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The wakeful human is able to flexibly modulate his or 
her brain activity in order to respond to external stim-

uli or to execute tasks. These capabilities of the human brain 
can be eliminated through general anesthesia. As a conse-
quence, anesthetic agents form an experimental framework 
to investigate the underlying brain physiology.

In the past decade, relevant progress has been made to 
elucidate the mechanisms of anesthesia-induced unrespon-
siveness, giving rise to the hypothesis that specific brain 
regions and the communication between them are neces-
sary to be wakeful. Specifically, changes of connectivity in 
the default mode network, attentional network, and/or the 
medial thalamus have been associated with loss of respon-
siveness during general anesthesia. Electroencephalography 
analyses have repeatedly shown a significant decrease of 
frontoparietal information transfer during general anes-
thesia when compared to wakefulness.1–3 The underlying 

aBStract
Background: A key feature of the human brain is its capability to adapt flex-
ibly to changing external stimuli. This capability can be eliminated by general 
anesthesia, a state characterized by unresponsiveness, amnesia, and (most 
likely) unconsciousness. Previous studies demonstrated decreased connec-
tivity within the thalamus, frontoparietal, and default mode networks during 
general anesthesia. We hypothesized that these alterations within specific 
brain networks lead to a change of communication between networks and 
their temporal dynamics.

Methods: We conducted a pooled spatial independent component anal-
ysis of resting-state functional magnetic resonance imaging data obtained 
from 16 volunteers during propofol and 14 volunteers during sevoflurane 
general anesthesia that have been previously published. Similar to previous 
studies, mean z-scores of the resulting spatial maps served as a measure 
of the activity within a network. Additionally, correlations of associated time 
courses served as a measure of the connectivity between networks. To 
analyze the temporal dynamics of between-network connectivity, we com-
puted the correlation matrices during sliding windows of 1 min and applied 
k-means clustering to the matrices during both general anesthesia and 
wakefulness.

results: Within-network activity was decreased in the default mode, atten-
tional, and salience networks during general anesthesia (P < 0.001, range 
of median changes: –0.34, –0.13). Average between-network connec-
tivity was reduced during general anesthesia (P < 0.001, median change: 
–0.031). Distinct between-network connectivity patterns for both wakefulness 
and general anesthesia were observed irrespective of the anesthetic agent  
(P < 0.001), and there were fewer transitions in between-network connectivity 
patterns during general anesthesia (P < 0.001, median number of transitions 
during wakefulness: 4 and during general anesthesia: 0).

conclusions: These results suggest that (1) higher-order brain regions play 
a crucial role in the generation of specific between-network connectivity pat-
terns and their dynamics, and (2) the capability to interact with external stimuli 
is represented by complex between-network connectivity patterns.
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What We Already Know about This Topic

• The extent to which alterations within specific brain networks 
impairs communication among networks remains unknown

What This Article Tells us That Is new

• In a volunteer functional magnetic resonance study, general anes-
thesia reduced activity within and among networks

• Specific between-network connectivity is necessary for consciousness
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neurophysiologic mechanism of frontoparietal connectivity 
was further substantiated by functional magnetic resonance 
imaging experiments that demonstrated a suppression of 
frontal activation by propofol and subsequently impaired 
frontoparietal connectivity.3–5 These observations have been 
replicated in functional magnetic resonance imaging exper-
iments during sevoflurane-6,7 and ketamine-induced loss 
of responsiveness.8,9 Similarly, dexmedetomidine-induced 
unresponsiveness was associated with reduced connectiv-
ity between the thalamus and the default mode network.10 
In summary, frontoparietal information exchange in the 
default mode network, the attentional networks, and thal-
amocortical connectivity to both are thought to be neces-
sary for consciousness. However, there is little knowledge 
about how changes in few networks lead to a breakdown 
of between-network communication that we hypothesized 
to be a neurophysiologic correlate of anesthesia-induced 
unconsciousness.

One possible explanation is that only a few brain net-
works are crucial for generating global, dynamic cortical 
interactions. Indeed, functional magnetic resonance imag-
ing data in humans could demonstrate that “hub” regions 
exist, characterized by a dominance of long-range connec-
tivity. It is therefore presumed that these regions are capa-
ble to dynamically integrate cross-modal information.11 
Additionally, these regions overlap anatomically with the 
networks affected during general anesthesia. Computational 
models predicted that lesioning of hub regions is capable of 
changing long-range connectivity patterns in the human 
brain.12–15 Experimentally, it could be demonstrated that 
anesthesia-induced loss of responsiveness leads to a frag-
mentation of cortical information processing16 and to a 
decreased dynamic repertoire of brain states.17–19 Taking 
these results into account, we hypothesized that the altered 
connectivity of hub regions should result in two observa-
tions: (1) decrease of the dynamic repertoire of connectiv-
ity patterns under loss of consciousness (irrespective of the 
anesthetic agent), and (2) the existence of specific dynamic 
connectivity patterns that can only be observed during 
consciousness.

To connect prior analyses of within-network activity 
changes3,7 with between-network connectivity, we chose 
a spatial independent component analysis–based approach. 
We regarded the mean z-score of spatially independent 

maps or networks as a measure of within-network activ-
ity.7 The correlation matrix of the associated time courses 
was regarded as a measure of between-network connectiv-
ity. Thus, we aimed to model both the modular and inter-
modular connectivity structure of the human brain. The 
dynamics of between-network connectivity were modeled 
with sliding window method calculating the correlation 
between networks’ time courses over 1 min and k-means 
clustering20 to identify dominant traits of between-network 
connectivity patterns (fig. 1).

Materials and Methods

ethics Statement

The study was conducted in accordance with the 
Declaration of Helsinki, and the study protocol was 
approved by the ethics committee of the medical school 
of the Technical University Munich (Munich, Germany) 
and the University of Liege (Liege, Belgium), respec-
tively. Applicants to the study were given detailed infor-
mation about the procedures and potential risks before 
a written informed consent. All participants were reim-
bursed for taking part in the study. A medical history was 
taken from every applicant, especially inquiring about 
contraindications for general anesthesia using propofol 
or sevoflurane or examination in a magnetic resonance 
scanner.

Participants and Anesthesia

The Munich data set included in this analysis has been pre-
viously published in Jordan et al.3 and Ranft et al.7 Further 
details on the study protocol can be found there. Briefly, 
15 subjects, aged 21 to 32 yr, were enrolled in the propo-
fol study. For the resting state measurement, participants 
lay supine in the scanner and were told not to fall asleep 
while keeping the eyes closed. In the rest of the article, 
this condition is referred to as “awake.” The measurement 
during propofol-induced loss of responsiveness was carried 
out using a target-controlled infusion pump (Open TCI; 
Space infusion system; Braun Medical, Germany). Propofol 
concentration was increased in 0.4 μg/ml steps begin-
ning at 1.2 μg/ml until volunteers stopped responding to 
the verbal command “squeeze my hand” (equivalent to a 
Ramsay sedation scale score of 5 to 6). The concentration 
was then kept stable for the remaining functional magnetic 
resonance imaging measurement. This point was reached at 
plasma concentrations of 2.97 ± 0.47 µg/ml (mean ± SD). 
Ten minutes of equilibration time passed before the actual 
measurement took place. Throughout this article, this state 
as is referred to as propofol-induced loss of responsiveness.

Twenty subjects, aged 20 to 36 yr, were enrolled in the 
sevoflurane study. The resting state was acquired identical 
to the propofol setting. Image acquisition during sevoflu-
rane-induced loss of responsiveness was carried out after 
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Fig. 1. The flow chart illustrates the spatial and temporal data processing. (A) First, a spatial independent component analysis (ICA) decom-
posed the data into 75 spatially independent components or 56 functional networks and corresponding correlated time courses. In the 
spatial domain, the components were used to generate masks (P < 0.001, uncorrected) and to calculate mean z-scores for each subject and 
component to quantify the within-network activity. In the temporal domain, the correlation of the individual time courses was calculated in 
sliding windows of 1 min time. This resulted in 267 correlation matrices per subject and a session of 56 × 56 in size (the number of functional 
networks). The correlation matrices were regarded as a measure of between-network connectivity and clustered into seven patterns using a 
k-means algorithm with the sum of the absolute differences (L1)-distance. LOR, loss of responsiveness.
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intubation with a magnetic resonance tomograph-compat-
ible laryngeal mask and during artificial ventilation using 
an anesthesia machine (Fabius Tiro, Dräger, Germany). 
Sevoflurane was kept stable at 2 volume percent end-tidal 
concentration during this condition. Subjects were unre-
sponsive to the command “squeeze my hand” during this 
condition, tolerated the laryngeal mask well, and showed 
reduced movements when compared to the wakeful state 
(see also Ranft et al.7). It is also noteworthy that clinically 
this sedation was deeper when compared to propofol-in-
duced loss of responsiveness (corresponding to a Ramsay 
scale score of 6). In the following we refer to loss of respon-
siveness irrespective of anesthetic agent as loss of respon-
siveness. All participants were asked for any memories of 
the unresponsive state and all reported an amnesia for the 
procedure.

The Liege data set included in this analysis consisted 
of 20 subjects during propofol-induced loss of respon-
siveness. The data was previously published in Boveroux et 
al.4 From the complete data set (4 men and 16 women, 
aged 18 to 31 yr), 6 subjects with recording lengths of 300 
time points could be included. For anesthesia, propofol was 
infused through an intravenous catheter placed into a vein 
of the right arm using a computer-controlled intravenous 
pump (Alaris TIVA; Carefusion, USA). Subjects were spon-
taneously breathing throughout the experiment. During 
the state examined here, propofol-induced loss of respon-
siveness, subjects were unresponsive to verbal command 
“squeeze my hand.” Clinically, the depth of anesthesia was 
classified as Ramsay 5. Propofol-induced loss of responsive-
ness was reached with plasma propofol concentrations of 
3.2 ± 0.99 µg/ml (mean ± SD).

Subjects with head motion greater than 2 mm between 
two subsequent images were excluded from the final anal-
ysis. This resulted in 11 datasets from the Munich propofol 
cohort, 5 subjects from the Liege propofol cohort, and 14 
subjects from the sevoflurane cohort.

Functional Magnetic Resonance Imaging Data 
Acquisition and Preprocessing

Both Munich propofol and sevoflurane image acquisi-
tions were carried out on the same 3-Tesla whole-body 
magnetic resonance tomographic scanner (Philips Achieva 
Quasar Dual 3.0T 16CH, The Netherlands) employing an 
eight-channel, phased-array head coil. Functional mag-
netic resonance imaging was acquired with a gradient echo 
planar imaging sequence (echo time = 30 ms, repetition 
time = 1.838 ms, flip angle = 75°, field of view = 220 × 
220 mm2, matrix = 72 × 72, 32 slices, slice thickness = 
3 mm, and 1-mm interslice gap; 300 volumes were acquired 
in the propofol cohort and 350 volumes were acquired 
in the sevoflurane cohort; of these 350 frames, the last 50 
were discarded). Anatomy was acquired before the func-
tional scan using a single T1-weighted sequence and 1 × 1 
× 1-mm voxel size per subject.

The Liege propofol data were acquired on a 3 Tesla 
Siemens Allegra scanner (Siemens AG, Germany) For the 
functional magnetic resonance imaging imaging, an Echo 
Planar Imaging sequence using 32 slices (repetition time 
= 2,460 ms, echo time = 40 ms, field of view = 220 mm, 
voxel size = 3.4375 × 3.4375 × 3.9 mm, and matrix size = 
64 × 64 × 32) was employed. The individual T1 image was 
acquired at the end of the whole experiment.

In the following, we describe the analysis steps irre-
spective of the anesthetic agent, since in this study we 
were more interested in general mechanisms of loss of 
responsiveness than in mechanisms of a specific anesthetic 
agent. The preprocessing was carried out using Statistical 
Parametric Mapping (SPM12, Wellcome Trust Center for 
Neuroimaging, University of London, United Kingdom) 
and Data Processing Assistant for Resting-State fMRI 
(DPARSF, Release V4.3_170105, State Key Laboratory of 
Cognitive Neuroscience and Learning, Beijing Normal 
University, China). We largely followed the parameters in 
Allen et al.20 in order to make results comparable. Precisely, 
the first three time points were removed to avoid magnetic 
coil saturation, slice timing was corrected, and functional 
images were realigned. Functional images were coregis-
tered to the anatomical image. Six movement parameters 
and their first derivatives together with five principal com-
ponents of the white matter and cerebrospinal fluid sig-
nal were regressed out, and the data was band-pass filtered 
between 0.01 to 0.1 Hz. The data was then normalized to 
Montreal Neurologic Institute space, resliced to a voxel size 
of 2 × 2 × 2 mm with a third-degree spline interpolation, 
and smoothed with a 4 × 4 × 4-mm Gaussian kernel.

Functional Magnetic Resonance Imaging Data Analysis

In a first step, the preprocessed functional magnetic reso-
nance imaging data were analyzed using a group level spa-
tial independent component analysis as implemented in the 
Gift toolbox (Version 4.0b21) and GICA3 back reconstruc-
tion. The INFOMAX algorithm was employed together 
with an ICASSO and 20 repetitions to decompose the 
data into 75 spatially independent components (fig. 1). We 
preferred this high number of independent components to 
allow a subdivision of known networks (e.g., the default 
mode network or its parts) and to be able to analyze both 
the communication between and within networks, in sum-
mary a similar approach to Allen et al.20 We used the GICA3 
back reconstruction to generate individual spatial maps and 
associated (potentially correlated) time courses for each 
individual map.

This resulted in two types of data: (1) spatially indepen-
dent components for each subject that were standardized 
to be standard normally distributed, so-called z-values (we 
refer to these maps as S

i
), and (2) one time course for each 

component and each subject representing the individual 
components contribution the overall signal over time. The 
time courses were also standardized to be standard normally 
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distributed to account for different scanners and amplitudes 
of the raw blood oxygenation level dependent signal. We 
refer to these time courses as R

i.

Both types of data were further analyzed independently 
with the exception that spatial maps were used to separate 
networks from noise components. This was necessary since 
independent component analysis is also known to separate 
presumable noise from signal of neuronal origin.22 Signal 
from neuronal origin was assumed if the component pro-
jected on gray matter showed no similarity to venous ves-
sels and if it showed a characteristic frequency spectrum 
with clear peak less than 0.1 Hz. Noise components usu-
ally showed a flat frequency spectrum similar to Gaussian 
noise. Fifty-six such components with visually high simi-
larity to components in the literature20,23 were deemed as 
functional networks and included into the further analysis. 
This approach is widely used in the literature even though 
it carries a certain risk to classify neural signal as noise or 
vice versa.

The group level S
i
 was thresholded at P < 0.001, uncor-

rected in SPM12 to create one mask per functional net-
work. Mean z-scores were then calculated from the single 
subject, single session back-reconstructed S

i
. In the follow-

ing, we interpret the mean z-values as a measure of activity 
within a given network and refer to them as “within-net-
work activity.”

The time courses R
i
 were despiked and low-pass fil-

tered less than 0.15 Hz. Correlation matrices were calcu-
lated in a sliding window manner identical to Allen et al.20,23 
and as implemented in GIFT 4.0b’s Temporal dFNC tool-
box using 30 time points, equivalent to 1 min, from each 
measurement, resulting in 267 correlation matrices per 
measurement (which is 300 recorded volumes minus 3 dis-
carded during preprocessing minus sliding window length). 
The size of the resulting matrices was 56 × 56, and due 
to symmetry of the correlation matrices, they contained 
56 × 55/2 independent data points. To make correlation 
matrices more accessible for visual inspection, we sorted 
the functional network similar to Allen et al.20 in groups, 
namely basal ganglia networks, auditory networks, soma-
tomotor and somatosensory networks, visual networks, 
default mode networks, attentional networks, and cerebellar 
networks. The complete list of networks can be found in 
the Supplemental Digital Content, http://links.lww.com/
ALN/B925. It is noteworthy that this sorting into func-
tional groups has no effect on the later k-means clustering 
algorithm, since the algorithm only uses the sum of the 
absolute differences (L1

)-distance of the correlation matri-
ces as a measure of distance and is therefore independent of 
the order of correlation values. In general, we interpret the 
correlation values of the networks’ time courses as a mea-
sure of between-network connectivity and therefore refer 
to them as “between-network connectivity.”

We used the k-means clustering algorithm also imple-
mented in GIFT 4.0b with the L

1
-(“Manhattan”) distance 

with 20 repetitions to assign the between-network con-
nectivity matrices to between-network connectivity pat-
terns. These patterns are not predefined and are generated 
by the k-means algorithm as “focal points” or clusters of the 
between-network connectivity matrices. Only the number 
of such clusters has to be defined. Since the actual number 
of clusters k is unknown, we varied the number between 
k = 2 and k = 10. The results presented in the following 
are from k = 7 and representative for all k = 2,…, 10 (see 
also Supplemental Digital Content, http://links.lww.com/
ALN/B925).

In order to investigate how information from both 
within-network activity and between-network connectiv-
ity is able to separate wakefulness from unresponsiveness, 
we formed a summary data matrix containing the with-
in-network activity from the 56 networks together with the 
absolute number of between-network connectivity pattern 
appearances in each subject. Due to the high dimension-
ality (n = 63) and relatively low number of subjects (n = 
30), we chose classical Fisher scoring24 for a prior feature 
selection. Otherwise the high number of features would 
make the following analysis prone to overfitting and thus 
spurious results. Feature selection is a common strategy to 
reduce dimensionality without missing relevant informa-
tion. In the analysis presented here, feature selection mainly 
favors results from within-network activity due to its high 
number of features (n = 56).25 This particular Fisher scoring 
was also chosen because the data matrix contained both 
normally distributed data (mean z-scores) and sparse data 
(absolute number of appearances) and because selection of 
single variables from the data matrix made interpretation 
of the selection process simpler. After variable ranking, one 
to five variables were chosen for a support vector machine. 
For cross-validation, the 30 data sets were randomly divided 
into 15 training and 15 testing data sets. Single subjects were 
assigned to either the training or test data set. Since it was 
not feasible to repeat the process for all partitions of the data 
set, we repeated the process 1,000 times and averaged across 
runs. We also conducted the support vector machine with a 
random permutation of groups of the test data set to illus-
trate chance level. These steps were carried out with FSLib 
(Version 5.1, Roffo et al.26). All analysis steps were carried 
out in Matlab (R2016a; Mathworks, USA).

Statistical Analysis

Group comparisons were conducted for both the spatial 
and the temporal domains. Each group contained 30 sub-
jects during awake or loss of responsiveness that were there-
fore regarded as paired variables.

In the spatial domain, the 75 spatially independent com-
ponents’ mean z-scores were tested for a decrease using the 
one-sided Mann–Whitney/rank sum test. P values were 
corrected for multiple comparisons using the Bonferroni 
method (using the multiplicator n = 75; see also Supplemental 
Digital Content, table 1, http://links.lww.com/ALN/B925).  
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The supplementary table and the results section give the 
median change of each component’s z-score and the approx-
imated CI using a normal distribution. We chose this approx-
imation since, according to the central limit theorem, the 
mean of a large number (ranging from 894 to 20,606) of 
voxels’ z-scores is approximately normally distributed.

The number of transitions between the different pat-
terns of between-network connectivity was statistically 
tested for a difference between awake and loss of respon-
siveness, propofol-induced loss of responsiveness, and sevo-
flurane-induced loss of responsiveness using the two-sided 
Mann–Whitney/rank sum test. The average correlation of 
the average between-network connectivity matrix was also 
tested for differences between awake and loss of respon-
siveness, propofol-induced loss of responsiveness, and sevo-
flurane-induced loss of responsiveness using the two-sided 
Mann–Whitney/rank sum test. We chose this test since the 
actual distribution of the random variables was unknown 
a priori. Differences of pattern distribution between the 
groups awake, loss of responsiveness, propofol-induced loss 
of responsiveness, and sevoflurane-induced loss of respon-
siveness (on the nominal scale of pattern numbers) were 
tested using a chi-square test with Pearson’s chi-square 
distance.

results
Our analysis reproduced previous findings about with-
in-network activity changes during loss of responsiveness. 
More precisely, bilateral ventral and dorsal medial prefron-
tal cortices (median change, 95% CI: ventral: –0.34 [–0.48; 
–0.11], dorsal: –0.27 [–0.40; –0.13]), dorsolateral prefrontal 
cortices (–0.23 [–0.35; –0.091]), the bilateral middle frontal 
gyruses (–0.17 [–0.31; –0.065]), posterior cingulate cortex 
and precuneus (–0.31 [–0.42; –0.065]), the right frontopa-
rietal network (–0.18 [–0.34; –0.05]), the bilateral intra-
parietal (–0.13 [–0.25; –0.049]) cortices, and the salience 
network (–0.18 [–0.31; –0.044]) showed a significant 
reduction of within-network activity during loss of respon-
siveness when compared to awake at a significance level of 
P < 0.001 (Bonferroni-corrected; see Supplemental Digital 
Content, http://links.lww.com/ALN/B925, for effect sizes 
and CI of all components). This dominant effect on fron-
tal networks during loss of responsiveness has been shown 
for both propofol-induced and sevoflurane-induced loss of 
responsiveness3,7 as well as significant effects on the medial 
thalamus only during sevoflurane-induced loss of respon-
siveness.6,7 Additionally, loss of responsiveness resulted in 
a significant decrease of within-network activity in wide-
spread areas at a significance level of P < 0.05 (range of 
change from –0.36 [–0.48; –0.040] in the medial thalamus 
to –0.10 [–0.33; –0.020] in the bilateral frontal pole). These 
areas encompass premotor and motor areas, large portions 
of the parietal lobes and hippocampal network. Within-
network activity in the occipital lobes, the temporal lobes, 

areas around the central sulcus and basal ganglia networks 
including the thalamus (but not the medial thalamus) were 
not significantly decreased (range of change from –0.19 
[–0.44; 0.063] in the bilateral cuneus to 0.21 [–0.061; 0.42] 
in the left middle occipital gyrus). In summary, the results 
replicated previous findings showing a hierarchical and spe-
cific effect of anesthesia-induced loss of responsiveness on 
the brain’s networks rather than a uniform decrease of cere-
bral activity.

The between-network connectivity was modeled with 
correlation matrices from the independent component’s 
time courses. For visualization of the correlation matrices 
and increased comparability with other studies, we grouped 
the 56 functional networks into 7 groups: basal ganglia net-
works, auditory networks, somatosensory networks, visual 
network, default mode networks, cognitive control net-
works, and cerebellar networks (fig. 2, A and B). A complete 
list of the identified functional networks can be found in 
the Supplemental Digital Content, http://links.lww.com/
ALN/B925. The average between-network connectivity 
matrix during awake (fig. 2B) showed several remarkable 
features that have already been described in the previous 
literature20: high between-network connectivity within 
the groups of somatomotor, visual, and auditory networks 
and between these groups. Cognitive control networks 
showed a high between-network connectivity to sensory 
networks, while some parts of the default mode network 
also showed low to negative between-network connectivity 
to these. The average between-network connectivity matrix 
during loss of responsiveness showed a significant reduc-
tion of average between-network connectivity by means 
of average correlation (P < 0.001, median change, 95% CI: 
–0.031 [–0.058; –0.025], fig.  2C). A differentiated analy-
sis of propofol-induced loss of responsiveness (fig. 2D) and 
sevoflurane-induced loss of responsiveness (fig. 2E) showed 
reduction of average between-network connectivity during 
sevoflurane-induced loss of responsiveness (P < 0.001, 
–0.050 [–0.077; –0.026]) and during propofol-induced loss 
of responsiveness (P < 0.05, –0.023, [–0.057; –0.010]). The 
between-network connectivity was not significantly smaller 
during sevoflurane-induced loss of responsiveness when 
compared to propofol-induced loss of responsiveness (P = 
0.24, medians, 95% CI: propofol-induced loss of respon-
siveness: 0.029 [0.022; 0.055], sevoflurane-induced loss of 
responsiveness: 0.018 [0.016; 0.027]). The visual assess-
ment suggested a decreased between-network connectiv-
ity between sensory systems, as well as a less pronounced 
negative between-network connectivity between cogni-
tive control and default mode networks. Similar observa-
tions have successfully been used to distinguish responsive 
from unresponsive patients27 and recognized as effects of 
general anesthesia.4,8 However, due to the high number of 
between-network connectivity values in a single matrix 
and hence unfavorable correction of alpha errors, both 
observations are not accessible to direct statistical testing 
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in the framework presented here. Consequently, instead of 
looking at individual between-network connectivity values, 
we suggest looking at entire between-network connectiv-
ity matrices and interpreting their content as a measure of 
between-network communication. It is plausible that this 
between-network connectivity should have characteristic 
traits and should be subject to dynamic fluctuations that 
make complex behavior possible in the first place.

We further examined the between-network con-
nectivity matrices using a sliding window method and 
k-means clustering (see “Materials and Methods” for 
details) to further quantify the dynamics of between-net-
work connectivity and to isolate characteristic patterns of 

between-network connectivity. The results are presented 
for k = 7 in accordance with previous literature,20 but 
we also conducted the analyses with k ∈ [2, …, 10] (see 
Supplemental Digital Content, fig. 1, http://links.lww.
com/ALN/B925). The presented results are representa-
tive for all examined k. We found that the between-net-
work connectivity patterns and their dynamic change 
were different during awake and loss of responsiveness. 
We observed two main findings: (1) during awake, differ-
ent patterns appeared dynamically (patterns 2, 4, 6, and 7, 
fig. 3A); and (2) loss of responsiveness was characterized 
through a dominant pattern of between-network connec-
tivity (pattern 5, fig. 3A). Consequently, the distribution of 

Fig. 2. Average between-network connectivity as assessed by the average correlation between functional networks was significantly 
decreased during loss of responsiveness (LOR). (A) The correlation values of functional networks were sorted into groups of similar behav-
ior: basal ganglia networks, auditory networks, somatomotor networks, default mode networks, cognitive control networks, and cerebellar 
networks. note that this rearrangement has no effect on the k-means algorithm and only serves visualization. (B) Average between-network 
connectivity during the “awake” condition (awake refers to the resting state with eyes closed). (C) Average between-network connectivity 
during the LOR condition. (D) Average between-network connectivity during propofol-induced loss of responsiveness (PI-LOR). (E) Average 
between-network connectivity during sevoflurane-induced loss of responsiveness (SI-LOR). bg, basal ganglia networks; aud, auditory net-
works; sm, somatomotor networks; vis, visual networks; def, default mode networks; cc, cognitive control networks; cer, cerebellar networks.

Copyright © 2019 , the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/130/6/898/454876/20190600_0-00015.pdf by guest on 20 M
arch 2024

http://links.lww.com/ALN/B925
http://links.lww.com/ALN/B925


 Anesthesiology 2019; 130:898–911 905

Connectivity Patterns of the Conscious Brain

Golkowski et al.

Fig. 3. Loss of responsiveness (LOR) was associated with significantly fewer transitions of between-network connectivity patterns and a significant 
shift of the between-network connectivity patterns’ distribution. (A) Radar plot showing the relative number of between-network connectivity matri-
ces assigned to the seven between-network connectivity patterns by the k-means algorithm during AWAKe (blue; AWAKe refers to the resting state 
with eyes closed), LOR (red), propofol-induced loss of responsiveness (PI-LOR; yellow) and sevoflurane-induced loss of responsiveness (SI-LOR; 
purple). The seven between-network connectivity patterns are shown at different angles of the plot. (B) Boxplot showing the absolute number of tran-
sitions of between-network connectivity patterns. Boxes show medians (red) and 25th/75th percentiles. Identical subjects are connected via lines.  
* and **, significant changes during PI-LOR (P < 0.05) and SI-LOR (P < 0.0001) when compared to AWAKe.
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frames across different patterns was significantly different 
during loss of responsiveness (relative number of pattern 
appearances: pattern 1: 0.047, pattern 2: 0.11, pattern 3: 
0.14, pattern 4: 0.0026, pattern 5: 0.66, pattern 6: 0.0017, 
pattern 7: 0.031) when compared to awake (relative num-
ber of pattern appearances: pattern 1: 0, pattern 2: 0.096, 
pattern 3: 0.032, pattern 4: 0.25, pattern 5: 0.056, pattern 
6: 0.15, pattern 7: 0.42). This was also true for awake versus 
propofol-induced loss of responsiveness (relative number 
of pattern appearances: pattern 1: 0.089, pattern 2: 0.20, 
pattern 3: 0.28, pattern 4: 0, pattern 5: 0.43, pattern 6: 
0.0033, pattern 7: 0), awake versus sevoflurane-induced loss 
of responsiveness (relative number of pattern appearances: 
pattern 1: 0, pattern 2: 0, pattern 3: 0, pattern 4: 0.0056, 
pattern 5: 0.93, pattern 6: 0, pattern 7: 0.066) and propo-
fol-induced loss of responsiveness versus sevoflurane-in-
duced loss of responsiveness (all P < 0.001). Additionally, 
we found patterns that occurred exclusively or almost 
exclusively during loss of responsiveness (numbers 1, 3, 
and 5) or dominantly during awake (patterns 4, 6, and 7). 
Among those were one low correlation pattern (7) and 
two high correlation patterns (4 and 6). Especially pat-
tern 4 showed high similarity with the average correlation 
matrix. Although patterns 7 and 5 were visually similar, 
they show a high specificity for either awake or loss of 
responsiveness.

We regarded the absolute number of transitions 
between connectivity patterns as a measure of the ongo-
ing dynamics. We found a significant reduction of tran-
sitions during loss of responsiveness (median during loss 
of responsiveness: 0, 95% CI: [0.26; 1.47]) when com-
pared to awake (median during awake: 4, 95% CI: [3.35; 
6.12], P < 0.001) as well as during propofol-induced loss 
of responsiveness (median during propofol-induced loss 
of responsiveness: 0.5, 95% CI: [0.45; 2.55], P < 0.05) 
and sevoflurane-induced loss of responsiveness (median 
during sevoflurane-induced loss of responsiveness: 0, 95% 
CI: [–0.17; 0.45], P < 0.001, both fig.  3B) when com-
pared to awake. Additionally, the number of transitions 
was significantly reduced during sevoflurane-induced 
loss of responsiveness when compared to propofol-in-
duced loss of responsiveness (P < 0.05). In total, 27 out 
30 subjects showed reduction or no change of transitions 
during loss of responsiveness when compared to awake. 
All subjects who had an actual increase of transitions were 
in the propofol-induced loss of responsiveness group (n 
= 3, fig. 3B). Thirteen out of 14 subjects of the sevoflu-
rane-induced loss of responsiveness group had 0 transi-
tions during loss of responsiveness, probably reflecting the 
deeper level of anesthesia during sevoflurane-induced loss 
of responsiveness when compared to propofol-induced 
loss of responsiveness. Variation of k ∈ [2, …, 10] also led 
to a separation into distinct patterns for either the awake 
or loss of responsiveness state (see Supplemental Digital 
Content, fig. 1, http://links.lww.com/ALN/B925).

In order to further evaluate the information content of 
the acquired information about the subject being either in 
the awake or loss of responsiveness condition, we employed 
a support vector machine approach after prior feature selec-
tion via the classical Fisher score.24 The top five features 
calculated from the complete data set were appearance of 
between-network connectivity pattern 5, within-network 
activity in the dorsal portion of the medial prefrontal cor-
tex, appearance of between-network connectivity pattern 
7, within-network activity in the dorsolateral prefrontal 
cortex, and within-network activity in the ventral portion 
of the medial prefrontal cortex (fig. 4A). We calculated the 
accuracy of this classification on the test data with 1, …, 5 
top features based on the training data set (fig. 4B) using 
either within-network activity (mean classification accu-
racy and 95% CI: 1 feature: 0.72 [0.716; 0.725], 2 features: 
0.74 [0.737; 0.745], 3 features: 0.74 [0.738; 0.746], 4 fea-
tures: 0.75 [0.743; 0.751], 5 features: 0.74 [0.739; 0.747]), 
between-network connectivity (mean classification accu-
racy and 95% CI: 1 feature: 0.79 [0.788; 0.793], 2 feature: 
0.80 [0.801; 0.808], 3 features: 0.86 [0.858; 0.865], 4 fea-
tures: 0.90 [0.893; 0.902], 5 features: 0.89 [0.882; 0.893]), 
both pieces of  information (mean classification accuracy 
and 95% CI: 1 feature: 0.75 [0.742; 0.749], 2 features: 0.82 
[0.813; 0.824], 3 features: 0.84 [0.837; 0.847], 4 features: 
0.86 [0.850; 0.860], 5 features: 0.87 [0.862; 0.872]), or 
chance level (mean classification accuracy and 95% CI: 1 
feature: 0.50 [0.490; 0.501], 2 features: 0.50 [0.493; 0.504], 
3 features: 0.50 [0.494; 0505], 4 features: 0.50 [0.491; 0.502], 
5 features: 0.50 [0.490; 0.502]). We observed that both 
between-network connectivity and the combined data set 
performed significantly better in terms of accuracy than 
within-network activity at P < 0.001 when compared to a 
support vector machine-based on within-network activity 
alone. A significant difference between the combined data 
set and the between-network connectivity-based support 
vector machine could be found for 1, …, 5 selected features 
at P < 0.05. In summary, the most important information 
about discriminating awake from loss of responsiveness 
was contained in the between-network connectivity pat-
terns 5 and 7 as well as in the within-network activity of 
the medial prefrontal cortex and the dorsolateral prefron-
tal cortex. Additionally, the separation between awake and 
loss of responsiveness using a support vector machine had 
a significantly higher accuracy using the combined data set 
or the between-network connectivity patterns when com-
pared to within-network activity in specific networks. All 
approaches perform significantly better than chance level 
(P < 0.001).

discussion
Our analyses clearly illustrate the coexistence of effects both 
in specific networks of the brain and between-network 
connectivity during anesthesia-induced unconsciousness. 
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We could demonstrate in line with previous publications 
on propofol-, sevoflurane-, ketamine-, and dexmedetomi-
dine-induced unconsciousness in humans3,4,7,8,10 that gen-
eral anesthesia predominantly affects the within-network 
activity in the frontal lobe as well as in the medial thalamus 
during sevoflurane-induced loss of responsiveness.28 Similar 
effects have been reported in rodent experiments showing 
a dominant decrease of connectivity in higher-order brain 
areas when compared to primary sensory areas during anes-
thesia.29 Nevertheless, this finding should not be interpreted 

as a localized effect of the agent itself. This would not be a 
plausible explanation since propofol mainly acts by increas-
ing the effect of γ-aminobutyric acid on γ-aminobutyric 
acid type A receptors,30 which are known to be widely dis-
tributed across the human brain, not only in the above-men-
tioned brain areas.31 Similarly, fluranes are thought to affect 
multiple types of ion channels, potentiate γ-aminobutyric 
acid–mediated inhibition, increase potassium permeability, 
and inhibit sodium channels.32 We therefore propose that 
a uniform reduction of connectivity in the brain leads to 

Fig. 4. Appearance of specific between-network connectivity patterns and within-network activity changes in frontal networks and the 
medial thalamus contains information about the state. (A) Barplot showing the absolute Fisher scores and the consequential ranking of fea-
tures. Within-network activity is shown in blue, appearance of between-network connectivity patterns in red. (B) Performance of a support 
vector machine differentiating “awake” (awake refers to the resting state with eyes closed) from loss of responsiveness randomly using 50% 
of the subjects as training data and 50% as test data. error bar plot shows the mean and SD from 1,000 repetitions based on within-network 
activity (blue), between-network connectivity patterns (red), the combined data set (yellow), and a random permutation of the test data set, 
i.e., chance level (lilac). The features employed ranged from 1 to 5 according to their respective Fisher score based in the training data. 
DMPFC, dorsal portion of the medial prefrontal cortex; DLPFC, dorsolateral prefrontal cortex; VMPFC, ventral portion of the medial prefrontal 
cortex; VPFC, ventromedial prefrontal cortex; Sal, salience network; M+IFG, middle and inferior frontal gyrus; SMA, supplementary motor 
area; FP, frontal pole; mThalamus, medial thalamus; PCC/Prec, posterior cingulate cortex/ precuneus; MFG, middle frontal gyrus; CerebH, 
cerebellar hemispheres; ATTn, attentional network/ frontoparietal network; IPS, inferior parietal cortex; SPC, superior parietal cortex; IPC, 
inferior parietal sulcus; Pre+PCG, pre- and postcentral gyrus; ParaHG, parahippocampal gyrus; MOG, middle occipital gyrus; MTG, middle 
temporal gyrus; LG, lingual gyrus; Put, putamen; MCC, middle cingulate cortex; CerebV, cerebellar vermis; Calc, calcarine sulcus; SOG, supe-
rior temporal gyrus; Caud, caudate nucleus; TP, temporal pole; IOG, inferior occipital gyrus; ACC, anterior cingulate cortex; HeschlG, Heschl’s 
gyrus; FFG, fusiform gyrus. Bilateral/right/left is denoted as preceding b/r/l.
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a disproportionate decrease of within-network activity in 
specific brain networks whose functioning strongly depends 
on/results from the tight balancing of incoming excitatory 
and inhibitor input.

The prominently affected dorsal prefrontal areas have 
been associated with attentional mechanisms. It has repeat-
edly been demonstrated that activation in this network is 
associated with conscious perception and thus reportabil-
ity of sensory stimuli.33,34 It has also been proposed in the 
framework of the global work space theory that the dorso-
lateral prefrontal cortex might mediate a crucial function: 
it is supposed to serve as a “bottleneck” for sensory input 
competing for global distribution in the brain and thus 
serve both conscious perception and information integra-
tion across time and modality.35 Similarly, both the medial 
prefrontal cortex’s and medial thalamus’s connectivity 
have been repeatedly associated with altered consciousness 
during general anesthesia.3,7,8,10,36 It is therefore plausible 
that these networks form a crucial set of brain regions for 
intact consciousness. However, it is still conceivable that 
some of the affected networks are not a necessary require-
ment, e.g., the cerebellum. Nevertheless, we conclude that 
at least a subset of the affected networks is required for con-
scious processing (as assessed by responsiveness).

Additionally, to these hierarchical changes on the corti-
cal level, the subcortically located medial thalamus showed 
prominently decreased within-network activity during 
sevoflurane-induced loss of responsiveness. Other studies 
using functional magnetic resonance imaging,7 positron 
emission tomography,37 or animal models28 of general anes-
thesia showed similar results. It is known that the medial 
thalamus mainly projects to the frontal lobes38 and is thought 
to play an important role in the modulation of vigilance.39 
A view that is also backed by the fact that lesioning of the 
medial thalamus through stroke in humans results in sudden 
but usually not permanent onset of coma. We conclude that 
different anesthetic agents have a different mechanisms of 
action on the network level that nevertheless impair corti-
cal information integration through a common endpoint.

Beyond effects of general anesthesia on specific brain 
networks, our data clearly show that anesthesia-induced 
unconsciousness leads to a significant decrease of corti-
cal dynamics irrespective of the investigated agents. This 
effect led to a shift of the between-network connectivity 
patterns to only few (propofol-induced loss of respon-
siveness) or one single pattern (sevoflurane-induced loss 
of responsiveness) depending on the depth of anesthesia. 
Similar observations have been made in rat17 and monkey19 
brains during general anesthesia. Simulation studies of the 
brain predicted that a general decrease of coupling strength 
leads to decrease of functional connectivity repertoire.40 
Additionally, it has been predicted that damaging of specific 
brain regions leads to an overproportionate reduction in 
the brain’s dynamic repertoire.41 This study clearly demon-
strates that both the restriction of functional repertoire 

and the decrease of activity within functional networks are 
phenomena associated with loss of responsiveness during 
general anesthesia, although the causal link between these 
two phenomena could not be ascertained here. Together 
with the theoretical predictions made above, we propose 
that specific brain areas are more important than others to 
generate a highly dynamic repertoire that is an expression 
of the wakeful state.

We also want to highlight that specific patterns of 
between-network connectivity were exclusively observed 
during wakefulness. These patterns, characterized by high 
correlation between sensory areas and negative correlation 
between default mode and attentional networks, have been 
reported repeatedly.20,23 The absence of these features has 
successfully been used to distinguish levels of consciousness 
in patients with disorders of consciousness,42 and during 
general anesthesia.8 As a consequence, these specific con-
nectivity patterns can be regarded as a modus operandi of 
the wakeful brain. Similarly, we also observed a pattern of 
between-network connectivity highly specific for loss of 
responsiveness. This pattern was characterized by low cor-
relation between functional networks’ time courses. This 
observation has the implication that even though only 
specific brain networks’ within-network activity is signifi-
cantly diminished, the between-network communication is 
substantially reduced even between networks that show no 
significant reduction of within-network activity. Therefore, 
we conclude that specific brain networks’ within-network 
activity is an important factor influencing between-net-
work communication in distant brain regions.

Of course, the experimental setup and performed analy-
ses presented here have several limitations. It is conceivable 
that a subset of the effects observed during general anes-
thesia are unspecific, i.e., changes in brain areas’ activity or 
changes of between-network connectivity patterns might 
reflect epiphenomena that are independent of the loss of 
consciousness itself. As an example, we also observed changes 
in cerebellar within-network activity that are in line with 
reports of a diminished metabolic rate.37 However, absence 
of the cerebellum is not incompatible with consciousness.43 
These unspecific effects might be further emphasized by 
an increase of the anesthetic agents’ concentration beyond 
the point where loss of responsiveness is actually achieved. 
From the technical perspective, it is, however, very difficult 
to obtain functional magnetic resonance imaging data with-
out relevant movement artifacts at this point, a prerequisite 
for the very complex analysis presented here. In addition, 
the inclusion of an independent data set from the University 
of Liege (Liege, Belgium) resulted in stable results both in 
terms of dynamics of the between-network connectivity and 
in terms of the patterns encountered. This further underlines 
that the findings presented here are both reproducible and 
independent of details of the anesthetic protocol used.

One should also consider that the abstract methodol-
ogy presented here complicates the interpretation of the 
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results. Nevertheless, there are several arguments why the 
mean z-score reflects “within-network activity”: (1) math-
ematically the independent components quantify the spa-
tial extension of the contribution to overall signal, (2) the 
decrease seen during loss of responsiveness in specific net-
works is in line with previous experiments using different 
analytical techniques of functional magnetic resonance 
imaging data4,6 or other modalities like positron emission 
tomography,37 and (3) independent components classified 
as artifacts did not show a significant change during loss of 
responsiveness. Likewise, we propose that the correlation of 
the associated time courses is a measure of “between-net-
work connectivity” since (1) the time courses represent a 
measure of the temporal modulation of a given network’s 
contribution to the overall signal, (2) the concept of tem-
poral correlation is a basic principle in functional magnetic 
resonance imaging to identify functional connectivity, and 
(3) the encountered patterns have high similarity with pat-
terns from the literature, and the patterns were reproduc-
ible in our data set across subjects from different anesthetic 
protocols and different scanners. In our opinion, the iden-
tification of global connectivity patterns that are relevant 
for consciousness and the concomitant high number of 
potentially participation brain regions justify this step of 
data reduction. However, it should also be mentioned that 
the approach using k-means clustering has one key flaw: the 
actual alpha error of this step cannot be quantified directly, 
and hence we encourage any effort to analyze similar data 
sets using the same method.
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