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T HE precise mechanisms by which γ-aminobutyric 
acid receptor type A (GABAA)–potentiating anes-

thetics cause memory impairment have yet to be delin-
eated. We know that subpopulations of GABAA receptors 
composed of specific subunits are responsible for the 
amnestic effects of propofol and etomidate occurring at 
plasma concentrations well below that required for loss of 
consciousness.1,2 While numerous brain structures medi-
ate the various classified memory systems, it is clear that 
the hippocampus and associated entorhinal cortex are 
most important in formation of episodic memory. Epi-
sodic memories are those that can be consciously recalled; 
they can include autobiographical events. They are most 
sensitive to anesthetic agents.

Two scenarios have been proposed for the manner in 
which GABAA receptor modulation may disrupt hippocam-
pal episodic memory function—classified by Perouansky and 
Pearce into static and dynamic.3 The static scenario posits that 
repetitive stimuli are unable to strengthen synaptic connec-
tions due to a shift in the balance from excitation to inhi-
bition by GABAA receptor inhibitory postsynaptic currents. 
The indirect dynamic scenario invokes a GABAA-mediated 
disruption of the timing of hippocampal theta and/or gamma 
rhythms that are thought to be essential to induction of 

synaptic plasticity.4 Currently there is insufficient experimen-
tal evidence to indicate the relative importance of these two 
scenarios.

What We Already Know about This Topic

• Episodic memory encoding is dependent upon the 
hippocampus; repetitive stimuli strengthen synaptic 
connections and lead to the development of groups of neurons 
with synchronous activity called polychronous groups.

• The hippocampal formation has multiple connections, including 
those with the entorhinal cortex and medial septum. Interactions 
within these connections lead to synchronized oscillations, 
primarily theta, that can be detected electroencephalographically.

• Although propofol and other enhancers of γ-aminobutyric 
acid receptor type A activity produce amnesia, the precise 
mechanisms by which they interfere with memory-encoding 
processes such as synaptic plasticity-induced polychronous 
neuronal group formation versus theta oscillations are not clear.

What This Article Tells Us That Is New

• In a computational model of the hippocampus, propofol 
reduced polychronous group size in a dose-dependent 
manner. By contrast, modulation of theta oscillations did not 
affect group size.

• The results suggest formation of polychronous groups of 
neurons is more sensitive to the effect of propofol on the 
balance between excitation and inhibition than on theta 
oscillations.
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ABSTRACT

Background: Propofol produces memory impairment at concentrations well below those abolishing consciousness. Epi-
sodic memory, mediated by the hippocampus, is most sensitive. Two potentially overlapping scenarios may explain how 
γ-aminobutyric acid receptor type A (GABAA) potentiation by propofol disrupts episodic memory—the first mediated by 
shifting the balance from excitation to inhibition while the second involves disruption of rhythmic oscillations. We use a hip-
pocampal network model to explore these scenarios. The basis for these experiments is the proposal that the brain represents 
memories as groups of anatomically dispersed strongly connected neurons.
Methods: A neuronal network with connections modified by synaptic plasticity was exposed to patterned stimuli, after which 
spiking output demonstrated evidence of stimulus-related neuronal group development analogous to memory formation. The 
effect of GABAA potentiation on this memory model was studied in 100 unique networks.
Results: GABAA potentiation consistent with moderate propofol effects reduced neuronal group size formed in response to 
a patterned stimulus by around 70%. Concurrently, accuracy of a Bayesian classifier in identifying learned patterns in the 
network output was reduced. Greater potentiation led to near total failure of group formation. Theta rhythm variations had 
no effect on group size or classifier accuracy.
Conclusions: Memory formation is widely thought to depend on changes in neuronal connection strengths during learning 
that enable neuronal groups to respond with greater facility to familiar stimuli. This experiment suggests the ability to form 
such groups is sensitive to alteration in the balance between excitation and inhibition such as that resulting from administra-
tion of a γ-aminobutyric acid–mediated anesthetic agent. (Anesthesiology 2018; 129:106-17)
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In this paper we use a computational model of a hip-
pocampal network to explore the validity of each scenario. 
The basis for these experiments is an essential insight into 
the mechanism by which the brain represents memories pro-
vided by the cell assembly hypothesis. A cell assembly is an 
anatomically dispersed set of neurons with excitatory con-
nections that have been strengthened by synchronous activity 
of the pre- and postsynaptic neurons.5 Such cell assemblies 
can be identified in computational neural networks incorpo-
rating synaptic plasticity.6,7 In this context they are termed 
polychronous groups6 and are defined as strongly connected 
sets of neurons firing in a reproducible and precisely timed 
sequential manner.

For our experiments, we use a simple network represent-
ing the hippocampus and entorhinal cortex to investigate 
whether the GABAA facilitatory effects of propofol at clini-
cally relevant plasma concentrations disrupt the process of 
polychronous group formation (learning) in response to a 
repeated sensory stimulus.

A distinct but related question concerns the manner in 
which the brain determines whether the firing of a group 
of neurons represents activation of a memory trace. A the-
oretical framework that has been proposed postulates that 
the brain acts as a Bayesian classifier by maintaining inter-
nal probabilistic models that are updated by incoming neu-
ral sensory information.8 Of note, Bayesian classifiers have 
already been used with considerable success in unsupervised 
machine learning. We investigate the results of our learning 
experiments in the network model using a Bayesian classifier 

to determine the extent to which disruption of polychro-
nous group formation by GABAA facilitation may prevent 
the brain from correctly identifying a previously learned 
stimulus.

Materials and Methods

Neural Network Model
The neural network model is based on our previously pub-
lished model.7 Here we summarize the important features of 
this model and describe in detail departures from the origi-
nal work.

Anatomy
The model, while not a recreation of a particular hippo-
campal region, incorporates many quantitative details 
of the cornu ammonis 3 region of mammalian hippo-
campus.9 To prevent boundary artifacts, the neurons are 
randomly distributed on a sphere with a radius of 8 mm 
(fig.  1). Excitatory cells constitute 80% of the neurons. 
Each neuron has 896 synapses. Fifty percent of excitatory 
neurons’ axonal terminals are unmyelinated and synapse on 
local cells within a radius of 2.5 mm; the remainder syn-
apse on cells within a 2-mm radius of a randomly chosen 
myelinated axonal terminus at a distance of 10 to 15 mm. 
Inhibitory neuron synapses occur within a 1-mm radius 
of the neuronal soma. Spike propagation is much faster in 
myelinated axons (1 m · s−1) than in unmyelinated axons 
(0.15 m · s−1).10

Fig. 1. Schematic of anatomical properties of the model. Each neuron has 896 synapses. The model is comprised of two distinct 
modules. The hippocampal module contains 7,680 neurons, of which 80% are excitatory pyramidal cells. Fifty percent of excit-
atory neuron synapses are via nonmyelinated collaterals, and the remainder connect via a myelinated axon. All inhibitory cells 
synapse locally. A distinct entorhinal cortical module contains 600 neurons, of which 80% are excitatory stellate cells. All con-
nections within the entorhinal module are via nonmyelinated axon collaterals. The output of the excitatory cells of this module 
serves as the input for the pyramidal cells of the hippocampal module. r = radius in mm; v = velocity in m · s−1.
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A distinct entorhinal cortical module is comprised of 
stellate neurons and inhibitory neurons on the surface of a 
1-mm sphere. The ratio of excitatory to inhibitory neurons 
and number of synaptic connections is identical to the hip-
pocampal network. All connections within the entorhinal 
module are via unmyelinated axons.

In comparison to our original published model, which rep-
resented a neocortical region, cells in the hippocampal network 
have a fourfold greater number of connections with a somewhat 
greater spread from the soma or axonal termination. These mod-
ifications bring neuronal connection probabilities closer to levels 
found in vivo in rat hippocampus and improve the ability of the 
network to form memories in response to training stimuli.

Neural Model
The network contains 7,680 neurons in a single hippocampal 
region and 600 neurons within the entorhinal cortex. The spike 
timing dynamics of each neuron are simulated using Izhikev-
ich’s quadratic spiking neuron model that reproduces the spik-
ing and bursting characteristics of a vast number of neuronal 
types. In the Izhikevich formulation, neurons are modeled by 
a two-dimensional system of ordinary differential equations11:

 Cv k v v v v u Ir t′ = −( ) −( ) +−  (1)

 ′ = −( ) −( )u a b v v ur  (2)

 if v v mV then v c u u dpeak≥ ( ) = = +,  (3)

where C is the membrane capacitance, v is the membrane 
potential (mV), vr is the resting potential, vt is the instan-
taneous threshold potential, u is the recovery variable, c is 
the postspike membrane potential reset (mV), and I repre-
sents the net synaptic and random input currents (pA). The 
parameters k, a, b, and d are dimensionless and vary accord-
ing to neuron type (table 1).

By varying the parameters of the differential equations, 
the model can generate excitatory neuronal spiking patterns 
ranging from regular spiking to chattering types and inhibi-
tory neurons with a fast spiking response.7,11 The neuronal 
equations are calculated at 1-ms time steps.

Input
Each neuron receives synaptic input from other neurons. 
In the absence of external input, the hippocampal network 
remains quiet. To avoid this silent state of the network, the 
excitatory neurons are driven by input from the entorhinal 
stellate cells and spontaneous synaptic release, which is simu-
lated by one (Poissonian) release per synapse per second. The 
entorhinal module is also driven by the 1-Hz Poisson process 
simulating spontaneous synaptic release in conjunction with 
external current of an amplitude chosen to stimulate firing 
of the stellate cells at around 6 Hz.

Synaptic transmission is modeled by increasing the 
conductance of the receptor channel in response to a 

spike event. Conductance for the α-amino-3-hydroxy-5-
methylisoxazole-4-proprionic acid, N-methyl-D-aspartate, 
GABAA, and γ-aminobutyric acid receptor type B recep-
tors12,13 is modeled using equations incorporating parame-
ters for reversal potential and channel decay times consistent 
with neurophysiologic experimental data.14

The ratio of α-amino-3-hydroxy-5-methylisoxazole-4-
proprionic acid to N-methyl-D-aspartate synapses is set at 1 
for the excitatory neurons. Similarly, the ratio of GABAA to 
γ-aminobutyric acid receptor type B synapses is set at 1 for 
all inhibitory neurons.

Synaptic Plasticity
At the start of a simulation, excitatory synaptic weights in 
the hippocampal neurons are set randomly within the range 
(0 to 1). These are then modified by spike-timing–depen-
dent plasticity, a variant of the classical “Hebbian” plastic-
ity (“when an axon of cell A is near enough to excite a cell  
B and repeatedly or persistently takes part in firing it, some 
growth process or metabolic change takes place in one or 
both cells such that A’s efficiency, as one of the cells firing B, 
is increased”15) that has been modified to take into account 
the relative spike timing dependency of these changes.16,17 
When a spike from a presynaptic neuron i arrives at a post-
synaptic neuron j before it fires, the accumulated synaptic 
change (cE) is modified in the direction of potentiation 
according to the difference between the time of arrival of the 
spike from neuron i (ti) and the time that neuron j spikes 
(tj), reflecting the notion that the presynaptic spike arrived 
at a time compatible with having a causal effect on the post-
synaptic cell:

 � �c c eE E
t ti j= + −( )0 0002 20. /

 (4)

Similarly, if neuron j spikes before the arrival of the spike 
from neuron i, accumulated synaptic change is modulated 
in the direction of depression according to the difference 

Table 1. Parameters Used for Modeling Neurons

Cell Type
Excitatory  

Hippocampus
Stellate Cell  

Entorhinal Cortex
Inhibitory  

Interneurons

C 50 200 20
k 1.5 0.75 1
vr –60 –60 –55
vt –50 –45 –40
vpeak 50 30 25
a 0.01 0.01 0.15
b 5 15 8
c –50 to –65 –50 –55
d 150–400 100 200

Parameters used for modeling excitatory and inhibitory neurons with Izhik-
evich’s quadratic spiking neuron model.
a, b, d, k = dimensionless variables; c = postspike membrane potential 
reset (mV); C = membrane capacitance (Farads · m-2); vpeak = peak during 
action potential (mV); vr = resting potential (mV); vt = instantaneous thresh-
old potential (mV).
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between tj and ti, consistent with the notion that the presyn-
aptic pulse was too late to have any effect on the timing of 
the postsynaptic spike:

 � �c c eE E
t tj i= − −( )0 0004 20. /  (5)

Synaptic weights were clipped to remain in the range (0 to 
12) simply to prevent “runaway” potentiation. Inhibitory 
and stellate cell synaptic weights are not modified by spike-
timing–dependent plasticity in the model and are fixed.

To model the short-term depression of synaptic weights 
that occurs with repeated firing of pyramidal cells and some 
interneurons, a phenomenologic model7,18 was used to scale 
down synaptic conductance immediately after firing. The 
synaptic weight was reduced by a per-synapse scalar factor x 
that recovers with a time constant of 150 ms:

�x
x

x x=
−

←
1
150

0 6, . when presynaptic neuron fires (6)

Learning Stimuli
During training, four unique spatiotemporal firing patterns 
are repeatedly presented to the hippocampal network. Each 
pattern contains the same set of 200 excitatory neurons but 
with a different (chosen randomly) firing order in which the 
neurons are fired at consecutive 1-ms time intervals during 
a 200-ms window. The four patterns, hereinafter referred to 
as patterns A through D, are presented sequentially to the 
network with a spacing of 2 s throughout a “learning” epoch 
(see “Computer Simulation”).

Effects of Propofol
We take propofol as an exemplar of anesthetic agents that 
act primarily by facilitation of GABAA channels. In clinical 
use, the effect site concentration of propofol is considerably 
lower than the total plasma concentration due to sequestra-
tion of around 97% by plasma proteins. General anesthesia 
occurs with a total plasma propofol concentration of around 
10 to 30 μM (1.8 to 5.4 μg · ml−1), whereas a widely cited 
estimate of the EC50 for free blood propofol is 0.4 μM. The 
free blood propofol EC50 differs considerably from propofol 
concentrations that facilitate GABAA channels in vitro where 
the majority of change occurs in a range from 1 to 30 μM. 
Explanations for this discrepancy may include drug precipi-
tation and nonspecific binding to the experimental reagents 
and apparatus.19 Currently it is impossible to make a direct 
correlation between the effects of free propofol in the blood 
and the calculated or nominal concentration in vitro.

Throughout this paper, propofol concentrations are 
reported as the in vitro propofol concentration on which 
GABAA channel effects are based. The action of propofol 
is simulated by increasing the conductance of the GABAA 
channels by between 100 and 800% and the decay times to 
between 12 and 48 ms, consistent with in vitro data in the con-
centration range 0.05 to 30 μM (0.1 to 5.4 μg · ml−1).7,20–22  

For classification purposes, we refer to low-dose propofol as a 
concentration that potentiates GABAA channel function by 
up to 200%,22 high-dose propofol as a concentration poten-
tiating GABAA by greater than 500%, and moderate doses 
as propofol concentrations between these extremes. Based on 
the range and magnitude of in vitro GABAA channel poten-
tiation change, one could argue that low-dose propofol is 
linked to minimal clinical effects, moderate dose to sedation, 
and high-dose to general anesthesia. However, the uncertain 
linkage between the free plasma propofol and in vitro propo-
fol concentrations makes such comparisons fraught. Given 
previously demonstrated insensitivity to the potential effects 
of propofol on long-term potentiation at high plasma con-
centrations,7 we opted to omit this feature in the current 
model.

Local Field Potential
A simulated local field potential signal is generated from the 
mean of the synaptic currents in the excitatory hippocampal 
network neurons. Power spectral density plots generated by 
Fourier transform are used to perform frequency analysis of 
the local field potential.

Theta Rhythm
The hippocampal module alone does not exhibit theta oscil-
lations (see “Results”). To ascertain the importance of an 
intact theta rhythm,23 a subset of experiments is performed 
with the entorhinal cortical module removed.

Analysis
Our principal method of assessing memory function in our 
network is to quantitate the numbers and sizes of intercom-
municating collections of neurons, termed polychronous 
groups,6 formed during exposure to patterned stimuli. We 
consider such groups to be indicative of the kinds of group 
responses that may occur in real nervous systems during 
memory formation. In our previous work,7 we used the orig-
inal method of template matching described by Izhikevich.6

Recent work24 has demonstrated that the template-
matching technique can underestimate the frequency of 
polychronous group firing and presents an improved, proba-
bilistic, method termed response fingerprinting. To determine 
whether a neuron fires as part of a stimulus-related polychro-
nous group, we examine cumulative spike histograms from 
multiple presentations of the previously learned pattern. 
During this “recall” epoch (see “Computer Simulation”), 
synaptic weights are frozen to prevent any further learning. 
Each pattern A through D or a null pattern is presented to 
the network on 1,600 occasions to generate a cumulative his-
togram for every neuron with spike count offset in millisec-
onds from the start of the pattern presentation (fig. 2). The 
majority of neurons, not being members of a polychronous 
group associated with a learned pattern, only fire at random 
times during the recall epoch. Some neurons consistently fire 
at fixed intervals following pattern representation, producing 
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one or more peaks in the spike histogram. For these neurons, 
spiking activity is strongly associated with representation of 
the original pattern, providing evidence that the neuron is 
part of a stimulus-related polychronous group. In such cases, 
we define a temporal window that spans the largest peak of 
spike counts. The aggregate of temporal windows for all neu-
rons that are associated with the pattern define a response 
fingerprint, providing a unique spatiotemporal signature of 
polychronous group neural firing in response to a stimulus.24 
The neurons that are directly stimulated as part of the pat-
tern are not included in the response fingerprint. We quan-
tify polychronous group formation by the number of neurons 
contained in the response fingerprint and polychronous fir-
ing activity by the number of neural spikes occurring within 
the temporal windows throughout the recall epoch. With this 
method, the delay intervals between spikes and the numbers 
of spikes in a group are not specified as parameters, but rather 
emerge as a result of the response fingerprinting analysis.

Bayesian Classifier
To relate the rather abstract results we obtain describing the 
effects of simulated propofol administration on polychro-
nous group formation during training to possible reduced 
performance in a recall task, we implement a naive Bayesian 
classifier.24 Performance of this classifier depends only on the 
statistics of polychronous groups and not on other possible 
effects of propofol sedation, such as reduced sensitivity of 
downstream neuronal areas to spiking from areas included 
in the model that might further reduce performance; accord-
ingly, results obtained with the Bayesian classifier should not 
be taken as anything more than a general indicator of net-
work function (see Discussion).

Briefly, we define a spike occurring within a temporal 
window as a window activation. Applying Bayes’ theo-
rem, for input pattern (ip) and window activation (act), 
we find

 p ip act
p act ip p ip

p act
|( ) =

( )
( )

( | )  (7)

Each response fingerprint generally contains more than one 
temporal window. Here we assume conditional indepen-
dence of window activations to give

 p act act act act ip p act ipn
i

i( | ( |1 2 3∧ ∧ = ∏.. ) ) (8)

A naive Bayesian classifier allows one to decide on the pres-
ence or absence of a stimulus given the set of window activa-
tions. Our implementation of the classifier simplifies to

p ip act act act act argmax p ip p act ipi n i
j

j i( | ( |1 2 3∧ ∧ = ( )∏.. ) ( )) (9)

Equation 9 is applied to the response fingerprints for pat-
terns A through D and the null pattern. The classifier selects 
the response fingerprint with the highest probability given 
the observed window activations.

Identification of temporal windows and collection of sta-
tistics for the final term of Equation 9 are completed more 
than 1,600 trials for each pattern. The accuracy of the clas-
sifier is then quantified more than 4,800 trials across all pat-
terns. To further investigate the properties of the classifier, 
receiver operating characteristic curves are calculated by 
varying the minimum probability threshold required for the 

Fig. 2. Spike count histograms for two neurons after 1,600 presentations of pattern A during the recall epoch. Offset is time in 
milliseconds from start of pattern presentation. A neuron that is not part of a polychronous group associated with pattern A (up-
per panel) fires at random times during replay of the pattern. Some neurons consistently fire at a particular time during pattern 
replay, producing peaks in the spiking count histogram. These peaks indicate that the neuron fires as part of a stimulus-related 
polychronous group. The timing of peaks over multiple neurons produces a spatiotemporal signature of group activation in 
response to the stimulus.
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classifier to select a particular response fingerprint over the 
alternate response fingerprints.

Computer Simulation
The code simulating the neural network is purpose-written 
for parallel processing in the CUDA (Compute Unified 
Device Architecture, NVIDIA, USA) extension to the C 
programming language and run on a computational server 
with eight NVIDIA Tesla K80 graphical processing units 
(Red Barn High Performance Computing, USA) with the 
Linux operating system (CentOS, USA). Graphing func-
tions and statistical analysis are performed with Matlab 
(Mathworks, USA).

Before being used in the memory experiments, each 
hippocampal network is simulated for 10 h of simulation 
time, receiving only random input, allowing stabilization 
of synaptic weights under the spike-timing–dependent 
plasticity rule. Input from the entorhinal cortical module 
is incorporated after the initial stabilization period. The 
remaining simulation time is divided into two distinct 
epochs (fig. 3). During the learning epoch, each pattern is 
presented sequentially to the network with a spacing of 2 s. 
Preliminary experiments determined the optimum duration 
of the learning epoch to be 120 s (see Results). At the com-
pletion of the learning epoch, no further changes in syn-
aptic weight are allowed and the recall epoch commences. 
The effect of propofol, if present, is simulated during the 
learning epoch. In experiments investigating the absence of 
theta, the entorhinal module was not present at any time 
during the simulation.

Each experiment is performed on 100 unique network 
instances. Aggregated data from these 100 simulations are 
described by the mean and SD, unless otherwise specified.

Results
At the start of the network simulation, cell firing activity 
approaches the frequency of the 1-Hz external excitatory input. 
During the subsequent 10 h, under the influence of synaptic 
plasticity responding to random input, synaptic weights distrib-
ute more or less uniformly, although around 15% of weights 
come to lie close to the defined maximum strength. While any 
given synaptic weight varies continuously during the simulation, 
by the 10-h time point, the aggregate behavior of the network 
has reached a steady state as measured by the distribution of syn-
aptic weights and the firing frequency of the neuronal subtypes.

We have previously shown, using methods based on ana-
tomical analysis of connection strengths, that more than 105 
polychronous neural groups form in a cortical network of 
identical size in the presence of synaptic plasticity responding 
to random input. For the current experiment, our detection 
method for polychronous groups is restricted to those groups 
linked to a particular stimulus. Nevertheless, during the recall 
epoch in the untrained network, we see evidence that some neu-
rons are strongly connected to member neurons of previously 
unseen patterns. This is to be expected given the proportion of 
synaptic weights that are close to maximum strength and the 
random nature of the excitatory input. The randomly formed 
stimulus-linked groups are not large, generally containing fewer 
than three neurons. Such findings are not inconsistent with 
previous experiments given that we only search for groups in a 
small subset of the range of possible polychronous groups.

Dynamics of Network Learning
In preliminary learning experiments, the duration of the 
learning epoch ranged from 20 to 200 s. With sequential pre-
sentation of the four patterns with a spacing of 2 s, the net-
work was exposed to each pattern between 2 and 25 times. A 

Fig. 3. After sufficient simulation time to allow stabilization of synaptic weights, the network is presented with four stimuli (pat-
terns A through D) comprising the same set of 200 neurons fired in differing orders during a 200-ms interval. During a 120-s 
learning epoch, the stimuli are presented sequentially with a spacing of 2 s. The γ-aminobutyric acid receptor type A potentiating 
effects of propofol, if present, are incorporated during this learning epoch. At the completion of learning, propofol effects are 
withdrawn, synaptic weights are frozen, and patterns A through D and a null pattern are serially presented to the network during 
a recall epoch to determine whether the spiking output data are consistent with polychronous group formation.
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metric of the extent to which a pattern is learned is the size of 
the stimulus-related polychronous group determined during 
the recall epoch. With only two presentations during learn-
ing, stimulus-related groups comprise 83 ± 21 neurons, while 
after a 120-s learning epoch, group sizes are 125 ± 33 neurons 
(fig. 4). Further lengthening of the learning epoch leads to 
only modest increases in group sizes, and so a duration of 
120 s is used for all subsequent experiments.

To eliminate the possibility that pattern learning increases 
synaptic strengths in a nonspecific manner for other pat-
terns, we conducted some experiments with single-pattern 
training. As expected, the polychronous group size associ-
ated with the learned pattern is equivalent to that seen dur-
ing four-pattern training. Reassuringly, when the unseen 
patterns were presented during recall, the stimulus-related 
polychronous group contained at most several neurons, 
much like the results seen with random input alone.

Polychronous Group Size
Potentiation of GABAA receptors during the learning epoch 
limits the formation of polychronous groups associated with 
each stimulus. At low propofol concentrations, group size 
reductions are only modest. At moderate propofol concentra-
tions, group size decreases by 69 ± 11% (fig. 5). The collapse 
in group formation at this concentration of propofol is also 
reflected by a 73 ± 10% reduction in spiking associated with 
representation of the stimulus. At the higher concentrations of 
propofol, polychronous group size decreases to levels equiva-
lent to those measured when the learning epoch is omitted.

Bayesian Classifier
To link stimulus-related polychronous group size to a 
quantitative measure of the memory function of our 

network, we implement a Bayesian classifier using proba-
bility scores for stimulus-related spiking calculated during 
the first part of the recall epoch. Under baseline condi-
tions, the classifier identifies which pattern (A through D 
or null) is being represented to the network with an accu-
racy approaching 100%. (Because the length of stimulus 
presentation was determined as described previously, we 
did not assess whether shorter learning times would affect 
results with the Bayesian classifier.) As shown in figure 3, 
propofol is applied during the learning epoch to model 
effects on memory formation during propofol treatment. 
Low doses of propofol have little effect on the accuracy of 
the classifier.

At 4 μM (0.63 μg · ml−1) propofol concentration, con-
current with substantial reductions in stimulus-related poly-
chronous group sizes, the classifier correctly identifies the 
represented pattern only 72 ± 13% of the time (fig. 6A). At 
high concentrations of propofol, the algorithm entirely loses 
the ability to recognize previously learned patterns. Examina-
tion of the association between polychronous group size and 
classifier accuracy across all propofol concentrations dem-
onstrates a direct relationship (fig.  6B) where the accuracy 
decreases substantially when group size is lowest and little fir-
ing information is present. Receiver operating characteristic 
analysis (fig. 6C) confirms the reliability of the classifier for 
propofol concentrations less than 10 μM (1.8 μg · ml−1), at 
which point significant false-positive contamination indicates 
a poor discriminating accuracy.

Fig. 4. Stimulus-related polychronous group (PNG) size (in 
neurons) is dependent on the duration of the learning epoch. 
The mean size of stimulus-related groups associated with pat-
terns A through D increases with longer duration of the learn-
ing epoch. SD for 100 trials is indicated by the shaded region.

Fig. 5. γ-Aminobutyric acid receptor type A receptor poten-
tiation reduces stimulus-related polychronous group (PNG) 
size. The mean size of stimulus-related groups associated 
with patterns A through D decreases as γ-aminobutyric acid 
receptor type A channel conductance and decay times in-
crease, consistent with the action of propofol at increasing 
plasma concentrations. SD for 100 trials is indicated by the 
correspondingly colored shaded region.
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Dynamics of Forgetting
In five network instances, we investigate the dynamics of 
forgetting by progressively increasing the time between the 
learning epoch and the recall epoch. During this interval, 
synaptic plasticity and random excitatory input continue to 
interact, and GABAA potentiation, if already present, is main-
tained. Under baseline conditions, the size of the stimulus-
related polychronous group decreases in an approximately 
linear fashion, with a 50% reduction at around 1,600 s after 
learning (fig. 7, A and B). At propofol concentrations of 4 
μM (0.63 μg · ml−1), the group size decreases much more 
rapidly, with a 62 ± 18% decline at 400 s postlearning, by 
which time the accuracy of the classifier is only 38 ± 14% 
(fig. 7C).

Theta Rhythm
Power spectral density plots of the simulated local field 
potential from combined hippocampal and entorhinal net-
works demonstrate the presence of a de novo theta rhythm 
with a frequency of around 6 Hz. Propofol concentrations 
up to 4 μM (0.63 μg · ml−1) increase theta frequency, while 
higher concentrations decrease the frequency of the oscilla-
tion (fig. 8A). To ascertain the contribution of theta to the 
memory functions of the network, the experiments were 
repeated absent the entorhinal cortical module at all propo-
fol concentrations. Power spectral density plots confirmed 
disappearance of theta. Despite this, there was no measur-
able effect on the size of stimulus-related groups (fig. 8B) or 
the accuracy of the Bayesian classifier (data not shown).

Fig. 6. (A) Performance of a Bayesian classifier in determining which pattern was presented to the network during the recall 
epoch based on the spiking output. The mean accuracy of the classifier in the identification of either patterns A through D (cyan) 
or the null pattern (red) decreases as γ-aminobutyric acid receptor type A channel potentiation increases, consistent with the ac-
tion of propofol at increasing plasma concentrations. At moderate concentrations of propofol, the classifier accuracy decreases 
to around 70% and completely loses the ability to reliably recognize previously learned patterns at plasma concentrations 
consistent with general anesthesia. SD for 100 trials is indicated by the correspondingly colored shaded regions. (B) Scatterplot 
demonstrating the relationship between polychronous group (PNG) size and classifier accuracy for all plasma propofol concen-
trations. The classifier fails when the group size decreases to less than 25% of baseline. (C) Receiver operating characteristic 
analysis demonstrates that at propofol concentrations (conc.) beyond 4 μM, increasing levels of false positives must be ac-
cepted to obtain positive identifications with high reliability.
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discussion
In this experiment, we studied a computational model of 
a hippocampal network. Critically, the model demonstrates 
the ability to learn and recall stimuli—capabilities that follow 
from the inclusion of important details including synaptic 
plasticity, realistic neuronal dynamics, and action of excit-
atory and inhibitory neurotransmitters. By examining spik-
ing output in response to a repeated stimulus, it was shown 
that the network forms large polychronous neural groups 
firing consistently at fixed times after stimulus presentation.

The effect of propofol on the network was simulated by 
increasing conductance and decay times of GABAA channels. 
At moderate propofol concentrations, GABAA facilitation 
reduced the size of stimulus-related polychronous groups 
by around 70% and reduced the number of neuronal spikes 
associated with a learned stimulus by a similar amount.

A Bayesian classifier was accurate in determining whether 
neural activity after a stimulus presentation was consistent 
with pattern A through D or the null pattern. Classifier 
accuracy is reduced to around 70% at moderate concentra-
tions of propofol and is completely unreliable when GABAA 
facilitation is consistent with high concentrations. Bayesian 
classifier performance is sensitive to the complexity of the 
categorization task. When only two patterns were to be dis-
criminated (data not shown), the classifier was accurate until 
tested in the presence of high propofol concentrations. Con-
versely, one might reasonably expect that a greater number of 
patterns than four will lead to further deterioration in classi-
fier accuracy at low concentrations of propofol.

Bayesian theories of brain function posit that the brain 
assigns a probability distribution to hypotheses that is 
then revised according to standard probabilistic rules of 

Fig. 7. The dynamics of forgetting are investigated in five network instances by progressively increasing the time between the 
learning epoch and the recall epoch. During this interval, synaptic plasticity and random excitatory input continue to interact 
and γ-aminobutyric acid receptor type A potentiation, if already present, is maintained. Mean size of the stimulus-related poly-
chronous group (PNG) associated with patterns A through D decreases with increasing time after the completion of learning, 
both in absolute terms (A) and as a percentage of the original group size measured immediately after learning (B). (C) The mean 
Bayesian classifier accuracy decreases in a corresponding manner. Increasing plasma propofol concentrations (conc.) reduce 
absolute group sizes and classifier accuracy while increasing the rate of decline in these metrics over time.
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inference.8,25,26 Such theories have enjoyed explanatory suc-
cess in the study of perception and motor control. There is 
still debate as to how such rules may be represented neurobi-
ologically and whether these theories are merely approximate 
descriptions of brain behavior.27,28

If the brain functions in the manner of a Bayesian classi-
fier with comparable accuracy to that implemented here, our 
results imply that GABAA facilitation at moderate propofol 
concentrations partially mediates the memory impairment 
that is observed clinically, at least for four pattern discrimi-
nation experiments. Here we consider four possibilities to 
explain the somewhat better accuracy of the classifier than 
one would expect at low propofol doses correlated with 
amnesia: (1) network components or neuronal types nec-
essary for pattern recognition may not have been included 
in the model and may be subject to propofol effects not 
considered here, (2) hippocampal GABAA receptors may 
interact differently than cortical receptors with propofol, (3) 
alterations of oscillatory patterns within the hippocampus 
may play an important role, and (4) testing for recall in our 
experiment occurs earlier than in clinical studies.

First, the Bayesian classifier essentially assumes that all 
information available in the spiking of representative neu-
ronal areas included in the model is available to other brain 
areas involved in the production of observable responses to 
stimuli, and that these areas function at uncompromised 
levels in the presence of the γ-aminobutyric acid–mediated 
agonist. This is quite unlikely; some degradation of the func-
tion of the classifier itself would need to be considered to 
obtain better agreement with the behavioral data.

GABAA receptors comprise a family of channels com-
posed of five subunits. Twenty-five percent of hippocampal 
GABAA receptors incorporate α5 subunits,29 whereas these 
subunits are sparsely expressed elsewhere in the brain.

The importance of α5-GABAA receptor modulation 
mediating etomidate-induced memory impairment is well 
established. The prevailing explanation stressed the impor-
tance of extrasynaptic α5-GABAA receptors in enhancement 
of tonic inhibition of pyramidal cells.30,31 More recent work2 
has demonstrated that tonic inhibition of pyramidal cells by 
etomidate is dissociable from long-term potentiation and 
that etomidate differentially enhances activity of α5-GABAA 
receptors on specific inhibitory hippocampal interneuronal 
subtypes. To explain the counterintuitive notion that inhibi-
tion of inhibitory cells prevents memory formation, it has 
been postulated that the particular interneurons targeted by 
etomidate are those that predominantly suppress activity of 
other interneurons.32

Less is known about the importance of α5-GABAA recep-
tors in propofol-induced memory impairment.33 The mea-
surements upon which we based our propofol parameters 
were obtained from patch clamp studies of GABAA receptors 
in hypothalamic neurons20 that would be unlikely to contain 
α5 given their origin. If the action of propofol on memory 
is also mediated by facilitation of hippocampal α5-GABAA 
receptors, our simulated propofol actions do not incorpo-
rate extrasynaptic receptor binding and may underestimate 
the aggregate effects of propofol binding on channel con-
ductance and decay time. This in turn could underestimate 
the effect of propofol on group formation and artifactually 

Fig. 8. (A) The influence of γ-aminobutyric acid receptor type A receptor potentiation on theta frequency. Theta frequency in-
creases at low plasma propofol concentrations and decreases at higher concentrations. The inset graph shows representative 
power spectrogram of local field potential at baseline. (B) The influence of theta rhythm on polychronous group size. Mean size 
of stimulus-related groups (in neurons) associated with a pattern in the absence (blue) or presence (red) of a theta oscillation 
originating from the entorhinal cortex. Removal of theta has a minimal effect on polychronous group sizes. SD for 100 trials is 
indicated by the correspondingly colored shaded regions. f = frequency (Hz).
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increase classifier accuracy. Clearly, further experiments are 
required to clarify the nature of the interaction between pro-
pofol and α5-GABAA receptors.

The model allowed exploration of the importance of the 
dynamic scenario proposed by Perouansky and Pearce.3 The 
combined hippocampal and entorhinal network spontane-
ously generates theta oscillations, the frequency of which is 
sensitive to changes in propofol concentration. While in vitro 
hippocampal preparations can generate theta rhythms,34 the 
dominant mechanism driving theta in awake behaving ani-
mals appears to derive from inputs to hippocampal neurons 
from pacemaker cells in the entorhinal cortex and medial 
septum.23,35,36 The structure of our hippocampal network 
does not reproduce all anatomical and cellular complexities 
of the hippocampus and associated structures. Thus it was 
unsurprising that absent the entorhinal module, power spec-
trograms of the local field potential from the hippocampal 
network demonstrate no spontaneous theta rhythmicity.

Removal of theta had no measurable effect on memory 
performance of the network at all propofol concentrations as 
determined by polychronous group size and classifier accu-
racy. This lack of difference indicates that changes in GABAA 
channel conductance and decay times have a substantially 
greater effect on memory formation than complete disrup-
tion of theta.

It is beyond the scope of this paper to explore whether 
subtler theta changes including alterations in amplitude, 
frequency, or coherence will influence memory impairment 
due to propofol. Computer modeling suggests that ketamine 
may disrupt theta modulation of the gamma rhythm,37 
directing another line of inquiry. While the importance of 
the dynamic scenario in memory impairment is still unclear, 
preliminary evidence from these experiments suggests at 
most a nondominant role.

Some of the discrepancy between our experimental clas-
sifier results and those reported clinically is accounted for 
by differences in the timing of the recall epoch.38 Unlike in 
clinical studies, we are not beholden to propofol’s pharma-
cokinetics and can test for recall immediately after learn-
ing. Polychronous groups in the network at baseline have 
a half-life in terms of size of around 1,600 s after learning, 
during which time the accuracy of the classifier drops from 
near 100% to around 93%. In the presence of a moderate 
propofol concentration, group size decreases by half within 
400 s, at which point the classifier accuracy is less than 40%. 
In clinical studies, to eliminate the effect of residual propo-
fol on recall, memory is tested at many minutes to hours 
after the learning tasks.38,39 Testing for immediate recall will 
underestimate the extent of memory impairment for a given 
propofol concentration when compared to the results of 
clinical studies with measurement conducted at later time 
points.

Here we presented a sequence of four patterns, while 
in a natural environment it is more likely that a single pat-
tern remains present for some time before being replaced by 

another. In our simulation protocol, synaptic changes occur-
ring in response to one pattern were constantly subject to 
partial disruption by the immediate presence of the follow-
ing pattern, thereby interfering with a more natural course 
of learning. The suggestion that oscillatory sharp waves and 
ripples occurring in the hippocampus may allow replay of 
temporally compressed memories provides a mechanistic 
bridge for the substantial repetition that may be required to 
achieve memory consolidation and recall.24,35

An alternate interpretation of our results may be afforded 
if we repudiate the concept of the Bayesian brain. The 
substantial reductions in stimulus-related polychronous 
group sizes that we see at propofol concentrations of 4 μM  
(0.63 μg · ml−1) are consistent with clinical memory impair-
ment, even though the Bayesian classifier remains partially 
accurate because it is able to extract categorical informa-
tion from the network by its detailed mathematical analysis, 
which is unlikely to be available to the real nervous system.

Still, we are left with the question of how to correlate 
reductions in group size with the clinical effects of propo-
fol. Even if the brain does not behave in a Bayesian manner, 
the use of a classifier for our spiking data provides a useful 
framework by which we can quantitate impairment in the 
memory function of our network.

Conclusions
We have studied a computational hippocampal network that 
is capable of learning, recalling and discriminating patterned 
stimuli. The substrate for the memory function of the net-
work is the polychronous group. When the balance between 
excitation and inhibition is shifted toward inhibition by sim-
ulating the effects of moderate propofol concentrations on 
GABAA channels, the size of neural groups associated with a 
stimulus diminishes substantially. Such a reduction in group 
size is correlated with a degradation in the ability of a Bayes-
ian classifier to discriminate learned patterns in the network’s 
spiking output.
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