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ABSTRACT
Background: The neurophysiologic mechanisms of propofol-induced loss 
of consciousness have been studied in detail at the macro (scalp electroen-
cephalogram) and micro (spiking or local field potential) scales. However, the 
changes in information integration and cortical connectivity during propofol 
anesthesia at the mesoscopic level (the cortical scale) are less clear.

Methods: The authors analyzed electrocorticogram data recorded from 
surgical patients during propofol-induced unconsciousness (n = 9). A new 
information measure, genuine permutation cross mutual information, was 
used to analyze how electrocorticogram cross-electrode coupling changed 
with electrode-distances in different brain areas (within the frontal, parietal, 
and temporal regions, as well as between the temporal and parietal regions). 
The changes in cortical networks during anesthesia—at nodal and global 
levels—were investigated using clustering coefficient, path length, and nodal 
efficiency measures.

Results: In all cortical regions, and in both wakeful and unconscious states 
(early and late), the genuine permutation cross mutual information and the 
percentage of genuine connections decreased with increasing distance, 
especially up to about 3 cm. The nodal cortical network metrics (the nodal 
clustering coefficients and nodal efficiency) decreased from wakefulness to 
unconscious state in the cortical regions we analyzed. In contrast, the global 
cortical network metrics slightly increased in the early unconscious state (the 
time span from loss of consciousness to 200 s after loss of consciousness), as 
compared with wakefulness (normalized average clustering coefficient: 1.05 
± 0.01 vs. 1.06 ± 0.03, P = 0.037; normalized average path length: 1.02 ± 
0.01 vs. 1.04 ± 0.01, P = 0.021).

Conclusions: The genuine permutation cross mutual information reflected 
propofol-induced coupling changes measured at a cortical scale. Loss of con-
sciousness was associated with a redistribution of the pattern of informa-
tion integration; losing efficient global information transmission capacity but 
increasing local functional segregation in the cortical network.
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General anesthesia includes a reversible, drug-controlled 
loss of consciousness. It provides an effective way to 

study the neurophysiologic mechanisms of consciousness. 
However, because of the complexity of anesthetic effects 
on the central nervous system, a robust causal theory has 
yet to be established.

The information integration theory of consciousness 
is one contender. It has been shown that the coupling of 
neuronal oscillations between different frequency bands 
or regions can be correlated with high-level brain activity, 
such as sensory, motor, and cognitive events.1,2 Alternatively, 
we may regard the brain as a complex system, and assess 
information integration by broadband information theory 

measures, such as entropy, complexity, and mutual infor-
mation.3–6 Compared with neural oscillation measures, 
evaluations of the information integration using entropy, 
complexity, and mutual information robustly capture the 
nonlinear coupling characteristics of neurophysiologic 
signals.7

Unfortunately, neurophysiologic data, such as elec-
troencephalogram and local field potentials, are complex 
signals lacking clear and invariant signatures across uncon-
scious states.8 Symbolic analysis, as proposed by Bandt and 
Pompe,9 is thought to be a simple but effective solution 

EDITOR’S PERSPECTIVE

What We Already Know about This Topic

•	 Coupling of neuronal oscillations between brain regions is cor-
related with higher level brain activity

•	 Permutation cross mutual information can be used to evaluate infor-
mation integration in the electroencephalogram during anesthesia.

What This Article Tells Us That Is New

•	 Using electrocorticography in subjects anesthetized with propofol, 
the genuine permutation cross mutual information demonstrated 
that, with loss of consciousness, there was a loss of efficient global 
information transmission and increased local functional segrega-
tion in the cortical network
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to this problem. As permutation patterns arise naturally in 
time series, rather than using amplitudes of signals the sym-
bolization technique is a powerful alternative to quantify 
the information content of time series.10,11 Because of these 
advantages, various permutation measures, such as permu-
tation entropy, symbolic transfer entropy, weighted sym-
bolic mutual information, and permutation cross mutual 
information, have been widely used in neurologic disease 
diagnosis and brain state monitoring,12–16 especially for level 
of consciousness assessment.7,8,15–18 Our previous studies7,16 
found that the permutation cross mutual information mea-
sure performed better in evaluating the information inte-
gration of prefrontal regions from electroencephalogram 
recordings for patients under propofol, or isoflurane and 
remifentanil, anesthesia.

Most of the works mentioned above only considered 
neural activity at the macro (scalp electroencephalogram) 
scale; investigations focused at the scale of cortical dynami-
cal observations have been rare.19 It is well known that the 
amounts of long-distance communication and information 
sharing between brain areas are important criteria for the 
evaluation of consciousness,15,20–22 but how best to assess 
information integration at different spatial scales remains 
an open problem. This question motivated us to explore 
whether the permutation cross mutual information value 
could be used to estimate neural information integration 
at the mesoscale of electrocorticogram recordings, and 
to investigate information integration at different spatial 
distances.

Previous studies23,24 have proposed a surrogate analysis 
method to estimate the genuine correlation strengths for 
multi-channel electroencephalogram. By correcting for 
spurious statistical correlations, we therefore propose a 
new genuine mutual information measure—the genuine 
permutation cross mutual information—which combines 
the permutation cross mutual information and surrogate 
analysis. Additionally, independent component analysis is 
used to solve the problems arising from volume conduc-
tion effects.25,26 We use graph theory to measure network 
characteristics at the cortical scale. To investigate how infor-
mation integration correlates with interelectrode distance, 
brain area, and state of anesthesia, we applied our methods 
to data from nine patients with epilepsy who were under-
going propofol anesthesia.

Materials and Methods

Data Recordings and Preprocessing

We recorded the electrocorticogram signals from nine 
patients (aged 18 to 54 yr) undergoing intracranial monitor-
ing for surgical treatment of epilepsy at Xuanwu Hospital, 
Beijing, China. The recordings were done from March 1, 
2012 to December 31, 2013. Patient information and elec-
trode arrangements are presented in Supplemental Digital 
Content 1 (http://links.lww.com/ALN/C70). Patients 

were classified as American Society of Anesthesiologists 
Physical Status II or III. Patients provided written informed 
consent, and the protocol was approved by the Xuanwu 
Hospital ethics committee.

Sixty-four–channel electrocorticogram data were 
recorded during the transition from awake to unconscious 
states during predominantly propofol-induced general 
anesthesia before planned neurosurgery to remove the 
electrodes from the patients. The electrocorticogram data 
were recorded using a video-electroencephalogram moni-
toring system (Da Vinci; USA). The monitoring system had 
a sampling rate of 256 Hz and the electrocorticogram data 
were prefiltered through a 0.15-Hz high-pass filter and a 
67-Hz low-pass filter. The reference electrode and ground 
electrode were fixed under the scalp and the right shoulder, 
respectively. Loss of consciousness time point was deter-
mined every 5 s by loss of response to verbal commands.

Recordings were obtained in the operating room envi-
ronment, which was not muted. The patients could blink or 
open and close their eyes before drug induction. Dosages 
of anesthetics were determined according to standard dos-
ing requirements. The intravenous induction drugs were 
imidazole (0.1 mg/kg), fentanyl (2–4 µg/kg), vecuronium 
(0.1 mg/kg), and propofol (1–2 mg/kg).

Data were recorded for off-line analysis in MATLAB 
(version 2014, MathWorks Inc., USA). Line noise (50 Hz) 
was removed with an adaptive notch filter. Large ampli-
tude electrocorticogram artifacts were removed and bad 
channels were rejected by visual inspection. A band-pass 
filter based on the EEGLAB function eegfilt.m was used 
to extract electrocorticogram data from 0.15 Hz to 45 Hz 
for index calculation. To maintain consistency with our 
previous study,16 the electrocorticogram recordings were 
resampled to 100 Hz by running the resample.m function 
from MATLAB. One patient who had abundant motion 
noise and bad channels was excluded. The remaining eight 
patients were included in the analysis, seven of whom had 
64-channel data, whereas one had 48-channel data.

Genuine Permutation Cross Mutual Information

Propofol-induced general anesthesia causes large low fre-
quency oscillations. Because these low frequency oscilla-
tions in a finite dataset could have produced large spurious 
mutual information values,24 we used surrogate techniques 
to measure the genuine coupling of pairs of electrocorti-
cogram channels.23,27 Diagrams of the analysis process and 
resulting genuine permutation cross mutual information 
and genuine cortical networks found by genuine permuta-
tion cross mutual information are shown in figure 1.

The details of the genuine permutation cross mutual 
information algorithm are as follows:

(1)   �Given two time series of xt  and  yt   t n= 1 2, ,… ,  
a phase space reconstruction procedure was applied 
to construct the vectors X x x xt t t t m[ , , , ]+ +τ τ… and 
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Y y y yt t t t m[ , , , ]+ +τ τ…  with embedding dimension m  
and lag τ , where t  is a given sample point.

(2) �Xt and Yt  were arranged in ascending order as a symbol 
of vectors: [ ]( ) ( ) ( )x x xt j t j t jm+ − + − + −≤ ≤ ≤

1 21 1 1τ τ τ�  and 
[ ]( ) ( ) ( )y y yt j t j t jm+ − + − + −≤ ≤ ≤

1 21 1 1τ τ τ� , respectively.

(3)  �The marginal probability distribution functions of xt

and yt were calculated and denoted as p x( )  and p y( ), 
respectively. The entropy of xt  and yt  were respectively 
defined as H X p pj j

j

J

( ) log= −
=

∑
1

� (1)

		  and H Y p pj j
j

J

( ) log= −
=

∑
1

� (2)

(4) The joint entropy of H X Y( , )  was calculated based on 
the joint probability function.

			  H X Y p x y p x y
y Yx X

( , ) ( , ) log ( , )= −
∈∈
∑∑ � (3)

(5)   �The permutation cross mutual information (PCMI) of 
time series xt  and yt  is:

 PCMI X Y H X H Y H X Y( ; ) ( ) ( ) ( , )= + − � (4)

(6) �Surrogate time series were calculated. To reduce compu-
tational complexity, only one time series (e.g., xt  or yt )  
was used to generate the surrogate time series. The iter-
ative amplitude-adjusted Fourier transform method was 
used and the generated surrogate data are denoted xt

surr.28  
We created 50 surrogate time series and calculated their 
corresponding permutation cross mutual information 
values, denoted PCMIsurr.

(7) �If the original permutation cross mutual information 
value, denoted PCMIoriginal , deviated significantly from 
the distribution of the PCMIsurr,  the PCMIoriginal was 
considered to be a genuine permutation cross mutual 
information, or a true connection. Otherwise, the 
PCMIoriginal  was considered a spurious permutation 
cross mutual information (denoted PCMI purs ).

Fig. 1.  Diagram of genuine permutation cross mutual information (GPCMI) measurements and GPCMI based cortical networks. (A) The 
motifs (M) of the order 4(4!). (B) Two original 10 s electrocorticogram epochs (x  and y ) from different electrodes, the corresponding surrogate 
data (s ) generated from x and several motifs (order = 4, and lag = 1) from y. (C) The probability distributions of x  and s , and cross-prob-
ability distribution of 10-s times series x and s denoted as p(x), p(s) and p(xs), respectively, with embedding dimension m = 4 and the 
lag τ = 1. (D) The probability distribution and cross-probability distribution of time series x and y , similar to C. (E) GPCMI matrix between all 
pairs of channels from one patient at a given time. (F) Spatial visualization of the connection matrix in E.
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The Wilcoxon signed-rank test (signrank.m in MATLAB) 
was used in the above significance testing. The 
median of PCMIsurr  was tested with the PCMIoriginal .  
If H0 1=  and p < 0 0. 01, GPCMI PCMIoriginal= .  
Otherwise, GPCMI = 0, which was called PCMI purs . In this 
study, the genuine permutation cross mutual information 
(GPCMI) calculation can be described as:

 GPCMI
PCMI H P

otherwise
original=

= <



: , .
:

1 0 0
0

01
� (5)

The choice of embedding dimension m, lag τ, and epoch 
length is crucial to the permutation cross mutual information 
calculation. If the embedding dimension is too small (m = 1 
or 2), the scheme will not work, because there will not be 
enough distinct states in the time series. On the other hand, 
the epoch length of the time series should be larger than 
m m! !×  to achieve a proper differentiation between stochastic 
and deterministic dynamics. Parameter selection is discussed 
in Supplemental Digital Content 2 (part 1, http://links.lww.
com/ALN/C71). Based on the model and testing on real elec-
troencephalogram data, m = 4, τ = 1, and epoch length of 10 s 
with an overlap of 75% were chosen for permutation cross 
mutual information calculation.

Thus, there are three permutation cross mutual infor-
mation–based indices in this study: (1) The original permu-
tation cross mutual information is the value derived from 
the permutation cross mutual information algorithm. (2) 
The surrogate permutation cross mutual information is the 
permutation cross mutual information value derived from 
surrogate data. (3) The genuine permutation cross mutual 
information is the permutation cross mutual information 
value after the Wilcoxon signed-rank test. The genuine per-
mutation cross mutual information could be zero (not sig-
nificantly deviating from the distribution of the PCMIsurr  
indices, which were derived from the surrogate data), or 
equal to the original permutation cross mutual informa-
tion value (significantly deviating from the distribution of 
the PCMIsurr  indices). Thus, the genuine permutation cross 
mutual information values were divided into two groups: 
nonzero and zero.

In calculating genuine connectivity, Lee et al.27 used the 
original connection index minus the median of the surro-
gate connectivity indices to define the genuine connectivity 
under H0 1=  and P < 0.05. Because the signals of nearby 
but separate channels are naturally correlated, we selected 
P < 0.001 as the threshold for the genuine permutation 
cross mutual information calculation. Because permuta-
tion cross mutual information values were low when using 
m = 4  and τ = 1, the median of PCMIsurr  may exceeded 
PCMIoriginal  in some cases. Thus, the PCMIoriginal  minus the 
median of the PCMIsurr  would have given a meaningless 
value in these situations. Therefore, we termed the genuine 
permutation cross mutual information as PCMIoriginal  when 
H0 1=  and P < 0.001.

Genuine Cortical Networks

This study used graph theory to explore variations in the 
mesoscale brain networks of different anesthesia states. We 
termed this brain network at a cortical scale the cortical net-
work. Each node in the graph corresponded to an electrode, 
and the genuine permutation cross mutual information 
values between electrodes’ electrocorticogram time series 
acted as edge weights. For each patient, we defined the cor-
tical network as consisting of all nodes and the correspond-
ing edge weights mapped from the genuine permutation 
cross mutual information matrix. In this study, we only con-
sidered undirected functional connections; weighted graphs 
were used to analyze the cortical network to avoid choos-
ing an arbitrary threshold for binary graph analysis.

Metrics from graph theory can be used to characterize 
a brain network at both nodal (specific nodes or regions 
within the network) and global levels.29 Regional and nodal 
characteristics of the cortical network were measured by 
the nodal clustering coefficient and the nodal efficiency. 
The average clustering coefficient and metrics of average 
path length were used as global network measures. These 
measures have been used to describe functional brain net-
works in both healthy and diseased subjects,30,31 as well as 
in propofol-induced unconsciousness at the macro scale.27

The clustering coefficient of one node is the number 
of its neighboring nodes that are connected to each other 
divided by its total nodal connections. This study used a 
modified version of the clustering coefficient introduced 
by Stam et al.32 The nodal clustering coefficient of node i  
is defined as

NCC
w w w

w wi

ij im jmm i m jj i

ij imm i m jj i

= ≠ ≠≠

≠ ≠≠

∑∑
∑∑

,

,

� (6)

where w  is the edge weight (estimated using the genu-
ine permutation cross mutual information in this study) 
between two nodes. The average clustering coefficient (Cave )  
of the whole cortical network (global level) is defined as

C
N

NCCave i
i

N

=
=
∑1

1
� (7)

where N  is the total number of nodes. A large clustering 
coefficient indicates that a node is highly interconnected 
with its neighbors, so a high average clustering coefficient 
means a network is highly interconnected.

Nodal efficiency characterizes the efficiency of a node at 
exchanging messages with the other nodes of the network 
(nodal level). The efficiency of node (Enod ) i  is defined as33

E i
N dnod

ijj i G

( ) =
− ≠ ∈

∑1
1

1
� (8)

where dij  is the shortest path length between node i  and 
j.34 The shortest path is defined as the path with the short-

est length between the two nodes in the graph. The length 
of an edge between node i  and j  is the inverse of the 
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weight wij  (i.e., L wij ij= 1/ ). The dij  can be calculated 
based on the weight network.35

The average path length is the average of the shortest 
path lengths (dij ) between all pairs of channels in the cor-
tical network. This reflects the global efficiency of infor-
mation transmission in a network, so a shorter path length 
indicates faster information transmission in the brain. A 
harmonic mean was used to prevent the appearance of an 
infinite average path length (Lave ) due to disconnected links.34

L

N N
d

ave

ijj i

N

i

N
=

− ≠= ∑∑
1

1
1

1
1( )

( / )
� (9)

Because of the irregular distribution of the electrocortico-
gram recording strips on the surface of cortical regions, the 
cortical networks in this study only reflect the characteris-
tics of the area covered by the strips, not the whole brain. 
However, the variation in distance between the electrodes 
did not influence the network parameters.

We normalized the observed clustering coefficient and 
path length by using corresponding metrics calculated 
from random networks. The random networks were gen-
erated from the original networks. The random networks 
preserved the degree distribution while edges were shuf-
fled.36 We denote the average clustering coefficient and path 
length of a random network as Cr  and Lr, respectively. To 
calculate the normalized Cave  and Lave, the Cave  and Lave  
were divided by the Cr  and Lr, and denoted as C Cave r/  
(i.e., normalized average clustering coefficient) and L Lave r/  
(i.e., normalized average path length), respectively. Also, the 
small worldness index (σ ) was calculated as the ratio of 
C Cave r/  to L Lave r/ .

Similar to the calculation of permutation cross mutual 
information, all of the cortical network parameters were 
calculated for each 10 s of electrocorticogram data, so as to 
estimate the time evolution of network changes. To com-
pare wakeful and unconscious states, the cortical networks’ 
indices for all windows in each state were averaged.

Electrode Distance Quantification and Cortical Region 
Classification

Because the electrocorticogram recording strips were irreg-
ularly distributed on the cortical surface and there were no 
magnetic resonance imaging data for the patients, we were 
unable to specify the exact underlying anatomical structures 
and coordinates for the electrodes. To determine the electrodes’ 
distances, several procedures were used, as described below:

Based on clinical records and electrode photographs 
of every patient, we projected all electrodes to a standard 
brain model, based on the Brain Function Mapping tool-
box developed by our team.37 Thus we established the coor-
dinate values for all electrodes in a standard brain model 
space. The electrodes on each strip were fixed in location, 
so we termed this distance the linear strip distance. It incor-
porates the curvature of the brain’s surface. Based on the 

coordinate values of all electrodes, we used the following 
procedure to group pairs of electrodes with similar linear 
surface distance into seven distance groups. Consider 1 cm 
as an example. First, all 1-cm strip distance electrodes pairs 
from a single strip were included. Then, all linear Euclidean 
distances between pairs of electrodes—whose strip distance 
was 1 cm—were calculated based on their coordinate val-
ues. Next, we calculated the mean and SD of these distances 
and termed the distance the space distance of 1 cm. Finally, we 
calculated all distances between pairs of electrodes from dif-
ferent strips based on their coordinate values, and included 
electrode pairs whose distance met the criterion of a space 
distance of 1 cm. When two rows were present on one 
strip, we adopted a rounding approach to classify them. For 
example, electrodes with strip distance of 1.414 cm were 
enrolled in the group of 1 cm. Electrodes pairs with a sur-
face distance of more than 7 cm were classified as 7 cm for 
statistics. Based on this grouping procedure, the numbers of 
pairs for each distance group were 805 (1 cm), 943 (2 cm), 
1,204 (3 cm), 1,381 (4 cm), 1,422 (5 cm), 1,544 (6 cm), and 
1,610 (7 cm).

This study uses two different brain region classification 
methods. The first is to roughly divide the brain into four 
regions: frontal, parietal, temporal, and occipital. For all eight 
patients, the number of electrodes in the frontal, parietal, 
temporal, and occipital regions were 120, 211, 104, and 61, 
respectively. The second is based on the standard Brodmann 
areas. We used Brain Voyager Brain Tutor to remap all elec-
trodes to Brodmann’s areas. All electrodes for the eight 
patients are shown in figure 2. The numbers of electrodes 
in each Brodmann area are listed in Supplemental Digital 
Content 3 (http://links.lww.com/ALN/C72).

Eliminating Volume Conduction Effects Based on 
Independent Component Analysis

Unlike scalp electroencephalogram, the electrocorticogram 
records neural activity directly from the cortical surface. 
Thus, the spatial spread of brain source currents passing 
through the dura, scalp, and skull only exerts minor influ-
ence over it. Therefore, most electrocorticogram studies 
have ignored volume conduction effects when measuring 
cortical networks.38–40 However, other researchers have sug-
gested that volume conduction effects should be consid-
ered in electrocorticogram signal analysis. Compared with 
scalp electroencephalogram and magnetoencephalography 
recordings, source-reconstruction of electrocorticogram 
signals is underdeveloped.41 Fischer et al.42 used envelope 
intrinsic coupling modes, which are not affected by zero-
phase lagged components, to eliminate the volume conduc-
tion effects. Other studies25,26 used independent component 
analysis as a spatial-temporal filter to solve the volume con-
duction problem in electrocorticogram signals. Hindriks 
et al.41 proposed using source-space spatial independent 
component analysis to identify the generators of cortical 
rhythms and to reconstruct functional connectivity.
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Another study25 used a sum of four independent compo-
nents to replace the original signal. The investigators found 
that the waveform similarity among independent com-
ponents was lower compared with the original electrode 
signals, as assessed by the distribution of pair-wise squared 
Pearson correlation values between independent compo-
nents versus between electrodes.

Therefore, we employed a similar method to attenuate 
the influence of volume conduction effects. The procedure 
is as follows:

(1)		�The raw 64-channel electrocorticogram signals were 
decomposed, using the fast independent component 
analysis algorithm.

(2)		�We calculated the weights of the independent compo-
nents for each channel based on the percent variance 
accounted for method.25

(3)		�We searched the channel pairs to find those which had 
three common sources (independent components) in 
their first five largest independent components; we 
inferred that these came from the same sources.

(4)		�The common source channels were replaced by their 
first five largest independent components, excluding the 
common source for permutation cross mutual informa-
tion calculation. The paired channels that did not have a 
common source were calculated using the original signal.

Details of the analysis are shown in Supplement Digital 
Content 2 (part 3, http://links.lww.com/ALN/C71).

The Influence of Studying an Epileptic Brain

Various studies of patients with refractory epilepsy during 
anesthesia have found epileptiform spiking in the electro-
corticogram.43–45 In this study, we analyzed spiking influence 
on the permutation cross mutual information, detailed in 

Supplemental Digital Content 2 (part 2, http://links.lww.
com/ALN/C71). The results show that permutation cross 
mutual information indices can robustly track the coupling 
strength of the simulated model, even when there is a signif-
icant amount of spiking. There was only about a 2% to 3% 
offset from the original permutation cross mutual informa-
tion when there was a high spike rate of one spike per second.

Statistical Analysis

The samples in this study were selected in accordance with 
previous experiments and to reduce patient burden. No a 
priori statistical power calculation was conducted to guide 
sample size.

R Project (version 3.5.3; http://www.r-project.org; 
accessed March 20, 2019) and MATLAB Toolbox were 
used for statistical analysis. The statistical analysis included 
the following steps: The Liliefors test (lilietest.m) was used 
to determine whether indices were normally distributed. 
Then, we analyzed the nonzero genuine permutation cross 
mutual information value changes from wakefulness (the 
state before drug induction) to early unconscious states (the 
time span from loss of consciousness to 200 s after loss of 
consciousness), and late unconscious state (the time span 
from 200 s after loss of consciousness to end of record-
ings) in different electrodes and different cortical regions. 
A generalized linear mixed model with Satterthwaite’s 
method was applied to analyze the interaction effects of 
the three factors: (1) state (three levels: wakefulness, early 
unconscious state, and late unconscious state), (2) distance 
(seven levels: linear surface distance from 1 cm to 7 cm 
with 1-cm steps), and (3) region (six levels: frontal-fron-
tal, parietal-parietal, temporal-temporal, frontal-parietal, 
frontal-temporal, parietal-temporal). Generalized linear 
mixed model analysis allows more flexibility with missing 

Fig. 2.  Electrode locations for all patients on a standard brain model. A and B are views from the left and right hemispheres, respectively.
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values and can deal with individual differences by using a 
random intercept for individual participants. In this study, 
the fixed effects were state, distance, and region; the ran-
dom effects were the random intercept for each subject. 
After obtaining the interaction effects of the three factors, 
the mean and 95% CI values of the estimated difference 
(two-sides) are reported. A Tukey test was used for post hoc 
testing. Adjusted P values of less than 0.05 were consid-
ered to be significant. In the figures, P < 0.05, P < 0.01,  
P < 0.001 are marked with the notations of “*”, “**”, and 
“***”, respectively. Cohen’s d was used to calculate the 
effect size for the mixed effects model.46

Given the inconsistency of electrode coverage between 
subjects, we set the following enrollment criteria for sta-
tistics: (1) more than 20 electrodes in the region, (2) more 
than four patients with electrodes in the region. The nodal 
network parameters nodal clustering coefficient and nodal 
efficiency used a similar statistical test for significance. One-
way ANOVA was used to analyze the significance between 
the three states for the global network parameters of C Cave r/ , 
L Lave r/ , and σ .

Results

Description of the Schematic Diagram of Genuine 
Permutation Cross Mutual Information and 
Electrocorticogram Recording Analysis

In this study, we set the embedding dimension m = 4 and 
lag τ = 1  for the permutation cross mutual information 
calculation. The ordinal patterns for m = 4  are depicted in 
figure 1A. There are 4 24! =  motifs. Figure 1B displays 10-s 
electrocorticogram epochs from two electrodes (x and  y)  
and associated surrogate data for x. Some of the motifs in 
the original electrocorticogram epoch y  are shown in the 
lower section. Surrogate permutation cross mutual infor-
mation values can be calculated based on the surrogate 
epoch s, and examples of the probability distribution and 
cross-probability distribution are shown in figure 1C. The 
original electrocorticogram epochs of x  and y  produced 
the original permutation cross mutual information values, 
as well as the probability distribution and cross-probability 
distribution shown in figure 1D. The embedded dimension 
m = 4  and lag τ = 1  parameters were selected based on 
our previous study.47 Based on the calculations of original 
and surrogate permutation cross mutual information, the 
genuine permutation cross mutual information values can 
be achieved. Figure 1E showed the genuine permutation 
cross mutual information matrix values derived from the 
64 channels electrocorticogram recordings. The associated 
spatially visualized connections are shown in figure 1F.

Figure  3 shows a typical example of cortical network 
calculation based on the genuine permutation cross mutual 
information. Figure 3A shows a photograph of the intraop-
erative intracranial electrocorticogram monitoring (upper) and 
the spatial distribution of the 64 electrodes (lower) for one 

patient. Four electrode strips were implanted in left and poste-
rior temporal (8 × 2, channel 1–16), left parietal and occipital 
lobes (8 × 2, channel 17–32), left bottom occipital and occip-
ital pole (8 × 2, channel 33–48), and left occipital and inter-
hemispheric (8 × 2, channel 49–64). The electrodes mainly 
covered the Brodmann areas of 5, 7, 17, 18, 19, 21, 22, 37, 39, 
40, 41, and 42. Detailed functions of these cortical regions are 
presented in Supplemental Digital Content 3 (http://links.
lww.com/ALN/C72). Figure 3B shows the raw electrocor-
ticogram signals acquired during anesthesia induction, with 
two enlarged 5-s segments for exemplary electrodes.

We examined the changes in cortical networks during 
the induction process of anesthesia in one patient as a case 
study. We selected five time points from the whole anes-
thesia procedure: wakefulness, time points of 30 s, 90 s, 150 
s, and 210 s after loss of consciousness. The genuine per-
mutation cross mutual information matrices at these five 
time points are presented in figure 3C. Electrode coverage 
included temporal (n = 16), parietal (n = 8), and occipital 
(n = 40) cortical areas for this patient. It can be observed 
that genuine permutation cross mutual information values 
decreased after loss of consciousness, and genuine permu-
tation cross mutual information values in the occipital area 
were higher than those in the parietal region. The corre-
sponding spatial connections are shown in figure 3D. The 
nodal clustering coefficient and nodal efficiency of the 
cortical network for the whole procedure are presented in 
figure 3E and 3F. Nodal clustering coefficient progressively 
decreased while nodal efficiency decreased abruptly around 
the point of loss of consciousness.

Information Integration over Local and Distant Cortical 
Regions

To analyze the time course of information integration 
changes from the awake state to unconsciousness in terms 
of local versus distant connectivity, four electrocorticogram 
recordings with differing linear surface distances were 
selected. As seen in figure 4, we analyzed the same patient 
shown in figure 3. This patient had four electrode strips 
(fig. 4A) and figure 4B shows the arrangement diagram and 
distance labels of electrode strip 1. Electrode pairs 1 and 2 
or 1 and 9, or 2 and 9 (1 cm to 1.414 cm distance) were 
regarded as local; whereas electrode pairs 1 and 8, 2 and 8, 
and 8 and 9 (6 cm to 7 cm distance) were regarded as dis-
tant. The electrocorticogram recordings of channels 1, 2, 8, 
and 9 were showed in figure 4C.

Figure 4D reveals an interesting phenomenon. The non-
zero genuine permutation cross mutual information values 
of the local raw electrocorticogram recordings increased after 
loss of consciousness. Studies have found that signals recorded 
from close electrodes might appear similar as a result of the 
volume conduction effect.25,26,48 After the independent 
component analysis–based procedure to reduce volume 
conduction effects, the genuine permutation cross mutual 
information values of short distances decreased after loss of 
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Fig. 3.  Example of the changes in the genuine permutation cross mutual information (GPCMI)–based network topology for one patient 
transitioning from wakefulness to unconsciousness. (A) Intraoperative electrocorticogram monitoring photograph and spatial topography of 
the 64 electrodes of one patient. (B) Raw electrocorticogram recordings of all channels during the whole time course from wakefulness to 
unconscious state and two enlarged 5-s segments of channels 2, 12, 24, and 45 in wakefulness (phase before anesthesia induction) and 
unconscious states (phase after loss of consciousness [LOC]). (C) GPCMI among all nodes at wakefulness, LOC + 30, LOC + 90, LOC + 150 
and LOC + 210. Temporal (TE; n = 16), parietal (PA; n = 8), and occipital (OC; n = 40). (D) The spatial distributions of GPCMI shown in C. (E 
and F) The time course of nodal clustering coefficients and nodal efficiency, respectively, for each electrode. LOC + 30, LOC + 90, LOC + 150, 
and LOC + 210 represent the time points of 30 s, 90 s, 150 s, and 210 s after loss of consciousness, respectively.
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Fig. 4.  Electrocorticogram recordings of four channels from one patient and corresponding electrocorticogram measures versus time. (A) 
Spatial topography of the 64 electrodes of one patient. (B) Arrangement diagram of electrode strip 1 and distance labeling. (C) Raw electro-
corticogram recordings for channels 1, 2, 8, and 9 of the patient. (D) Time course of genuine permutation cross mutual information (GPCMI) 
values for raw electrocorticogram signals. (E) Time course of GPCMI values for independent component analysis based signals. LOC, loss of 
consciousness.
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consciousness (fig. 4E). This means that volume conduction 
may be an important factor in an observed, but perhaps spu-
rious, local increase in permutation cross mutual information.

Also, the nonzero genuine permutation cross mutual 
information curves of raw electrocorticogram signals cor-
relate with electrocorticogram amplitude. Thus, we reana-
lyzed the power of these channels. The results are shown in 
Supplemental Digital Content 2 (part 4, http://links.lww.
com/ALN/C71). The relative power spectrum density was 
used to analyze the power for each frequency band. Figure 
S26C through S26F (Supplemental Digital Content 2, part 
4, http://links.lww.com/ALN/C71) shows that the relative 
power spectrum density in the delta increased after loss of 
consciousness. However, the relative power spectrum den-
sity values in the waking state were not consistent across 
the four channels. Therefore, we cannot say that the ampli-
tude reliably tracks the effect concentration of the propofol. 
The permutation cross mutual information is calculated via 
symbolic dynamics and mutual information. The central 
procedure of symbolic dynamic analysis is discretizing the 
time-series into a corresponding sequence of symbols by 
comparing neighboring time points.9 Therefore, the per-
mutation cross mutual information is more closely related 
to the relative amplitude than to the absolute amplitude of 
the signal. Combined with the results of the independent 
component analysis–based analysis, we concluded that the 
observed local increase in permutation cross mutual infor-
mation was mainly due to the influence of volume conduc-
tion, not the amplitude of electrocorticogram.

In this study, we found clear beta activity approximately 
150 s before loss of consciousness for this patient (see fig. S25 
in Supplemental Digital Content 2, part 4, http://links.lww.
com/ALN/C71). A previous electroencephalogram study49 
reported that beta power increased in the frontal/central area 
in light sedation by propofol. In deep sedation, alpha oscilla-
tions dominated the frontal area. With loss of consciousness, 
slow wave oscillations (delta and theta power) increased in the 
frontal area. However, not all patients had obvious beta oscil-
lations before loss of consciousness. As shown in figure S27 in 
Supplemental Digital Content 2 (part 4, http://links.lww.com/
ALN/C71), there was no consistent sustained beta wave phe-
nomenon before the loss of consciousness time point. Because 
anesthesia induction is not a stable state but a dynamic process, 
the nonzero genuine permutation cross mutual information 
had an abrupt change during this process. It is not appropriate 
to treat this process as a state for analyzing. Therefore, we did 
not analyze the electrocorticogram recordings of the time span 
between the drug delivery time and loss of consciousness time.

Nonzero Genuine Permutation Cross Mutual Information 
Indices Change with Distance under Different 
Anesthesia Conditions

The nonzero genuine permutation cross mutual information 
index represents the connection strength between two nodes. 
The nonzero genuine permutation cross mutual information 

for wakeful and unconscious states (early and late), and for 
electrode distance from 1 to 7 cm, is summarized in figure 5A. 
Because electrode pairs may belong to different distances 
classes and different cortical regions, we used generalized 
linear mixed-model regression to analyze the interactions 
of the factors of state (waking, early, and late unconscious-
ness), distances (from 1 cm to 7 cm), and brain regions (fron-
tal, parietal, and temporal). ANOVA showed that there was 
no three-way interaction effect between the factors of state, 
distance, and region,F ( , . ) .3 9832 1 0 976 = , P = 0.512. Given 
that the three-way interaction effect was not significant, we 
tested whether the three two-way interaction effects were 
significant. The results showed that the interaction effects 
between state and region, and between region and distance 
were statistically significant, F ( , . )6 14.659833 1 = , P < 0.001,  
and F ( , . ) .18 9833 3 4 22= 1 , P < 0.001, respectively). The 
interaction effect between state and distance was not signifi-
cant, F ( )12,9832.2 0.76= , P = 0.687.

This study focused on information integration changes 
at different electrode distances and different cortical regions 
during propofol anesthesia. It can be seen that the distribu-
tion of nonzero genuine permutation cross mutual informa-
tion values decreases with increasing separation distance, in 
both waking and unconscious states (early and late; fig. 5A), 
especially for distances less than 3 cm. The median and first 
quartile, third quartile of the indices were calculated and 
are presented in table 1. Because there was no interaction 
between state and distance, we analyzed the nonzero gen-
uine permutation cross mutual information with different 
distances in different cortical regions. Based on the enroll-
ment criteria, only nonzero genuine permutation cross 
mutual information indices in the frontal, parietal, tempo-
ral, and parietal-temporal regions were considered in this 
study. The significant tests for post hoc comparison and the 
contrasts of difference with a 95% CI between the indices 
in all distances are shown in Supplemental Digital Content 
4 (http://links.lww.com/ALN/C73). It can be seen that 
there were no significant differences in any of the corti-
cal regions (frontal, parietal, temporal, or parietal-temporal) 
at a distance more than 3 cm (all P values are more than 
0.05 [Tukey test]). This suggests that information integra-
tion decreases with increased separation between two brain 
regions, both in waking and unconscious states. Also, the 
effect size values of those with P values less than 0.05 were 
calculated. It can be seen that effect size values between the 
distance of 1 cm and 3 cm to 7 cm in temporal and parietal 
regions are high (greater than 1 cm). This means that the 
overlap between the nonzero genuine permutation cross 
mutual information values at 1 cm and at other distances 
(3 cm to 7 cm) are tiny and that the effects are significant.

The percentage of genuine connections is an index on 
the efficiency of communication. Overall, the percent-
age of genuine connections in the wakeful state was more 
than in early unconscious and late unconscious states (fig. 
5B and table 2). generalized linear mixed model analysis for 
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percentage of genuine connections showed that the fac-
tors of state, region, and distance had three-way interaction 
effects, F(36, 11136) = 1.46, P = 0.027). The interaction 
effects between state and region, region and distance, as well 
as state and distance, were statistically significant, F(6, 11136) 
= 13.23, P < 0.001; F(18,11137) = 8.38, P < 0.001; and 

F(12,11136) = 2.36, P = 0.005, respectively. Multiple com-
parison and significance test results, effect size, as well as the 
contrasts of difference with a 95% CI among different dis-
tances in wakeful and unconscious states (early and late) are 
shown in Supplemental Digital Content 5 (http://links.lww.
com/ALN/C74). It is noteworthy that the nonzero genuine 

Fig. 5.  Statistics for genuine permutation cross mutual information (GPCMI) indices from wakefulness, early unconscious state, and late 
unconscious state. (A) Box plots of nonzero GPCMI at distance from 1 cm to 7 cm. Lower and upper lines of the box are the 25th and 75th 
percentiles of the sample, respectively, the middle red line of the box is the median, and the distance between the top and bottom of the box 
is the interquartile range. Outliers (red +) are indices that are more than 1.5 times the interquartile range away from the median. (B) Nonzero 
GPCMI percentage at different distances for all patients in wakefulness, early unconscious state, and late unconscious state.

Table 1.  The Median and First Quartile, Third Quartile of Nonzero Genuine Permutation Cross Mutual Information Values with the 
Distance Range from 1 to 7 cm in the Wakefulness, Early Unconscious State, and Late Unconscious State

Distance (cm)
Wakefulness 

Median (1st, 3rd quartile)
Early Unconscious State 
Median (1st, 3rd quartile)

Late Unconscious State 
Median (1st, 3rd quartile)

1 0.29 (0.27, 0.33) 0.28 (0.24, 0.33) 0.28 (0.25, 0.31)
2 0.28 (0.26, 0.31) 0.27 (0.23, 0.30) 0.26 (0.23, 0.29)
3 0.27 (0.25, 0.29) 0.25 (0.22, 0.28) 0.24 (0.22, 0.27)
4 0.27 (0.25, 0.29) 0.24 (0.21, 0.27) 0.24 (0.22, 0.26)
5 0.27 (0.25, 0.29) 0.24 (0.20, 0.27) 0.23 (0.20, 0.26)
6 0.27 (0.25, 0.29) 0.24 (0.20, 0.27) 0.23 (0.20, 0.26)
7 0.27 (0.24, 0.28) 0.23 (0.20, 0.26) 0.23 (0.20, 0.26)
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permutation cross mutual information percentages for linear 
surface distances less than 2 cm were significantly higher than 
those from greater distances, in both wakefulness and uncon-
scious states in all cortical regions (all P values are less than 
0.05 [Tukey test]). For each distance, there were no signifi-
cant differences between the states of wakefulness and early 
and late unconscious states (all P values are more than 0.05 
[Tukey test]). In temporal and parietal regions, the effect size 
values between the distances of 1 cm and 3 cm to 7 cm were 
above 0.5 (medium effect size).

Information Integration in Intra- and Inter-regional 
Connections during Propofol Anesthesia

We further analyzed information integration between and 
within different brain areas. We considered two different 
cortical division methods. The first one was based on rough 
anatomical division. Our electrodes only covered the tem-
poral, parietal, occipital, and frontal regions. Based on our 
statistical criteria (1: more than 20 electrodes in this region, 
2: more than 4 patients have electrodes in this region), only 
temporal, parietal, and frontal were selected for intra-re-
gional connection analysis. Also, only the parietal-temporal 
connection was selected for inter-region analysis. The above 
intra- and inter-regional connections are shown in figure 6A 
and 6B, respectively. For the intra-region nonzero genuine 
permutation cross mutual information (electrode pairs for 
nonzero genuine permutation cross mutual information cal-
culation came from the same cortical region), pairs distances 
less than 6 cm were included. Conversely, for inter-region 
nonzero genuine permutation cross mutual information 
(electrode pairs came from two different cortical regions), 
we only considered pair distances greater than 3 cm. For 
the inter-regional connection between Brodmann areas, as 
shown in figure  6C, only the nonzero genuine permuta-
tion cross mutual information of the Brodmann area 7 versus 
Brodmann area 20,  Brodmann area 39 versus Brodmann area 
20, Brodmann area 39 versus Brodmann area 41, BA40 versus 

Brodmann area 20, and Brodmann area 40 versus Brodmann 
area 41 were considered for statistical analysis.

The results of the generalized linear mixed model 
analysis on nonzero genuine permutation cross mutual 
information showed that there were interaction effects 
between cortical region and state. This means that the 
changes in intra-regional integration of information 
during propofol-induced anesthesia were related to both 
cortical region and anesthesia state. Post hoc comparison 
showed that the awake state nonzero genuine permuta-
tion cross mutual information was significantly higher 
than early unconscious state nonzero genuine permu-
tation cross mutual information (frontal: 0.018 [0.009, 
0.026], P < 0.001, d = 0.26; parietal: 0.038 [0.031, 0.043],  
P < 0.001, d = 0.54; temporal: 0.009 [0.002, 0.016],  
P = 0.018, d = 0.13; temporal-parietal: 0.042 [0.031, 
0.055], P < 0.001, d = 0.62. The generalized linear mixed 
model analysis showed that the factors of Brodmann area 
and state have interaction effects, F(8,3336.8) = 3.06,  
P = 0.006). Post hoc comparison of different anesthesia states 
in each Brodmann area showed that the wakeful state is sig-
nificantly higher than early unconscious state (Brodmann 
areas 7–20: 0.048 [0.040, 0.056], P < 0.001,  d = 0.201; 
Brodmann areas 39–20: 0.049 [0.037, 0.062], P < 0.001, 
d = 0.205; Brodmann areas 39–41: 0.028 [0.009, 0.046],  
P < 0.001, d = 0.115; Brodmann areas 40–20: 0.053 [0.042, 
0.064], P < 0.001, d = 0.221; Brodmann areas 40–41: 0.022 
[0.006, 0.038], P < 0.001, d = 0.093), as well as late uncon-
scious state (Brodmann areas 7–20 : 0.041 [0.030, 0.052],  
P < 0.001, d = 0.168; Brodmann areas 39–20: 0.046 [0.034, 
0.059], P < 0.001, d = 0.192; Brodmann areas 39–41: 0.028 
[0.009, 0.046], P < 0.001, d = 0.116; Brodmann areas 40–
20: 0.048 [0.038, 0.059], P < 0.001, d = 0.199; Brodmann 
areas 40–41: 0.020 [0.005, 0.037], P < 0.001, d = 0.086), 
whereas there were no significant differences between early 
and late unconscious states in any of the Brodmann area (all 
P values are more than 0.05, Tukey test). The median (first 
quartile, third quartile) nonzero genuine permutation cross 
mutual information indices for intra- and inter-regional 
connections are presented in table 3.

Cortical Network Changes at Nodal and Global Levels 
during Propofol-induced Unconsciousness

At the nodal level, we analyzed the nodal clustering coeffi-
cients and nodal efficiency. Figure 7A and 7B show the nodal 
clustering coefficients and nodal efficiency values of seven 
Brodmann areas in waking, early unconscious state, and 
late unconsciousness state. Based on our selection criteria, 
the Brodmann areas of primary motor cortex (Brodmann 
area 4), premotor cortex and supplementary motor cortex 
(Brodmann area 6), visuo-motor coordination (Brodmann 
area 7), temporal gyrus (Brodmann areas 20, 21, 22), angular 
gyrus (Brodmann area 39), supramarginal gyrus (Brodmann 
area 40), and auditory cortex (Brodmann areas 41, 42) were 
enrolled for statistical analysis.

Table 2.  The Percent Values of the Nonzero Genuine 
Permutation Cross Mutual Information Number in All Genuine 
Permutation Cross Mutual Information of Different Distance in 
Wakefulness, Early Unconscious State, and Late Unconscious 
State

Distance 
(cm)

Wakefulness 
Mean ± SD

Early 
Unconscious 

State  
Mean ± SD

Late 
Unconscious 

State  
Mean ± SD

1 0.91 ± 0.04 0.90 ± 0.05 0.88 ± 0.06
2 0.80 ± 0.07 0.76 ± 0.08 0.73 ± 0.09
3 0.74 ± 0.07 0.69 ± 0.09 0.65 ± 0.09
4 0.70 ± 0.07 0.67 ± 0.09 0.64 ± 0.09
5 0.67 ± 0.08 0.65 ± 0.09 0.61 ± 0.10
6 0.66 ± 0.07 0.66 ± 0.08 0.62 ± 0.09
7 0.65 ± 0.08 0.68 ± 0.08 0.63 ± 0.09
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Generalized linear mixed model analysis showed that 
the factors of state and Brodmann area for both the nodal 
clustering coefficient and nodal efficiency indices have 
interaction effects, F(12, 839.04) = 4.96, P < 0.001, and 
F(12, 842.12) = 3.06, P < 0.001. In every Brodmann area 
we analyzed, all nodal clustering coefficient values in the 
wakeful state were significantly higher than those in early 
unconscious state (primary motor cortex: 0.038 [0.028, 
0.049], P < 0.001, d = 0.159; premotor cortex and sup-
plementary motor cortex: 0.017 [0.010, 0.023], P < 0.001,  
d = 0.069; visuo-motor coordination: 0.034 [0.028, 0.041], 
P < 0.001, d = 0.142; temporal gyrus: 0.025 [0.019, 0.031], 
P < 0.001, d = 0.104; angular gyrus: 0.025 [0.017, 0.032], 
P < 0.001, d = 0.104; supramarginal gyrus: 0.027 [0.019, 
0.033], P < 0.001, d = 0.112; auditory cortex: 0.036 [0.031, 
0.042], P < 0.001, d = 0.152), and late unconscious state 

(primary motor cortex: 0.032 [0.020, 0.045], P < 0.001,  
d = 0.134; premotor cortex and supplementary motor cortex: 
0.019 [0.012, 0.027], P < 0.001, d = 0.08; visuo-motor coor-
dination: 0.039 [0.034, 0.044], P < 0.001, d = 0.163; temporal 
gyrus: 0.031 [0.024, 0.037], P < 0.001, d = 0.128; angular 
gyrus: 0.029 [0.021, 0.036], P < 0.001, d = 0.119; supram-
arginal gyrus:0.029 [0.022, 0.036], P < 0.001, d = 0.119;  
auditory cortex: 0.041 [0.034, 0.047], P < 0.001,  
d = 0.168). There were no significant differences between early 
and late unconscious states for nodal clustering coefficient in 
all cortical regions we analyzed (all P values are more than 
0.05, post hoc comparison with Tukey test). Nodal efficiency 
indices had similar significance patterns as nodal clustering 
coefficients. The decrease in nodal clustering coefficients 
from wakeful to unconscious state indicates a decrease in the 
connection between each node and its neighbors. Also, the 

Fig. 6.  Nonzero genuine permutation cross mutual information (GPCMI) statistics for intra- and inter-regional information integration in 
wakefulness, early unconscious state, and late unconscious state. A and B are the nonzero GPCMI values of intra-region and inter-region 
electrode pairs, respectively. The white, brown, and green boxes are wakefulness, early unconscious state, and late unconscious state, 
respectively. T-P, inter-regional information integration between temporal and parietal regions. (C) Inter-regional information integration 
between different Brodmann areas (BA). BA7-BA20 indicates information integration between Brodmann areas 7 and 20. ***Significant 
difference in the percentage of nonzero GPCMI values at P < 0.001 (adjusted by Tukey test).
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decrease in nodal efficiency indices in each node indicates that 
information exchange efficiency with other nodes decreased. 
The median (first quartile, third quartile) of the nodal cluster-
ing coefficient and nodal efficiency indices in each Brodmann 
area are presented in tables 4 and 5, respectively.

The multiple comparison tests of the difference among 
different Brodmann areas in wakefulness and early and 
late unconscious states are shown in Supplemental Digital 
Content 6 (http://links.lww.com/ALN/C75). The nodal 
clustering coefficients for some areas show significant dif-
ferences from others in wakefulness, for example, primary 
motor cortex versus premotor cortex and supplementary 
motor cortex and primary motor cortex versus tempo-
ral gyrus. However, there were no significant differences 
between these Brodmann areas in early and late uncon-
scious states. This means that the dynamic cortical connec-
tivity was broadly suppressed during propofol anesthesia. 

Also, the characteristics of nodal clustering coefficient and 
nodal efficiency within Brodmann areas were inconsistent 
(i.e., the cortical network characteristics were diverse for 
different nodes). However, the effect size values for nodal 
clustering coefficients and nodal efficiency between differ-
ent cortical regions in different states were relatively small 
(less than 0.1). The spatial distributions of the nodal cluster-
ing coefficients for eight patients in wakefulness and uncon-
scious states are shown in figure 8A and 8B, respectively. For 
most, the nodal cluster coefficients decreased after loss of 
consciousness, yet there are some spatial differences.

Lee et al.27 investigated global network changes during 
propofol-induced anesthesia at the macro scale. To do a 
matching comparative study, we analyzed the similar global 
network properties of normalized average clustering coef-
ficient (C Cave r/ ), normalized average path length (L Lave r/ ),  
and small worldness (σ) at the mesoscale. Since the average 

Fig. 7.  Compact format boxplots of nodal clustering coefficient (A) and nodal efficiency (B) for wakefulness (blue box), early unconscious 
state (red box), and late unconscious state (magenta box) in PMC, PC-SMC, VMC, TG, AG, SG, and AC regions. Box plots show the median 
value, interquartile range, extremes, and outliers (blue circles). ***Significant difference in the percentage of nonzero genuine permutation 
cross mutual information values at P < 0.001. AC, auditory cortex; AG, angular gyrus; PC-SMC, premotor cortex and supplementary motor 
cortex; PMC, primary motor cortex; SG, supramarginal gyrus; TG, temporal gyrus; VMC, visuo-motor coordination.

Table 3.  The Statistics of Intra- and Inter-regional Connection of Nonzero Genuine Permutation Cross Mutual Information with 
Different Cortical Area in Wakefulness and Early Unconscious State and Late Unconscious State

Cortical Area

Wakefulness  
Median (1st, 3rd quartile) 

(no.)

Early Unconscious State  
Median (1st, 3rd quartile)

(no.)

Late Unconscious State  
Median (1st, 3rd quartile)

(no.)

Temporal region 0.24 (0.18, 0.27) (n = 1,154) 0.21 (0.17, 0.25) (n = 1,154) 0.21 (0.17, 0.25) (n = 1,146)
Parietal region 0.24 (0.21, 0.27) (n = 1,648) 0.20 (0.16, 0.25) (n = 1,648) 0.21 (0.17, 0.24) (n = 1,018)
Frontal region 0.27 (0.24, 0.30) (n = 1,068) 0.24 (0.19, 0.27) (n = 1,068) 0.28 (0.21, 0.30) (n = 878)
T-P 0.25 (0.23, 0.26) (n = 1,205) 0.19 (0.17, 0.22) (n = 1,205) 0.20 (0.18, 0.22) (n = 989)
BA7-BA20 0.27 (0.25, 0.27) (n = 444) 0.20 (0.18, 0.23) (n = 444) 0.22 (0.20, 0.24) (n = 444)
BA39-BA20 0.26 (0.24, 0.27) (n = 226) 0.20 (0.18, 0.22) (n = 226) 0.20 (0.19, 0.23) (n = 226)
BA39-BA41 0.26 (0.24, 0.27) (n = 94) 0.20 (0.18, 0.24) (n = 94) 0.21 (0.20, 0.24) (n = 94)
BA40-BA20 0.26 (0.25, 0.27) (n = 281) 0.20 (0.18, 0.22) (n = 281) 0.20 (0.19, 0.23) (n = 281)
BA40-BA41 0.27 (0.25, 0.28) (n = 122) 0.23 (0.20, 0.25) (n = 122) 0.23 (0.20, 0.25) (n = 122)

BA, Brodmann area; T-P, between temporal and parietal regions.
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clustering coefficient (Cave ) is the mean of all nodal clus-
tering coefficients, the average clustering coefficients like-
wise decreased after loss of consciousness. The average 
path length (Lave ) is the inverse of the nodal efficiency for 
all nodes. Figure  9A shows the evolution of C Cave r/  and 
L Lave r/  during the time course of propofol-induced anes-
thesia for one patient. Both the normalized average clus-
tering coefficient and the normalized average path length 
increased after loss of consciousness in early unconscious 
state. The statistics for C Cave r/ , L Lave r/  and σ  for patients in 
wakeful and unconscious states (early and late) are shown 
in figure  9B, 9C, and 9D, respectively. The C Cave r/  and 
L Lave r/  increased after loss of consciousness in early uncon-
scious state and decreased slightly in late unconscious state, 
compared with early unconscious state, F(2,7) = 7.96,  
P = 0.033; F(2,7) = 8.19, P = 0.027).  The significant increases 
in L Lave r/  in early unconscious state (1.02 ± 0.01 [mean ± 
SD] versus 1.04 ± 0.01, P = 0.021) suggest that the cortical 
network lost some global information transmission capacity 
after loss of consciousness. Increased C Cave r/  (1.05 ± 0.01 
versus 1.06 ± 0.03, P = 0.037) reflects an increase in local 
functional segregation. The decreases of these two indices 
in late conscious state, compared with early unconscious, 

indicate that brain networks changed when the propofol 
concentration decreased. Figure 9D shows that all cortical 
networks in wakefulness and unconsciousness had the small 
worldness property (σ > 1  and L Lave r/  approximately 1). 
However, there was no significant difference between these 
three states, F(2,7) = 4.16, P = 0.478). These results are 
similar to those seen from scalp electroencephalogram data 
reported in the study of Lee et al.27 This suggests that propo-
fol disrupts efficient network structures on the mesoscale. 
The increase and decrease in these indices in early and late 
unconscious states may be related to drug concentration 
changes after loss of consciousness.

Discussion
This study investigated cortical information integra-
tion during propofol-induced loss of consciousness (loss 
of consciousness) at mesoscale. We analyzed the genuine 
permutation cross mutual information between electrodes 
with different separation distances in different brain areas, 
and with local and global network metrics. The results 
suggested that cortical information coupling and network 
connections at the mesoscopic level were correlated with 
electrode distances and particular to each brain area. Also, 

Table 4.  The Statistics of Nodal Clustering Coefficients with Different Cortical Area in Wakefulness and Early Unconscious State and 
Late Unconscious State

Cortical Area

Wakefulness  
Median (1st, 3rd quartile)

(no.)

Early Unconscious State  
Median (1st, 3rd quartile)

(no.)

Late Unconscious State  
Median (1st, 3rd quartile)

(no.)

Primary motor cortex 0.20 (0.19, 0.21) (n = 22) 0.15 (0.14, 0.20) (n = 22) 0.18 (0.15, 0.20) (n = 22)
PC-SMC 0.20 (0.19, 0.22) (n = 42) 0.20 (0.16, 0.21) (n = 42) 0.20 (0.19, 0.21) (n = 42)
VMC 0.20 (0.19, 0.20) (n = 66) 0.15 (0.15, 0.17) (n = 66) 0.15 (0.15, 0.19) (n = 66)
Temporal gyrus 0.20 (0.17, 0.21) (n = 48) 0.16 (0.15, 0.20) (n = 48) 0.15 (0.14, 0.20) (n = 48)
Angular gyrus 0.19 (0.19, 0.20) (n = 34) 0.16 (0.15, 0.20) (n = 34) 0.16 (0.15, 0.19) (n = 34)
Supramarginal gyrus 0.20 (0.19, 0.21) (n = 41) 0.16 (0.14, 0.20) (n = 41) 0.16 (0.15, 0.20) (n = 41)
Auditory cortex 0.20 (0.19, 0.20) (n = 66) 0.16 (0.15, 0.17) (n = 66) 0.15 (0.15, 0.19) (n = 66)

PC-SMC, premotor cortex and supplementary motor cortex; VMC, visuo-motor coordination.

Table 5.  The Statistics of Nodal Efficiency with Different Cortical Area in Wakefulness and Early Unconscious State and Late 
Unconscious State

Cortical Area

Wakefulness  
Median (1st, 3rd quartile)

(no.)

Early Unconscious State  
Median (1st, 3rd quartile)

(no.)

Late Unconscious State  
Median (1st, 3rd quartile)

(no.)

Primary motor cortex 0.26 (0.24, 0.29) (n = 22) 0.19 (0.18, 0.22) (n = 22) 0.20 (0.19, 0.24) (n = 22)
PC-SMC 0.25 (0.23, 0.26) (n = 42) 0.23 (0.19, 0.24) (n = 42) 0.22 (0.21, 0.24) (n = 42)
VMC 0.25 (0.23, 0.26) (n = 66) 0.19 (0.18, 0.22) (n = 66) 0.20 (0.19, 0.22) (n = 66)
Temporal gyrus 0.24 (0.22, 0.26) (n = 48) 0.20 (0.19, 0.24) (n = 48) 0.20 (0.19, 0.24) (n = 48)
Angular gyrus 0.24 (0.22, 0.25) (n = 34) 0.20 (0.18, 0.23) (n = 34) 0.20 (0.18, 0.22) (n = 34)
Supramarginal gyrus 0.24 (0.23, 0.26) (n = 41) 0.21 (0.19, 0.23) (n = 41) 0.21 (0.19, 0.22) (n = 41)
Auditory cortex 0.24 (0.23, 0.26) (n = 66) 0.19 (0.18, 0.22) (n = 66) 0.20 (0.19, 0.22) (n = 66)

PC-SMC, premotor cortex and supplementary motor cortex; VMC, visuo-motor coordination.
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the information integration capacity in the cortical net-
work was inhibited by propofol. The findings are summa-
rized as follows:

(1)		�The genuine permutation cross mutual information 
decreased uniformly from narrow to wide electrode 
separation. For wakeful and unconscious states, nonzero 
genuine permutation cross mutual information values 
decreased as the linear surface distance increased, up to a 
maximum of about 3 cm. This suggests that information 

integration strength is related to the separation distance, 
and there is a floor effect for distances greater than 3 cm.

(2)		�The proportion of nonzero genuine permutation 
cross mutual information values decreased along with 
increasing distance in wakeful and unconscious states; 
the proportion of nonzero values was smaller in the 
unconscious states than in wakefulness. This indicates 
that communication capacity decreased as distance 
increased.

Fig. 8.  Spatial distributions of generalized linear mixed model indices for eight patients in wakefulness (A) and unconscious states (B). LOC, 
loss of consciousness.
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(3) The nodal clustering coefficient and nodal efficiency val-
ues of different Brodmann areas significantly decreased 
after loss of consciousness (P < 0.001). This indicates that 
nodal-to-neighbor connection decreased and commu-
nication efficiency of the local network also decreased 
after loss of consciousness.

(4) The global network properties of normalized aver-
age clustering coefficient and normalized average path 
length increased in early unconscious state. This reflects 
the enhancement of local functional segregation and 
inefficient global information transmission after propo-
fol-induced anesthesia at cortical scale.

Genuine Permutation Cross Mutual Information 
Measurement Can Distinguish States of Consciousness

Genuine permutation cross mutual information-based 
cortical network analysis has several advantages. First, as a 

nonlinear analysis method, it combines a symbolic dynam-
ics measure and information theory. Thus, this measure 
can examine the nonlinear characteristics in electrocorti-
cogram time series. Antinoise capability and sensitivity to 
changes in coupling strength have been evaluated in our 
previous works.7,47 In this study, we also modeled and eval-
uated the effectiveness of genuine permutation cross mutual 
information in the presence of epileptiform spiking (see 
Supplemental Digital Content 2, http://links.lww.com/
ALN/C71). Genuine permutation cross mutual informa-
tion is a significance-testable connection measure based on 
surrogate analysis and the Wilcoxon signed-rank test, thus 
it can mitigate the confounding impact of low frequency 
oscillations and finite size datasets.24 Finally, genuine corti-
cal networks built using genuine permutation cross mutual 
information can be analyzed using graph theory metrics, 
which can characterize the cortical functional connectivity 
derived from information theory.

Fig. 9.  Analysis of the global network parameters normalized average clustering coefficient (C /Cave r ) and normalized average path 
length (L Lave r/ ). (A) C Cave r/ (blue curve) and L Lave r/ (red curve) of one patient (same as in fig.  3). (B through D) Statistics for C Cave r/ ,  
L Lave r/ , σ  for all patients in wakefulness, early unconscious state, and late unconscious state. *Significant difference of the indices at  
P < 0.05. LOC, loss of consciousness.
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Various measures and theories have been proposed to 
interpret anesthesia-induced loss of consciousness. Mashour 
proposed the “cognitive unbinding” theory which sug-
gests that it is the impaired synthesis of cognitive activi-
ties that drives the mechanism of loss of consciousness in 
anesthesia.50 In particular, the disruption of spatio-temporal 
synchronization and convergence are the fundamental prin-
ciples of the cognitive unbinding paradigm.50 In support of 
these hypotheses, Lee et al.51 used the mean information 
integration measure to analyze the mechanism of propofol 
induced unconsciousness, and Jordan et al.52 analyzed the 
directional connectivity in electroencephalogram signals 
during propofol anesthesia—based on symbolic transfer 
entropy—and compared with the functional brain imag-
ing connectivity. In recent years, a similar mutual informa-
tion measure, weighted symbolic mutual information, has 
been proposed to reflect different states of consciousness 
(vegetative states, minimally conscious states, and con-
scious states).15,53,54 The advantage of the weighted symbolic 
mutual information is that it can eliminate the influence of 
volume conduction effects. These studies suggest that the 
symbolic dynamics-based information integration theory is 
a powerful tool for measuring consciousness.

Information Integration Capacity Is Correlated with the 
Linear Surface Distance at the Cortical Scale

The nonzero genuine permutation cross mutual informa-
tion values at different linear surface distances revealed that 
integration strength of two electrodes significantly decreased 
with increasing distance, especially for distances less than 
3 cm. Lewis et al.55 also investigated propofol-induced uncon-
sciousness based on electrocorticogram data. They reported 
that the phase-locking factor magnitude dropped signifi-
cantly with distance, especially for long distances (greater 
than 4 cm). This finding used different methods, but it is 
consistent with our analysis based on genuine permutation 
cross mutual information measures, and corroborated our 
results. King et al.15 have also investigated weighted symbolic 
mutual information changes in pairs of channels as distance 
increased at the electroencephalogram scale. They found that 
weighted symbolic mutual information decreased along with 
increases in inter-channel distance. Although the distances 
they measured ranged from 6.3 to 21.8 cm (quite different 
from the electrocorticogram data in our study), information 
integration capacity decreased with increasing separation. 
This is likely an important phenomenon of brain conscious 
processing.

Propofol Disrupts Efficient Information Transmission at 
Cortical Scales

If general anesthesia is characterized by disrupted network 
integration, it would be natural to explore the properties of 
neural activity at the cortical-network-level when investigat-
ing anesthetic state transitions.24 Graph theory is an attrac-
tive method for analyzing the brain’s functional networks.35 

In our study, the increased normalized average path length 
and clustering coefficient during unconsciousness support 
the hypothesis that disruption of the normal integration of 
global neural information may induce loss of consciousness. 
Significant changes in local networks and integration infor-
mation disruption have also been found for propofol and 
isoflurane in an electroencephalogram study,27 and also in 
magnetic resonance imaging studies.56,57 We observed a sim-
ilar significant decline in long-distance connections (non-
zero genuine permutation cross mutual information values 
decreased as distance increased) and a reduction in cortical 
spatiotemporal integration (decreased genuine permutation 
cross mutual information and increased normalized average 
path length after loss of consciousness). This observation is 
consistent with a topologic reconfiguration during propo-
fol-induced loss of consciousness.

However, from the perspective of clinical care, because 
of the incomplete understanding of consciousness, an ideal 
monitor for the brain during surgery is still lacking.58,59 
Locating a state-specific biomarker may promote the con-
struction of agent-related signatures that would be helpful 
for monitoring brain states during perioperative periods. In 
addition to supplementing the insufficient understanding 
of neural-correlated consciousness on the mesoscale, our 
findings also provide a potential clinical tool based on con-
nectivity and network structure analysis.

Volume Conduction Is a Nonnegligible Factor in 
Electrocorticogram Analysis

We found that permutation cross mutual information was 
higher for close-by channels in the raw electrocorticogram, 
and the linear correlation values of these close-by channels 
pairs were higher than those distant channel pairs, in wake-
fulness and unconscious states (fig. S11 in Supplemental 
Digital Content 2, http://links.lww.com/ALN/C71). 
Studies have proposed that the volume conduction effect 
may be the cause of the observed high linear correlation 
seen in close electrodes pairs in electrocorticogram data.38–

40 We used independent component analysis to reduce the 
effect of volume conduction, and compared it with the 
current source density transform.60 The results showed that 
the square Pearson correlation decreased after the inde-
pendent component analysis based procedure, whereas it 
increased after the current source density transform (fig. 
S20 in Supplemental Digital Content 2, http://links.lww.
com/ALN/C71). This suggests that volume conduction 
effects cannot be ignored in electrocorticogram signal anal-
ysis. Volume conduction is a function of the physical tissue 
characteristics, and it is hard to see how these physical char-
acteristics could be altered with propofol anesthesia; but we 
might speculate that the drug is having this effect by altering 
neuronal polarization. Based on our results, we believe that 
independent component analysis–based processing works 
better than current source density transform for removing 
volume conduction in electrocorticogram signals.
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Limitations of This Study

Similar to the studies of Breshears et al.19 and Lewis et al.,55 
electrocorticogram signals were recorded from epileptic 
patients. The same limitations which were addressed in 
these works also existed in our study. First, the electrode 
coverage was determined by clinical criteria. Therefore, the 
findings of the present study can only be interpreted in the 
context of the covered cortical areas. Also, the electrodes’ 
resolution was 1 cm. Therefore, the information integration 
between cortical areas separated by less than 1 cm could 
not be measured. Second, a detailed dosage timeline was 
not recorded during the administration of anesthesia. Thus, 
effect-site concentrations could not be estimated. The elec-
trocorticogram signals were only recorded from wakeful-
ness to unconscious states, so we could not compare the 
differences between the loss of consciousness and the recov-
ery of consciousness. Third, Breshears et al.19 pointed out 
that the electrocorticogram may differ between epileptic 
patients and the healthy population because of the effect 
of seizure foci and antiepileptic drug therapy. Whether the 
findings of this study can be generalized to the healthy 
brain requires additional in-depth investigation. Finally, 
despite the significant differences in genuine permutation 
cross mutual information measures over different electrode 
distances—seen even with a small sample size and unbal-
anced number of electrodes in each cortical region—we 
cannot extrapolate our findings to a broad population and 
to other anesthetics, such as volatile anesthetics and opi-
oids. This study is a relatively small size and so is reliant on 
surrogate analysis techniques to obtain reliable correlation 
values from the electrocorticogram recordings. To validate 
the hypothesis, further research and analysis are necessary 
through the multi-hospital or multi-center cooperation.

Conclusions

This study found that, at the mesoscale level, propofol-in-
duced loss of consciousness is associated with a reduction 
in information integration and a concomitant decrease in 
network complexity—consistent with scalp electroencepha-
logram studies. Our findings shed light on the functional sig-
nificance of neural activity as measured by electrocorticogram 
signals. They also bridge the gap between the micro (local 
field potential) and the macro (electroencephalogram) level 
in understanding propofol-induced loss of consciousness.

Acknowledgments

The authors thank Yang Bai, Ph.D., from the Department 
of Basic Medical Science, School of Medicine, Hangzhou 
Normal University, Hangzhou, China, for statistical com-
puting support. 

Research Support

This study was supported by National Natural Science 
Foundation of China grant No. 81230023 (Beijing, China; 
to Dr. Li) and grant No. 61673333 (to Dr. Liang).

Competing Interests

The authors declare no competing interests.

Correspondence

Address correspondence to Dr. Li: State Key Laboratory of 
Cognitive Neuroscience and Learning and International 
Data Group/McGovern Institute for Brain Research, 
Beijing Normal University, Beijing 100875, P.R. China, 
010-58802032. xiaoli@bnu.edu.cn. Information on 
purchasing reprints may be found at www.anesthesiol-
ogy.org or on the masthead page at the beginning of this 
issue. Anesthesiology’s articles are made freely accessi-
ble to all readers, for personal use only, 6 months from 
the cover date of the issue.

References

	 1.	 Varela F, Lachaux JP, Rodriguez E, Martinerie J: The 
brainweb: Phase synchronization and large-scale inte-
gration. Nat Rev Neurosci 2001; 2:229–39

	 2.	 Jacobs J, Kahana MJ: Direct brain recordings fuel 
advances in cognitive electrophysiology. Trends Cogn 
Sci 2010; 14:162–71

	 3.	 Tononi G, Sporns O: Measuring information integra-
tion. BMC Neurosci 2003; 4:31

	 4.	 Andrzejak RG, Schindler K, Rummel C: 
Nonrandomness, nonlinear dependence, and nonsta-
tionarity of electroencephalographic recordings from 
epilepsy patients. Phys Rev E Stat Nonlin Soft Matter 
Phys 2012; 86(4 Pt 2):046206

	 5.	 Sarasso S, Boly M, Napolitani M, Gosseries O, 
Charland-Verville V, Casarotto S, Rosanova M, Casali 
AG, Brichant JF, Boveroux P, Rex S, Tononi G, Laureys 
S, Massimini M: Consciousness and complexity during 
unresponsiveness induced by propofol, xenon, and ket-
amine. Curr Biol 2015; 25:3099–105

	 6.	 Thul A, Lechinger J, Donis J, Michitsch G, Pichler G, 
Kochs EF, Jordan D, Ilg R, Schabus M: EEG entropy 
measures indicate decrease of cortical informa-
tion processing in disorders of consciousness. Clin 
Neurophysiol 2016; 127:1419–27

	 7.	 Liang Z, Ren Y, Yan J, Li D, Voss LJ, Sleigh JW, Li X: 
A comparison of different synchronization measures 
in electroencephalogram during propofol anesthesia. J 
Clin Monit Comput 2016; 30:451–66

	 8.	 Lee U, Blain-Moraes S, Mashour GA: Assessing levels 
of consciousness with symbolic analysis. Philos Trans A 
Math Phys Eng Sci 2015; 373

	 9.	 Bandt C, Pompe B: Permutation entropy: A natural 
complexity measure for time series. Phys Rev Lett 
2002; 88:174102

	10.	 Martin MT, Plastino A, Rosso OA: Generalized statis-
tical complexity measures: Geometrical and analytical 
properties. Physica. Section A 2006: 439-62

Copyright © 2019, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/132/3/504/521585/20200300_0-00022.pdf by guest on 13 M
arch 2024

mailto:xiaoli@bnu.edu.cn
www.anesthesiology.org
www.anesthesiology.org


	A nesthesiology 2020; 132:504–24	 523

Cortical Information during Propofol Anesthesia

Liang et al.

	11.	 Amigo JM, Keller K, Unakafova VA: Ordinal symbolic 
analysis and its application to biomedical recordings. 
Philos Trans A Math Phys Eng Sci 2015; 373

	12.	 Zunino L, Olivares F, Rosso OA: Permutation min-en-
tropy: An improved quantifier for unveiling subtle tem-
poral correlations. Epl 2015; 109: 10005

	13.	 Martini M, Kranz TA, Wagner T, Lehnertz K: Inferring 
directional interactions from transient signals with 
symbolic transfer entropy. Phys Rev E Stat Nonlin Soft 
Matter Phys 2011; 83(1 Pt 1):011919

	14.	 Ferlazzo E, Mammone N, Cianci V, Gasparini S, 
Gambardella A, Labate A, Latella MA, Sofia V, Elia M, 
Morabito FC, Aguglia U: Permutation entropy of scalp 
EEG: A tool to investigate epilepsies: Suggestions from 
absence epilepsies. Clin Neurophysiol 2014; 125:13–20

	15.	 King JR, Sitt JD, Faugeras F, Rohaut B, El Karoui I, 
Cohen L, Naccache L, Dehaene S: Information sharing 
in the brain indexes consciousness in noncommunica-
tive patients. Curr Biol 2013; 23:1914–9

	16.	 Liang Z, Liang S, Wang Y, Ouyang G, Li X: Tracking the 
coupling of two electroencephalogram series in the iso-
flurane and remifentanil anesthesia. Clin Neurophysiol 
2015; 126:412–22

	17.	 Li D, Li X, Liang Z, Voss LJ, Sleigh JW: Multiscale per-
mutation entropy analysis of EEG recordings during 
sevoflurane anesthesia. J Neural Eng 2010; 7:046010

	18.	 Olofsen E, Sleigh JW, Dahan A: Permutation entropy 
of the electroencephalogram: A measure of anaesthetic 
drug effect. Br J Anaesth 2008; 101:810–21

	19.	 Breshears JD, Roland JL, Sharma M, Gaona CM, 
Freudenburg ZV, Tempelhoff R, Avidan MS, Leuthardt 
EC: Stable and dynamic cortical electrophysiology of 
induction and emergence with propofol anesthesia. 
Proc Natl Acad Sci USA 2010; 107:21170–5

	20.	 Baars BJ: Global workspace theory of consciousness: 
Toward a cognitive neuroscience of human experience. 
Prog Brain Res 2005; 150:45–53

	21.	 Dehaene S, Changeux JP: Experimental and theoreti-
cal approaches to conscious processing. Neuron 2011; 
70:200–27

	22.	 Bola M, Barrett AB, Pigorini A, Nobili L, Seth AK, 
Marchewka A: Loss of consciousness is related to 
hyper-correlated gamma-band activity in anesthetized 
macaques and sleeping humans. Neuroimage 2018; 
167:130–42

	23.	 Müller M, Baier G, Rummel C, Schindler K: 
Estimating the strength of genuine and random cor-
relations in non-stationary multivariate time series. 
Epl 2008; 84: 10009

	24.	 Lee U, Müller M, Noh GJ, Choi B, Mashour GA: 
Dissociable network properties of anesthetic state tran-
sitions. Anesthesiology 2011; 114:872–81

	25.	 Rembado I, Castagnola E, Turella L, Ius T, Budai R, 
Ansaldo A, Angotzi GN, Debertoldi F, Ricci D, Skrap 
M, Fadiga L: Independent component decomposition 

of human somatosensory evoked potentials recorded 
by micro-electrocorticography. Int J Neural Syst 2017; 
27:1650052

	26.	 Whitmer D, Worrell G, Stead M, Lee IK, Makeig S: 
Utility of independent component analysis for inter-
pretation of intracranial EEG. Front Hum Neurosci 
2010; 4:184

	27.	 Lee H, Mashour GA, Noh GJ, Kim S, Lee U: 
Reconfiguration of network hub structure after 
propofol-induced unconsciousness. Anesthesiology 
2013; 119:1347–59

	28.	 Schreiber T, Schmitz A: Improved surrogate data for 
nonlinearity tests. Phys Rev Lett 1996; 77:635–8

	29.	 Hilger K, Ekman M, Fiebach CJ, Basten U: Efficient 
hubs in the intelligent brain: Nodal efficiency of hub 
regions in the salience network is associated with gen-
eral intelligence. Intelligence 2017; 60: 10–25

	30.	 Bullmore E, Sporns O: Complex brain networks: graph 
theoretical analysis of structural and functional systems. 
Nat Rev Neurosci 2009; 10:186–98

	31.	 Stam CJ: Modern network science of neurological dis-
orders. Nat Rev Neurosci 2014; 15:683–95

	32.	 Stam CJ, de Haan W, Daffertshofer A, Jones BF, 
Manshanden I, van Cappellen van Walsum AM, 
Montez T, Verbunt JP, de Munck JC, van Dijk BW, 
Berendse HW, Scheltens P: Graph theoretical analysis 
of magnetoencephalographic functional connectivity 
in Alzheimer’s disease. Brain 2009; 132(Pt 1):213–24

	33.	 Cai L, Dong Q, Niu H: The development of functional 
network organization in early childhood and early 
adolescence: A resting-state fNIRS study. Dev Cogn 
Neurosci 2018; 30:223–35

	34.	 Latora V, Marchiori M: Efficient behavior of small-
world networks. Phys Rev Lett 2001; 87:198701

	35.	 Rubinov M, Sporns O: Complex network mea-
sures of brain connectivity: Uses and interpretations. 
Neuroimage 2010; 52:1059–69

	36.	 Maslov S, Sneppen K: Specificity and stability in topol-
ogy of protein networks. Science 2002; 296:910–3

	37.	 Wang Y, Yan J, Wen J, Yu T, Li X: An intracranial elec-
troencephalography (iEEG) brain function mapping 
tool with an application to epilepsy surgery evaluation. 
Front Neuroinform 2016; 10:15

	38.	 Burns SP, Santaniello S, Yaffe RB, Jouny CC, Crone NE, 
Bergey GK, Anderson WS, Sarma SV: Network dynamics 
of the brain and influence of the epileptic seizure onset 
zone. Proc Natl Acad Sci USA 2014; 111:E5321–30

	39.	 Keller CJ, Honey CJ, Megevand P, Entz L, Ulbert I, 
Mehta AD: Mapping human brain networks with cor-
tico-cortical evoked potentials. Philos Trans R Soc 
Lond B Biol Sci 2014; 369

	40.	 Collard MJ, Fifer MS, Benz HL, McMullen DP, Wang 
Y, Milsap GW, Korzeniewska A, Crone NE: Cortical 
subnetwork dynamics during human language tasks. 
Neuroimage 2016; 135:261–72

Copyright © 2019, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/132/3/504/521585/20200300_0-00022.pdf by guest on 13 M
arch 2024



524	A nesthesiology 2020; 132:504–24	

Perioperative Medicine

Liang et al.

	41.	 Hindriks R, Micheli C, Bosman CA, Oostenveld 
R, Lewis C, Mantini D, Fries P, Deco G: Source-
reconstruction of the sensorimotor network from rest-
ing-state macaque electrocorticography. Neuroimage 
2018; 181:347–58

	42.	 Fischer F, Pieper F, Galindo-Leon E, Engler G, Hilgetag 
CC, Engel AK: Intrinsic functional connectivity resem-
bles cortical architecture at various levels of isoflurane 
anesthesia. Cereb Cortex 2018; 28:2991–3003

	43.	 Watts AD, Herrick IA, McLachlan RS, Craen RA, Gelb 
AW: The effect of sevoflurane and isoflurane anesthesia 
on interictal spike activity among patients with refrac-
tory epilepsy. Anesth Analg 1999; 89:1275–81

	44.	 Chui J, Manninen P, Valiante T, Venkatraghavan L: The 
anesthetic considerations of intraoperative electrocor-
ticography during epilepsy surgery. Anesth Analg 2013; 
117:479–86

	45.	 Chaitanya G, Arivazhagan A, Sinha S, Reddy KR, 
Thennarasu K, Bharath RD, Rao MB, Chandramouli 
BA, Satishchandra P: Dexmedetomidine anesthesia 
enhances spike generation during intra-operative elec-
trocorticography: A promising adjunct for epilepsy sur-
gery. Epilepsy Res 2015; 109:65–71

	46.	 Brysbaert M, Stevens M: Power analysis and effect size 
in mixed effects models: A tutorial. J Cogn 2018; 1:9

	47.	 Li X, Ouyang G: Estimating coupling direction between 
neuronal populations with permutation conditional 
mutual information. Neuroimage 2010; 52:497–507

	48.	 Khadem A, Hossein-Zadeh GA: Quantification of 
the effects of volume conduction on the EEG/MEG 
connectivity estimates: An index of sensitivity to brain 
interactions. Physiol Meas 2014; 35:2149–64

	49.	 Gugino LD, Chabot RJ, Prichep LS, John ER, 
Formanek V, Aglio LS: Quantitative EEG changes asso-
ciated with loss and return of consciousness in healthy 
adult volunteers anaesthetized with propofol or sevo-
flurane. Br J Anaesth 2001; 87:421–8

	50.	 Mashour GA: Cognitive unbinding: A neuroscientific 
paradigm of general anesthesia and related states of 
unconsciousness. Neurosci Biobehav Rev 2013; 37(10 
Pt 2):2751–9

	51.	 Lee U, Mashour GA, Kim S, Noh GJ, Choi BM: 
Propofol induction reduces the capacity for neu-
ral information integration: Implications for the 
mechanism of consciousness and general anesthesia. 
Conscious Cogn 2009; 18:56–64

	52.	 Jordan D, Ilg R, Riedl V, Schorer A, Grimberg S, 
Neufang S, Omerovic A, Berger S, Untergehrer 
G, Preibisch C, Schulz E, Schuster T, Schröter M, 
Spoormaker V, Zimmer C, Hemmer B, Wohlschläger A, 
Kochs EF, Schneider G: Simultaneous electroenceph-
alographic and functional magnetic resonance imag-
ing indicate impaired cortical top-down processing in 
association with anesthetic-induced unconsciousness. 
Anesthesiology 2013; 119:1031–42

	53.	 Engemann DA, Raimondo F, King JR, Rohaut B, 
Louppe G, Faugeras F, Annen J, Cassol H, Gosseries O, 
Fernandez-Slezak D, Laureys S, Naccache L, Dehaene 
S, Sitt JD: Robust EEG-based cross-site and cross-pro-
tocol classification of states of consciousness. Brain 
2018; 141:3179–92

	54.	 Sitt JD, King JR, El Karoui I, Rohaut B, Faugeras 
F, Gramfort A, Cohen L, Sigman M, Dehaene S, 
Naccache L: Large scale screening of neural signatures 
of consciousness in patients in a vegetative or mini-
mally conscious state. Brain 2014; 137(Pt 8):2258–70

	55.	 Lewis LD, Weiner VS, Mukamel EA, Donoghue JA, 
Eskandar EN, Madsen JR, Anderson WS, Hochberg 
LR, Cash SS, Brown EN, Purdon PL: Rapid fragmen-
tation of neuronal networks at the onset of propo-
fol-induced unconsciousness. Proc Natl Acad Sci USA 
2012; 109:E3377–86

	56.	 Schröter MS, Spoormaker VI, Schorer A, Wohlschläger 
A, Czisch M, Kochs EF, Zimmer C, Hemmer B, 
Schneider G, Jordan D, Ilg R: Spatiotemporal reconfig-
uration of large-scale brain functional networks during 
propofol-induced loss of consciousness. J Neurosci 
2012; 32:12832–40

	57.	 Liang Z, King J, Zhang N: Intrinsic organization of the 
anesthetized brain. J Neurosci 2012; 32:10183–91

	58.	 Vlisides PE, Li D, Zierau M, Lapointe AP, Ip KI, 
McKinney AM, Mashour GA: Dynamic cortical con-
nectivity during general anesthesia in surgical patients. 
Anesthesiology 2019; 130:885–97

	59.	 Li D, Vlisides PE, Kelz MB, Avidan MS, Mashour GA; 
ReCCognition Study Group: Dynamic cortical con-
nectivity during general anesthesia in healthy volun-
teers. Anesthesiology 2019; 130:870–84

	60.	 Kayser J, Tenke CE: Principal components analysis of 
Laplacian waveforms as a generic method for identify-
ing ERP generator patterns: I. Evaluation with auditory 
oddball tasks. Clin Neurophysiol 2006; 117:348–68

Copyright © 2019, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/132/3/504/521585/20200300_0-00022.pdf by guest on 13 M
arch 2024


