018 anesthesia CPT catalog consists 
of 285 unique codes.1,39 The Holdout data set comprised 
58,510 cases from a single institution and spanned 232 
anesthesia CPT codes. In the Train/Test data set 36,356 
cases were missing procedure text, representing 0.1% of the 
data. The Holdout data set had 17 such cases (less than 0.1% 
of the data). The Train/Test data set included 227 of the 232 
codes contained in the Holdout data set; the five anesthesia 
CPT codes unique to the Holdout data set are described 
in Supplemental Digital Content 3 (http://links.lww.com/
ALN/C204). Fifty-seven percent of patients were female. 
The mean age was 50 yr, and 8.5% were pediatric (age 
younger than 18 yr). Cases were primarily ASA II (46.5%) 
and ASA III (37.1%), and 4.5% were emergent.

Using CPT categories, codes were unevenly distributed 
between the data sets. Case distributions into each CPT 

grouping varied between individual institutions, but the 
distribution reflects the content of the overall Multicenter 
Perioperative Outcomes Group database. The Holdout data 
set was similar to the Train/Test data set (table 1). Because 
sample sizes are large, statistically significant differences were 
observed between data sets. Two body regions showed a rel-
ative sparsity: Burn Debridement (1,054 cases vs. 1 between 
the Train/Test and the Holdout data sets, respectively) and 
Other (0 cases vs. 97).

primary Outcome Adjudication

Institution-assigned primary anesthesia CPTs were used as 
the reference standard labels when developing the models. 
Among the 500 cases from the Train/Test data set adjudi-
cated by anesthesiologist manual review, 25 of 500 (5.0%) 
cases were found to be misclassified by primary anesthesia 
CPT in the source data set. Nine of 25 errors would have 
been correctly classified by the support vector machine 
model. A sample of 50 cases, including all 25 for which 

Fig. 2. Accuracy of current procedural terminology (CpT) code assignment as a function of confidence parameter. This graph shows the 
percentage accuracy of model CpT classification (y axis) for a given cutoff of confidence parameter (x axis) for the support vector machine 
model. The Train/Test and Holdout data set accuracies are plotted for both the first assigned CpT code (top 1 CpT code) and top three assigned 
CpT codes (top 3 CpT codes). High (≥ 1.6), Medium (1.6 > confidence parameter ≥ 1.2), and low (< 1.2) areas are labeled above the figure. 
Confidence parameter is a derived measure of relative probability between best-fit and second-best-fit CpT classifications.
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the institution-assigned CPT code was in error (per anes-
thesiologist review) and a random 25 for which the insti-
tution-assigned CPT code was correct, were validated by 
the University of Michigan Anesthesiology Department 
billing manager. The review by the anesthesia billing man-
ager showed agreement in 22 of the 25 cases found to be 
incorrect and 25 of the 25 for cases found to be correct, for 
an overall 88% concordance with the anesthesia attending 
review.

procedure Text and Natural language processing

Feature importance was used to gain insight into model 
classifications and potential improvements, but not used to 
evaluate model error. Procedure text was the most import-
ant feature used to classify anesthesia CPT codes. This 
text had an average word count of 10 words per case. The 
vocabulary size across all cases was 25,098 unique words. 
Most individual words were rare, occurring in less than 10 

cases across both data sets, accounting for 19,159 (76.3%) 
of the vocabulary size. Unique medical word misspellings 
totaled 8,353. The top misspelled medical terms included 
“discectomy,” “dilatation,” “curettage,” and “excision,” along 
with longer terms such as “esophagogastroduodenoscopy” 
and “cholangiopancreatography.” In all, 21.3% of cases con-
tained at least one misspelled word that was subsequently 
corrected.

Machine learning Model parameters

In the support vector machine model, the average weight 
for each individual word in the procedure text was 7.9 
whereas the average combined weight of all words within 
the procedure text was 337.5. Weights for other features 
were considerably lower than the combined procedural text 
weight: ASA Physical Status classification (6.1), text length 
(4.3), age (3.2), sex (2.1), emergent status (1.5), and case 
duration (1.5).

table 1. Key Metrics and Comparisons of the Two Data Sets Used in This Study (Train/Test and Holdout)

category  train/test Holdout or P value

Case demographics      
 Unique anesthesia cases  1,164,343 58,510   
 Unique anesthesia CpTs  262 232   
CpT categories      
 Head 00100-00222 156,017 (13.4%) 14,934 (25.5%) 0.5 < 0.0001
 Neck 00300-00352 53,302 (4.6%) 3,238 (5.5%) 0.8 < 0.0001
 Thorax (chest, shoulder) 00400-00474 58,001 (5.0%) 2,746 (4.7%) 1.1 0.0061
 intrathoracic 00500-00580 57908 (5.0%) 3,778 (6.5%) 0.8 < 0.0001
 Spine and spinal cord 00600-00670 36,520 (3.1%) 1,291 (2.2%) 1.4 < 0.0001
 Upper abdomen 00700-00797 170,005 (14.6%) 7,646 (13.1%) 1.1 < 0.0001
 lower abdomen 00800-00882 227,202 (19.5%) 7,658 (13.1%) 1.6 < 0.0001
 perineum 00902-00952 105,208 (9.0%) 3,584 (6.1%) 1.5 < 0.0001
 pelvis (except hip) 01112-01190 4,904 (0.4%) 227 (0.4%) 1.0 0.9999
 Upper leg (except knee) 01200-01274 35,094 (3.0%) 1,162 (2.0%) 1.5 < 0.0001
 Knee and popliteal area 01320-01444 45,967 (3.9%) 1,502 (2.6%) 1.5 < 0.0001
 lower leg (below knee) 01462-01522 37,350 (3.2%) 1,217 (2.1%) 1.5 < 0.0001
 Shoulder and axilla 01610-01682 24,076 (2.1%) 907 (1.6%) 1.3 < 0.0001
 Upper arm and elbow 01710-01782 7,110 (0.6%) 408 (0.7%) 0.9 0.0129
 Forearm, wrist, and hand 01810-01860 38,149 (3.3%) 1,269 (2.2%) 1.5 < 0.0001
 radiological procedure 01916-01936 45,378 (3.9%) 3,329 (5.7%) 0.7 < 0.0001
 Burn debridement 01951-01953 1,054 (0.1%) 1 (<0.1%) 1.0 < 0.0001
 Obstetric 01958-01969 61,098 (5.2%) 3,516 (6.0%) 0.9 < 0.0001
 Other procedure 01990-01999 0 (0.0%) 97 (0.2%) 0.0 N/A
patient demographics      
 Female  659,272 (56.6%) 32,078 (54.8%) 1.1 < 0.0001
 Age, yr  51 (22) 50 (23) 0.09*  
 pediatric (age <18 yr)  98,778 (8.5%) 6,549 (5.6%) 1.6 < 0.0001
 ASA i  111,269 (9.6%) 6,307 (10.8%) 0.9 < 0.0001
 ASA ii  536,752 (46.5%) 25,998 (44.4%) 1.1 < 0.0001
 ASA iii  428,397 (37.1%) 23,095 (39.5%) 0.9 < 0.0001
 ASA iV  75,230 (6.5%) 2,969 (5.1%) 1.3 < 0.0001
 ASA V  1,600 (0.1%) 132 (0.2%) 0.5 < 0.0001
 ASA Vi  16 (<0.1%) 9 (<0.1%) 1.1 < 0.0001

Frequencies are displayed as percentages or means with SD, as appropriate. P values are calculated to evaluate differences between groups using chi-squared test for categorical 
features, Student t test for continuous features. CpT categories are defined by body region. Odds ratio (Or) thresholds for determining the effect size: small (Or ≤ 1.5), medium (1.5 
< Or ≤ 2), and large (3 < Or). For SD: small (≤ 0.2), medium (0.2 < SD ≤ 0.5), large (0.5 < SD ≤ 0.8), and very large (0.8 < SD).
*SD. ASA, American Society of Anesthesiologists physical Status classification; CpT, Current procedural Terminology.
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Train/Test Data Set

The highest overall accuracy was found with the support 
vector machine model (87.9%; 95% CI, 87.6% to 88.2%; 
table 2). Extreme gradient boosting (87.9%; 95% CI, 87.5% 
to 88.3%), and long short-term memory (86.4%; 95% CI, 
83.5% to 89.3%), and the label-embedding attentive model 
(84.2%; 95% CI, 84.1% to 84.3%) were all more accurate than 
random forest modeling (82.0%; 95% CI, 68.1% to 95.9%). 
Using CPT categories to identify cases for which the random 
forest model demonstrated differential performance, there was 
a low of 70.7% for radiology procedures and a high of 92.0% 
for shoulder procedures. There was an observed positive rela-
tionship between the number of cases comprising a specific 
CPT code and the accuracy of the models for the CPT code, 
with a Pearson correlation of 0.72. Overall accuracy within 
the top three was 96.8% for support vector machine model 
and 94.0% for the label-embedding attentive model.

Confidence parameters

The best performing model in the testing was the support vec-
tor machine model at 87.9% (95% CI, 87.6% to 88.2%), or 
a misclassification rate of 12%. However, through the use of 
confidence parameters assigned along with CPT code output, 
results were partitioned into identifiable groups and those with 
higher confidence parameters correlated with accuracy of CPT 
classification (Pearson correlations greater than 0.97; fig.  2). 
Cases within the High (confidence parameter at or above 1.6) 
category represented 47% of the data in testing (fig.  3) and 
yielded a 96.4% accuracy (fig. 2). At a more stringent confi-
dence parameter of at least 2.0, first CPT classification accuracy 
increased to 97.1%, encompassed 39.3% of the cases, and accu-
racy at this confidence within the top three was 99.1%. For the 
label-embedding attentive model, there was a 94.4% accuracy 
in 62.2% of cases with a 98.2% top three accuracy.

Holdout Data Set performance Metrics

Accuracy. The best performing machine learning model by 
overall accuracy in the Holdout data set was the support 

vector machine model (81.2%). When stratifying by confi-
dence parameter metrics there was a 93.1% accuracy (fig. 2) 
for high confidence parameter (at least 1.6) encompassing 
58.0% of the data (fig. 3). At the more stringent confidence, 
very high confidence parameter (at least 2.0) demonstrated 
a 94.7% accuracy and 48.0% data set coverage. Accuracy 
within the support vector machine model top three was 
96.3% for the Holdout data set. The overall accuracy of 
the label-embedding attentive model was 82.1% for the 
Holdout data set, and accuracy within the top three was 
94.6%. The label-embedding attentive model accuracy is 
improved to 95.0% for cases with confidence parameter 
at or above 1.6, encompassing 62.0% of the data set. This 
means that, using the label-embedding attentive model, 
CPTs were classified within the study’s desired threshold 
(at least 95% accuracy) on 62% of the data. At the more 
stringent confidence (confidence parameter at or above 
2.0) accuracy improved to 96.9% with a data set coverage 
of 48.3%.

When CPT codes were grouped by body region, we 
found that the label-embedding attentive model correctly 
identified the proper body region in 91.4% of its first-
choice CPT classifications, whereas the support vector 
machine model correctly identified 93.1%. Furthermore, 
the label-embedding attentive model and support vector 
machine models correctly identified the proper body region 
in 97.5% and 97.7% of top-three choices, respectively.
Net Reclassification Index. After transformation of CPT 
codes to anesthesiology base unit values, the support vec-
tor machine model net reclassification index was 0.294 
(95% CI, 0.270–0.318), indicating that the support vec-
tor machine model led to a 29.4% excess proportion 
of increased anesthesiology base unit values compared 
with original CPT code base unit values. Using a similar 
approach, the label-embedding attentive model net reclassi-
fication index was 0.343 (95% CI, 0.342% to 0.344%).
Calibration. After transformation of CPT codes to anes-
thesiology base unit values, calibration plot intercepts were 
−0.00 (P = 0.855) and −0.00 (P = 0.995) whereas cali-
bration plot slopes were 0.849 (P < 0.001) and 0.845 (P < 
0.001) for the support vector machine and the label-em-
bedding attentive models, respectively. Details can be found 
in Supplemental Digital Content 4 (http://links.lww.com/
ALN/C205).

processing Time

The processing speed of the support vector machine model 
on the Holdout data set (58,510 cases) was 1.09 ± 0.05 s. 
Processing speeds were equivalent across all models.

discussion
In this retrospective multicenter study, a machine learn-
ing–based approach to CPT code classification is described 
using commonly available perioperative electronic health 

table 2. results of Five Machine learning Models on the 
Train/Test Data Set

Machine Learning  
Model

average accuracy (95% ci)
top cPt code

random forest 82.0% (68.1% to 95.9%)
Support vector machine 87.9% (87.6% to 88.2%)
Extreme gradient boosting 87.9% (87.5% to 88.3%)
long short-term memory 86.4% (83.5% to 89.3%)
label-embedding attentive model 84.2% (84.1% to 84.3%)

Accuracies of the five machine learning models calculated from the Train/Test data 
set training tested 20 times using fivefold cross validation, shown with 95% Ci. CpT, 
Current procedural Terminology.
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record data. This study found important differences in 
accuracy between five machine learning techniques. 
Within training, the models studied showed a range of 
classification accuracy from 82% to 88%, a 50% difference 
in misclassification rate between the worst and best per-
forming models. Within validation, an overall accuracy 
of 82.1% in the Holdout data set of the best performing 
model (label-embedding attentive model) was observed. 
When restricting to high confidence cases, (confidence 
parameter at or above 1.6) comprising 62% of cases within 
the data set, there was an augmented accuracy of 95.0%, the 
quality target for this study and eclipsing the most recently 
reported accuracy for fee-for-service payment within 
Centers for Medicare and Medicaid Services (91.9%).7 The 
models developed in this study may offer a reduction in 
processing time and personnel resources required to per-
form these administrative tasks.

This approach is different from traditional comput-
er-aided coding in the medical space: Whereas traditional 
approaches focus on automating transcription tasks, this 

study focuses on classification capabilities. The confidence 
parameter was created to stratify cases into groups to 
improve model utility. This allowed identification of cases 
with high classification confidence, which may enable real-
location of administrative or auditing resources to review 
cases for which ambiguity exists.

To investigate external validation, the support vector 
machine and label-embedding attentive models were tested 
on the Holdout data. Both models yielded lower overall 
accuracies (81.2% to 82.1%) for the Holdout data set rel-
ative to Train/Test, yet through the use of a confidence 
parameter, an identifiable 58.0% to 62.0% of cases with a 
confidence parameter at or above 1.6 demonstrated overall 
accuracies of 93.1 to 95.0%. These results are encouraging 
for the generalizability of the models—potentially owing to 
use of data from both academic and private hospitals across 
16 medical centers. The machine learning models devel-
oped proved robust to unseen data at the holdout institution, 
with a broadly similar case mix, yet with some site-specific, 
idiosyncratic documentation and practice patterns.

Fig. 3. percentage case inclusion as a function of confidence parameter. This graph shows the percentage of cases included for model 
current procedural terminology (CpT) classification (y axis) for a given cutoff of confidence parameter (x axis) for the support vector machine 
model. The Train/Test and Holdout data set accuracies are plotted. High (≥ 1.6), Medium (1.6 > confidence parameter ≥ 1.2), and low (< 1.2) 
areas are labeled above the figure. Confidence parameter is a derived measure of relative probability between best-fit and second best-fit 
CpT classifications.
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For the remaining lower-confidence cases, the models 
can narrow assignment choices for medical billing special-
ists to selection between the top three choices. Top three 
choice narrows the classification task of billing specialists 
from 285 to 3, providing a shorter and prioritized list from 
which to choose. Top three accuracies were 94.6% to 96.8%. 
Thus, these models could aid coding personnel by provid-
ing a smaller subset of CPT assignment choices. In other 
instances, the models created in this study could be used 
for postassignment analysis as auditing tools used to iden-
tify discrepancies and potential coding errors by comparing 
manual and automated assignments. There is commonly 
a window for resubmission of CPT assignments, during 
which automation could help target efforts to reclaim lost 
revenues. Through an assessment of base unit values corre-
sponding to the CPT codes, such automated models may 
identify cases commonly over- and under-billed, and may 
aid such auditing processes.

Given the promising results of this study, models devel-
oped from this work have been directly incorporated into 
the billing workflow at the University of Michigan for 
auditing and resubmission purposes. Beyond use at our 
single center, the CPT classification tool developed in this 
study has substantial applicability in the broader business 
practices of anesthesia care. Billing departments and vendors 
spend a considerable amount of time processing informa-
tion for reimbursement and are slowed in an environment 
in which documentation errors are common. An estimated 
15.7% of anesthesia cases contain at least one documenta-
tion error after first billing attempt, and the median time to 
correct documentation errors was 33 days.41 Furthermore, 
1.3% of all anesthetic cases went without reimbursement 
because of improper documentation and failure to correct 
errors. Within this study, medical misspellings accounted 
for 33.3% of the procedure text vocabulary, and 21.3% of 
cases contained at least one misspelled term. These tools 
could be used to refocus resources away from routine, high- 
confidence, CPT assignment and toward areas of more com-
plex processing and auditing to further improve the speed 
and accuracy of the overall billing process. When deployed 
as a web application, the models are able to process more 
than one million cases in under 10 min. In the context of 
studies demonstrating anesthesiology practices gaining rev-
enue via decreasing charge lag,8 and reports demonstrating 
hospital operating margins between 2% and 3%, a machine 
learning classification approach represents an opportunity 
to reduce costs without compromising patient care.42–44

Additionally, the methods developed in this study may 
expedite CPT assignment for use in research and quality 
improvement projects. The classification models created 
enable near real-time anesthesia CPT assignment upon 
upload of core electronic health record data to a research or 
quality improvement coordinating center, freeing researchers 
and quality improvement champions from a dependency on 
billing data which may not be available in a timely manner.

Work remains to develop the full potential of billing 
aides like the CPT classification models created in this study. 
These tools require continued retraining as new informa-
tion becomes available and updating when medical coding 
changes occur. Without updating over time, the tools will 
perform with gradual lower accuracy. One implementation 
concept is where the models can be trained with historical 
data when a new center begins to use them but retrained 
periodically when new data become available. Existing and 
new centers would benefit from novel data inclusion.

Study limitations

This study has several important limitations which must be 
further explored.

1. Surgical CPTs were frequently unavailable from the 
contributing institutions, and of those providing surgical 
CPTs there was a similar or longer delay in availability 
from procedure date, compared with anesthesia CPT 
codes. Such lag times in surgical CPT coding preclude 
early crosswalking to anesthesia CPT codes and justify 
the approach based on procedure text used in this study.

2. Training sets derived from manual CPT assignment con-
tain errors,6 and a model trained on errors will invariably 
reproduce similar errors. In this study, through physician 
validation, there was a manual CPT assignment error 
rate of 5.0%; thus, models created in this study would 
benefit from audited and validated data sets to increase 
model assignment accuracy.

3. Bias from overfitting to individual or institution-spe-
cific procedure text assignments and billing practices 
may have existed within this study. To alleviate this bias, 
data from multiple centers were used in training, and an 
external validation was conducted on a Holdout data set.

4. Although natural language processing was used to 
correct many of the spelling and formatting errors in 
procedure text, creating this feature required manual 
physician review and there remained several additional 
instances that went uncorrected. Further text processing 
and expansion of acronyms can help align similar cases, 
improving model accuracy.

5. Among CPT codes for which the machine learning 
models demonstrate low or medium confidence, accu-
racy is not yet comparable with current standards.

6. Although some level of site-specific text characteriza-
tion was required because of local site acronyms, stan-
dard lexicon tools for natural language processing were 
not used in this study, such as those available through the 
Unified Medical Language System,45 potentially limiting 
the reproducibility of the models.

7. Because base unit values were not unique to each CPT 
code, it was possible for model outputs to yield an incor-
rect CPT yet correct base unit value, thus limiting the 
fidelity of net reclassification index and model calibra-
tion assessments.
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8. Although this study demonstrates rapid data processing 
and has potential for real-time classification of anesthe-
sia CPT codes, these models have not been thoroughly 
analyzed in practice. The group plans to test these capa-
bilities through prospective application of CPT classi-
fication to anesthesia quality improvement measures 
reliant on CPT codes. 

9. Sparsity remains an issue with large data predictive mod-
eling. In cases that were not well represented in Train/
Test data set, the models demonstrated decreased accu-
racy. The data sets used to create these models contained 
sparse procedural information, and it is likely that accu-
racy would improve with inclusion of additional data, 
such as operative notes.

Conclusion and Future Directions

In summary, this study describes a rapid automated classi-
fication model for anesthesia CPT codes, with an accuracy 
comparable with current standards in a high-confidence 
subset of cases, and processing time far eclipsing current bill-
ing practices. These findings may serve to reduce the burden 
of manual coding of more common cases, and may increase 
efficiency within the billing cycle and aid processes that 
rely on billing data. These results broadly demonstrate the 
potential for machine learning and natural language pro-
cessing–based classification models in healthcare operations.

Future applications include automation of high-confi-
dence CPT assignment to enable redistribution of manual 
efforts, and workflow integration for classification decision 
support. Because similar difficulties in reimbursement pro-
cesses exist throughout the hospital, the methods to create 
these models could be used for classification of other med-
ical billing codes such as surgical CPT and International 
Classification of Diseases. In classifying surgical and anesthe-
sia CPT as well as International Classification of Diseases, it 
is conceivable to create a system automating the majority of 
the procedural billing process.
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