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Sepsis: Extent of the Problem
Sepsis is a life-threatening syndrome resulting in shock and 
multiple organ dysfunction as a consequence of microbial 
infection.1 Both pathogen and host factors influence the clin-
ical presentation, severity, and ultimately patient outcome, 
including the nature and virulence of the microbial pathogen, 
which drives tissue invasion and toxin production, and the 
health status and comorbidities of the patient, which influ-
ence the host response. Patients frequently present with fever, 
shock, and dysfunction of one or more organs, including the 
lungs (acute respiratory distress syndrome), kidneys (acute 
kidney injury), brain (confusion, delirium, or coma), liver, 
and cardiovascular system (shock or myocardial dysfunction).

Infections of the lungs, abdominal cavity, urinary tract, 
and soft tissue constitute the most common sources of sep-
sis.2 Escherichia coli, Klebsiella spp, and Pseudomonas aeru-
ginosa constitute the dominant Gram-negative pathogens, 
whereas Staphylococcus aureus and Streptococcus pneumoniae 
are the most common Gram-positive pathogens isolated.3 
Recently, a global study of 14,000 critically ill patients found 
that 62% of isolates were Gram-negative, whereas 47% were 
Gram-positive and 19% were fungal.4 Fungal infections are 
an increasing source of severe sepsis, although in one third of 
cases the causative organism is not determined.

Sepsis exerts a significant socioeconomic impact and is now 
the leading cause of critical illness globally.5,6 In 2011, sepsis 

was responsible for more than $20 billion (5.2%) of hospital 
costs7 and a quarter of a million estimated deaths in the United 
States annually.8 The reported incidence of sepsis is increas-
ing,9,10 perhaps because of changing patient demographics, 
with advanced age, more comorbidities, impaired immunity, 
and increasing clinician diagnosis and recognition of sepsis all 
playing a role.11 Sepsis has an overall mortality of 40%8,12 and 
may cause half of all in-hospital deaths in the United States.13 
Furthermore, long-term follow-up studies demonstrate that 
sepsis survivors continue to have a higher mortality in the 5 yr 
after sepsis.14 In addition, survivors of sepsis endure long-term 
psychologic, cognitive, and physical impairments.15

Sepsis: Role of the Immune Response
The host immune response, specifically the loss of immune 
homeostasis induced by the pathogen, is of critical importance 
to the initiation, evolution, and outcome from sepsis (fig. 1).16 
Patients in the early phases (hours to days) of sepsis present with 
fever, shock, and multiorgan failure, as well as evidence of a 
hyperinflammatory innate immune response. Pathogen-associ-
ated molecular patterns, which originate from microorganisms, 
are specific molecular signatures recognized as foreign to the 
host, and they bind to pattern recognition receptors expressed 
on innate immune cells and initiate and drive this initial hyper-
inflammatory phase.17 Pattern recognition receptor activation 
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generates diverse proinflammatory molecule expression includ-
ing tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-2, 
IL-6, IL-8, and interferon (IFN)-γ, as well as antiinflammatory 
cytokines such as IL-10.18 This process is further driven by the 
release of damage-associated molecular patterns from injured 
tissues and cells.17 This exuberant production of proinflamma-
tory cytokines and other soluble mediators, coupled with the 
demonstration that injection of these mediators into animals 
could recapitulate some of the effects seen in sepsis, led to the 
concept of the “cytokine storm” as being responsible for early 
sepsis-related multiple organ failure and death.19 Key advances 
have occurred in the management of patients in the early phase 
of sepsis, with earlier recognition facilitating prompt broad-
spectrum antimicrobial therapy,20 aggressive source control,8 
and goal-directed resuscitation, all contributing to improved 
outcome and a reduction in mortality.

Patients surviving the early phases of sepsis regain immune 
homeostasis, clear their infection, and recover, or they transition 
into a protracted immunosuppressive phase where sepsis per-
sists16,21,22 (fig. 1). The proportion of patients who enter this later 
phase of sepsis is increasing, in part due to the advances in early 
supportive care reducing early deaths, as well as changes in the 
patient population, which is now older8 and has more comor-
bidities that render them immunosuppressed. Seventy percent 
of sepsis deaths now occur in this phase,16 which is characterized 
by opportunistic pathogen superinfections,23 latent viral reacti-
vation,24 and evidence for profound immunosuppression.21,25

Sepsis Management: Current State of the Art
Although fewer patients die in the early hyperinflamma-
tory phase of sepsis, the increasing numbers of people 

experiencing severe sepsis, coupled by the failure to improve 
outcomes from the later phases of sepsis, means that the 
mortality burden of sepsis continues to increase.5,6,8,12,13 
There are no therapies that directly modify the pathophysi-
ology and injury mechanisms underlying sepsis. The focus 
of research over the last four decades has been on suppress-
ing the early proinflammatory response to sepsis.19 To date, 
there have been more than 40 unsuccessful clinical trials 
of agents that reduce pathogen recognition and/or block 
proinflammatory cytokines and/or inflammation-signaling 
pathways.26,27

A number of important insights have emerged from 
these efforts to find a therapy for sepsis. First, the traditional 
paradigm of sepsis as a hyperinflammatory disorder that 
led to the testing of interventions to suppress the immune 
response is likely an oversimplification, as discussed above. 
Second, given the complexity of the host response to sepsis, 
inhibition of a single mediator, however important to the 
injury process, is unlikely to be effective. Third, the timing 
of therapeutic interventions may be important. Although 
steroids can attenuate the early inflammatory response, 
these drugs have been demonstrated to worsen later immune 
suppression and increase mortality.28 In contrast, encourag-
ing results have been reported from early-phase studies of 
immune stimulation strategies to reverse specific immune 
defects in late sepsis, such as administration of granulocyte 
macrophage colony stimulating factor29 and interferon-
β1a,30 suggesting that the optimal therapeutic approach may 
vary considerably depending on the stage of sepsis. Fourth, 
sepsis is a heterogeneous disease, and identification of sep-
sis subphenotypes or endotypes, as has been demonstrated 
recently for acute respiratory distress syndrome (ARDS),31 

Fig. 1. The adaptive and innate host immune responses to sepsis. Patients in the early phases of sepsis present with fever, 
shock, and multiorgan failure, as well as evidence of a hyperinflammatory innate immune response. Patients surviving this phase 
may recover or progress to a later phase of sepsis resulting in a more immunosuppressed profile, characterized by functional 
deficits of the immune system and by superinfection and poor outcome. Adapted and reprinted by permission from Macmillan 
Publishers Ltd: Hotchkiss et al.,16 Nature Review Immunology, copyright 2013.
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may allow for focusing of therapeutic interventions on spe-
cific sepsis subpopulations more likely to benefit.

An additional concern is the ongoing emergence of 
pathogens resistant to multiple antimicrobial therapies. 
Taken together with the failure to date of drug therapy trials, 
these concerns suggest a need to consider alternative thera-
peutic approaches, aimed at attenuating the proinflamma-
tory response while enhancing host immune function and 
tissue reparative capacity. Stem cells constitute an emerging 
therapeutic candidate that might meet these requirements 
and consequently are emerging as potential therapeutic 
agents for sepsis.

Stem Cells: Classification and Therapeutic 
Potential
Stem cells (regardless of age of donor or source tissue) are 
undifferentiated cells with the capacity to self-renew and/or 
generate more than one differentiated functional daughter 
cell type. There is a hierarchy of “stemness,” from pluripo-
tent cells to multipotent cells and to progenitor cells, where 
the capacity to differentiate into different cell lineages is pro-
gressively reduced. Hematopoietic stem cells used for treat-
ment of blood disorders, for example, are pluripotent cells 
that generate platelets, erythrocytes, and a wide variety of 
leukocyte types. Another important classification is in rela-
tion to their tissue source, that is, whether they are derived 
from embryonic or adult tissues and, in the latter case, which 
specific tissues they originate from. The cell type for which 
there is the most interest as a therapy for sepsis at present 
is mesenchymal stem/stromal cells (MSCs). These cells have 

multiple potential advantages, including their convenient 
isolation from multiple adult tissues and relatively easy cul-
ture expansion, which make them strong therapeutic candi-
dates in patients with sepsis. There are exciting preclinical 
data supporting their use, and early-phase clinical trials are 
in progress. Consequently, we focus on MSCs in this review.

Therapeutic Potential of MSCs for Sepsis
The therapeutic potential of MSCs for sepsis is supported 
by several factors. First, MSCs are relatively immune privi-
leged (low expression of cell-surface human leukocyte anti-
gen class I and II molecules), they do not induce a classical 
cytotoxic T cell (rejection) response, and they can there-
fore be used as an allogeneic therapy without the need for 
immunosuppression. Second, they modulate diverse aspects 
of the host immune response. Although trials of agents that 
directly inhibit aspects of the immune response to sepsis 
have been unsuccessful, MSCs exert a more complex profile 
of immune effects. Importantly, MSCs may reprogram the 
immune system to reduce host tissue damage while preserv-
ing the immune response to microorganisms. Third, MSCs 
may enhance tissue repair and restoration after sepsis,32–34 
restoring endothelial barrier function, mediated partly by 
secretion of factors that enhance resolution of tissue injury. 
Fourth, sepsis and septic shock frequently progress to dys-
function and failure of multiple organs. MSCs may decrease 
injury and/or restore function in diverse organs, including 
the liver, kidneys, heart, and lungs. Fifth, MSCs may directly 
enhance host bactericidal capacity by increasing macrophage 
bacterial phagocytosis and killing35 and increasing secretion 

Fig. 2. Factors secreted from mesenchymal stem/stromal cells (MSCs) of importance for reducing severity of pneumonia and 
systemic sepsis. Exo = exosomes; GM-CSF = granulocyte-macrophage colony stimulating factor; KGF = keratinocyte growth 
factor; LXA4 = lipoxin A4; Mf = macrophages; MIP2 = macrophage inflammatory protein 2; Mt = mitochondria; Mv = microvesi-
cles; PGE2 = prostaglandin E2; RvD1 = resolving D1; TNF = tumor necrosis factor.

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/127/6/1017/520317/20171200_0-00024.pdf by guest on 20 M
arch 2024



Copyright © 2017, the American Society of Anesthesiologists, Inc. Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Anesthesiology 2017; 127:1017-34	 1020	 Keane et al.

Stem Cell Therapies for Sepsis

of antimicrobial peptides.36 Sixth, MSCs are well studied in 
clinical trials, with a growing safety record in patients. Con-
cerns regarding the potential for long-term effects are miti-
gated by the fact that they disappear from the tissues within 
days of administration, although their effects often outlast 
their residence time in the tissues.

MSCs: Insights from Preclinical Sepsis 
Models

Pulmonary Sepsis
Initial studies demonstrated the potential for MSC therapy 
to decrease injury after pulmonary endotoxin instillation in 
murine models.37 This, and subsequent studies in this model, 
provided important mechanistic insights, elucidating the role 
of MSC-secreted mediators, including keratinocyte growth 
factor,38 TNF-α–induced protein-6, and lipoxin A439 in 
modulating the immune response to endotoxin (reducing 
TNF-α and macrophage inflammatory protein-2 and increas-
ing IL-10 concentrations) and in promoting injury resolution 
and repair. The MSC secretome and MSC-derived microves-
icles,40 as well as embryonic stem cell–derived MSCs,41 also 
effectively attenuated endotoxin-induced injury.40 Mito-
chondrial transfer from MSCs to the pulmonary epithelium 
appears important in reducing the severity of injury caused 
by pulmonary endotoxin instillation42 (fig. 2).

MSCs also demonstrate efficacy in relevant preclinical 
models of bacterial pneumonia (table 1) induced by Gram-
negative organisms such as Escherichia coli,43–45 Klebsiella 
pneumonia,46 and Pseudomonas aeuroginosa.47,48 In the early 
phases of lung sepsis, several groups including ours have 
shown that human MSCs derived from bone marrow and 
umbilical cord tissues reduce E. coli lung injury, decreasing 
lung bacterial load, enhancing lung function, and reducing 
mortality in rodent, murine, and ovine models.44,49–53 The 
potential for MSCs to attenuate pneumonia induced by 
Gram-positive organisms, including Staphylococcus aureus 
and Streptococcus pneumoniae, has also been demonstrated.48 
MSCs exert antimicrobial effects against methicillin-resis-
tant S. aureus in a rodent model of pouch infection54 and 
in an infected wound model55 and can directly inhibit the 
growth of S aureus.56 Microvesicles secreted by MSCs are 
also effective in attenuating bacterial pneumonia in mice 
via mechanisms including enhanced macrophage phagocy-
tosis, mediated in part through the expression of keratino-
cyte growth factor and cyclooxygenase-2 messenger RNA 
(mRNA) in the injured alveoli.53

Systemic Sepsis
MSCs demonstrate efficacy in several preclinical systemic 
sepsis models (table 2). MSCs from the bone marrow,41 adi-
pose tissue,57 and macrophages cocultured with adipose tis-
sue MSCs58 decreased systemic endotoxemia-induced lung 
injury, attenuated renal cell apoptosis, and decreased mul-
tiorgan injury in rodents. Bone marrow MSCs significantly 

reduced cytokine and chemokine (IL-1β, -6, -10, Chemo-
kine [C-C motif ] ligand-5 [CCL-5], and TNF-α) con-
centrations and improved survival after cecal ligation and 
puncture in mice, a key preclinical model of abdominal poly-
microbial sepsis.35,59 MSCs maintained their efficacy when 
administered 6 h after cecal ligation and puncture-induced 
polymicrobial sepsis in mice.35 Bone marrow MSCs attenu-
ated murine sepsis–induced kidney injury by decreasing 
the proinflammatory response and enhancing macrophage 
phagocytosis, with reductions in renal mRNA levels of IL-6, 
IL-17, TNF-α, IFN-γ, Chemokine (C-X-C motif ) ligand 
(CXCL)-1, CXCL-2, CXCL-5, CCL-2 and CCL-3.60,61 The 
effect was also seen in methicillin-resistant S. aureus sys-
temic infection, with reduced bacterial load and expression 
of cytokines and chemokines.54 In a genome-wide microar-
ray analysis of septic animals, MSCs decreased transcription 
of proinflammatory genes while increasing transcription of 
genes relating to tissue repair and endothelial integrity and 
maintaining transcriptional pathways responsible for cellular 
bioenergetics62 (fig. 3). MSCs can also reduce the cytokine 
response induced by Staphylococcal enterotoxin B in mice, 
although it did not increase survival in this model.63

Viral Infection
In vitro studies demonstrate that human MSCs exhibit anti-
viral effects, such as inhibition of virus-specific CD8+ T-cell 
proliferation,64 which is mediated through indoleamine 
2,3-dioxygenase secretion.64,65 MSCs did not attenuate mod-
erate66 or severe67 H1N1 (PR8 strain) influenza-induced lung 
injury in mice. In the study by Gotts et al.,66 MSCs mod-
estly reduced viral load but failed to reduce disruption of the 
alveolar–capillary barrier in mouse lungs and severity of lung 
injury. In contrast, MSC therapy attenuated H9N2 avian 
influenza virus–induced acute lung inflammation and injury 
in mice68 via reduction in TNF-α, IFN-γ, IL-1α, and IL-6, as 
well as an increase in IL-10. This suggests that the efficacy of 
MSCs for influenza may be strain dependent, although addi-
tional studies are needed to further understand these issues.

Immunomodulatory Effects of MSCs
MSCs exert multiple modulatory effects on diverse aspects 
of the immune response that are of direct relevance to their 
therapeutic potential for sepsis (fig.  3). In genome tran-
scriptional studies in murine systemic sepsis models, MSC 
therapy has been demonstrated to modulate transcription of 
up to 13% of the murine genome, with immune response–
related effects including the following: (1) down-regulation 
of toll-like receptor, nuclear factor-κB, and IL-6 signaling 
pathways; (2) up-regulation of nuclear factor of activated 
T cell–related genes; (3) up-regulation of genes involved in 
antigen presentation, phagocytosis, bacterial killing, com-
plement, and coagulation regulation including platelet acti-
vation; and (4) enhancement of genes involved in cell-to-cell 
interactions and in the regulation of endothelial integrity.35,62
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EDUCATION

Effects on Humoral Immune Response
Cytokines released from immune cells play key roles in the reg-
ulation of the host immune response. These intercellular mes-
sengers are the source of soluble regulatory signals that govern 
inflammatory responses to pathogens and tissue injury. Multiple 
studies demonstrate that MSCs decrease the proinflammatory 
cytokine response (TNF-α, IFN-γ, and IL-1α, -1β, -6, -12, 
and -17)35,37,57,60,69–79 while increasing concentrations of the 
antiinflammatory agents, including IL-1 receptor antagonist 
IL-10, cyclooxygenase-2, and prostaglandin E2.59,70,72,74,80,81

Effects on the Inflammasome
The inflammasome was first described by Martinon et al.82 in 
2002 and is a key component of the innate immune system. 
It is a multiprotein oligomer of pattern recognition recep-
tors and sensors that regulate the activation of caspase-1 and 
a subsequent inflammatory response to infectious microbes 

and molecules derived from the host innate immune system. 
Several variants exist, and much interest centers on their role 
in health and in a host of inflammatory disorders. These 
structures may be on the membrane surface of myeloid cells, 
for example, toll-like receptors and C-type lectin receptors, 
or inside the cytoplasm, for example, nucleotide-binding 
oligomerization domain-like receptors MSCs appear to 
regulate inflammatory function. Miao et al.81 showed that 
MSCs can regulate the NLRP3 inflammasome in Kupffer 
cells via secretion of prostaglandin E2, leading to increased 
Kupffer cell production of IL-10. This reduced inflamma-
some activation and reduces the inflammatory response and 
ensuing organ dysfunction.81

Effects on Neutrophil Response
Pathogen-associated molecular patterns, released from 
pathogens in infected tissue, bind to pattern recognition 

Fig. 3. Organ-wide mesenchymal stem/stromal cell (MSC) effect on immune cells. MSCs exert beneficial effects on organ sys-
tems through their interaction with cells of the innate and adaptive immune systems, subsequent controlled tissue inflammation, 
and vascular integrity. Enhanced endothelial repair, through mitochondrial transfer, allows for tissue inflammatory milieu gate-
keeping. M2-like macrophages enhance complement activation, increase microbe phagocytosis and clearance, and increase 
targeted neutrophil recruitment to injured tissue via CXCL2. Neutrophil extracellular traps release enhanced phagocytosis along 
with MSC-secreted antimicrobial peptides. The targeted control of microbial invasion is further influenced by inflammasome/
caspase-1 deactivation, downregulation of GRK2 and PI3K, reduced secretion of TNF-α and iNOS, and an increased regula-
tory T-lymphocyte presence. ECM = extracellular matrix; GRK2 = G protein–coupled receptor kinase 2; IL-10 = interleukin-10; 
iNOS = inducible nitric oxide synthase; KGF = keratinocyte growth factor; MSC = mesenchymal stem cell; NETS = neutrophil 
extracellular traps; NK = natural killer cell; PGE2 = prostaglandin-E2; PI3K = phosphatidylinositol-4,5-bisphosphate 3-kinase; 
TEM = transendothelial migration; Treg = regulatory T cell.
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receptors, initiating a cascade of events and generating che-
motactic (e.g., CXCL-2) and haplotactic gradients, which 
recruit activated neutrophils to the affected area. Neutro-
phils then attempt eradication of the offending microorgan-
ism via phagocytosis, the release of neutrophil extracellular 
traps, and the release of antimicrobial peptides.83 Neutro-
phil extracellular traps are structures released from neutro-
phils comprising a core of chromatin DNA and histones, 
surrounded by specific antimicrobial proteins (lactoferrin, 
cathepsin G, defensins, LL-37, and bacterial permeability 
increasing protein), proteases (neutrophil elastase, protein-
ase-3, and gelatinase), and reactive oxygen species–generat-
ing enzymes (myeloperoxidase).83 Neutrophil extracellular 
traps are extremely efficient in pathogen trapping, killing, 
and prevention of pathogen dissemination. This neutrophil 
response is generally advantageous and central to effective 
source control and pathogen eradication. However, when 
uncontrolled, such as in severe sepsis, activated neutrophils 
can migrate from inflamed tissues to other, noninfected tis-
sue and organ systems (termed reverse migration), causing 
widespread host injury and organ dysfunction, potentially 
culminating in multiorgan dysfunction syndrome.84,85 In 
severe ongoing sepsis, infected tissues may have inade-
quate or dysfunctional neutrophils that are insufficient for 
source control due to neutrophil C-X-C motif chemokine 
receptor-2 downregulation, whereas an abundance of acti-
vated neutrophils contribute to injury in distant, healthy 
tissue due to neutrophil C-C motif chemokine receptor 
upregulation.84,86,87

Multiple preclinical sepsis animal models demonstrate the 
potential for MSC therapy to alter neutrophil function to 
reduce host injury while maintaining bactericidal function.59,61 
MSCs reduce neutrophil infiltration into the lung, liver, gut, 
and kidney, reducing injury and improving organ function 
in preclinical sepsis models.35,59–61,88,89 MSCs also enhance 
neutrophil-mediated phagocytosis, making them more effec-
tive in the clearance of bacteria.61 Neutrophil depletion, using 
anti-Ly6G antibody, totally abolished the protective effect of 
MSCs in systemic sepsis,61 highlighting the pivotal MSC–
neutrophil interaction to the resolution of sepsis.

Effects on Monocyte/Macrophage Response
Macrophages are present in almost all tissues, where they 
coordinate developmental, metabolic, and immuno-
logic functions and thus contribute to the maintenance of 
homeostasis.90 Macrophage dysfunction plays a key role in 
the pathogenesis of multiple diseases,91 including sepsis, and 
therefore these cells represent attractive therapeutic targets.

Much work has focused on the potential for MSCs to 
modulate macrophage function and phenotype.49,92 Macro-
phages, on stimulation, become activated into one of two 
phenotypes, namely classically activated M1 macrophages 
that were considered proinflammatory and play a key role in 
phagocytosis and killing of pathogens, and alternately acti-
vated M2 macrophages, with a more prorepair/resolution 

phenotype, that contribute to clearance of dead/injured 
host cells and tissue repair. A key effect of MSCs on mac-
rophages may be their ability to favor development into an 
M2-like phenotype,44,49 with improved phagocytic activ-
ity and capacity for resolution of inflammation and injury 
repair.93 In a murine systemic sepsis model, MSCs secreted 
prostaglandin E2, which reprogrammed macrophages to the 
M2-like phenotype. Prostaglandin E2 increased macrophage 
production of IL-10, which reduced neutrophil transen-
dothelial migration and neutrophil-induced organ dam-
age and increased intravascular neutrophil and monocyte 
numbers, improving organ function and reducing pathogen 
load.35,49,59–61,70,72,73,88,89 MSCs can increase intravascular 
monocyte phagocytic potential via complement activation, 
increasing C5a levels, with subsequent CD11B up-regula-
tion, both crucial for effective pathogen clearance.49,94 They 
also have an ability to enhance macrophage phagocytosis via 
several mechanisms, including secreted factors such as kera-
tinocyte growth factor95 and mitochondrial transfer (from 
MSC to macrophage), either via direct cell–cell contact 
(via tunneling nanotubules) or indirectly (via exosomes).96 
MSCs attenuate lipopolysaccharide-induced macrophage 
apoptosis via inhibition of the Wnt/β-catenin pathway.97

Alteration of M1 macrophages to the M2 phenotype has 
been demonstrated to be important to injury resolution.98 
More recently, emerging data have observed a wider spec-
trum of macrophage phenotypes.91 It appears that macro-
phages are activated to a spectrum of phenotypes depending 
on macrophage origin, current tissue of residence, and 
whether exposed previously to the same insult,90 and acti-
vation patterns display an element of temporal and spatial 
plasticity. Consequently, the effects of MSCs on macrophage 
phenotype may vary considerably based on these factors.

Effects on Adaptive Immune Response
The impact of MSCs on the T-cell response during sepsis has 
received limited attention. If anything, the well-described 
suppressive actions of MSCs on T-cell effector pathways 
in, for example, transplant studies, have been considered 
a potential concern in sepsis.99 Specifically, MSCs inhibit 
effector T-cell activation and can increase regulatory T-cell 
numbers,71,100 while suppressing proliferation of CD4+ 
T-helper cells, CD8+ cytotoxic T lymphocytes, and natural 
killer cells.99,101–103 These effects may be direct or may occur 
indirectly via effects on dendritic cells and/or other antigen-
presenting cells.99

The potential for MSCs to modulate regulatory T-cell 
function is of particular interest in the setting of sepsis and 
deserves additional attention. Regulatory T cells are a sub-
population of T cells that modulate the immune system, 
maintaining self-antigen tolerance and preventing autoim-
mune disease. They are classically considered to constitute 
a double-edged sword in infection, limiting inflammation 
and host tissue injury potentially at the price of reduced 
bacterial clearance.104 Regulatory T cells appear to have 
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a role in suppressing the hyperinflammatory response to 
sepsis71 via suppression of the activation of autoreactive 
T effector cells.105 In contrast, in mice subjected to cecal 
ligation and puncture-induced sepsis, adoptive transfer of 
activated regulatory T cells enhanced bacterial clearance 
and increased animal survival,106 suggesting that the pres-
ence of regulatory T cells is essential to bacterial clearance 
and sepsis resolution.107 MSCs have been demonstrated to 
induce regulatory T-cell populations in multiple inflam-
matory models108–110 and during sepsis,71 potentially pro-
viding a mechanism by which MSCs may enhance sepsis 
resolution. MSCs may also modulate the activity of natu-
ral killer cells, alter dendritic cell differentiation,111 and 
regulate B-cell function via mechanisms that are not well 
understood.

Mechanisms by which MSCs Exert Their 
Effects
Although much of the early enthusiasm for stem cells as 
a therapy derived from the concept that these cells could 
(trans-)differentiate to replace injured cells, this has been 
clearly demonstrated not to be a core mechanism by which 
MSCs exert their effects. Instead, MSCs work by multiple 
mechanisms, some of which require contact between the 
MSC and the target cells, while others are mediated via 
secreted products, both mediators and cell products, such as 
microvesicles and exosomes (figs. 2 and 3).

Cell Contact-dependent Effects
Although MSC engraftment is not required for efficacy in 
preclinical sepsis models, it seems that migration of MSCs 
to the site of injury and their retention there, at least for 
a short period, is required for efficacy after intrapulmonary 
endotoxin instillation.112 In murine endotoxemic sepsis, Xu 
et al.113 found that MSCs reduced lung inflammation and 
injury via a direct cell-to-cell contact-dependent mecha-
nism. MSCs can bind to alveolar epithelial cells at connexin-
43–positive gap junctions and transfer cellular products, 
including mitochondria, to increase cellular ATP levels, 
reducing epithelial cell dysfunction and mortality.42

MSC Secretome
MSCs secrete multiple antimicrobial peptides, such as lipo-
calin-2,43 β-defensin-2,114 and LL-37.36,44 Other immu-
nomodulatory mediators in the MSC secretome include 
prostaglandin E2,59 transforming growth factor-β,115 indole-
amine 2,3-dioxygenase,116 IL-1 receptor antagonist,117 TNF-
α–induced protein-6,79 and IL-1037. MSC attenuation of 
cecal ligation and puncture sepsis is mediated in part via 
prostaglandin E2 secretion, which altered the host macro-
phage phenotype to an M2-like state.59 Endotoxin-induced 
stimulation of the toll-like receptor 4 expressed by the MSCs 
increases MCS production of prostaglandin E2 and cyclo-
oxygenase 2.

MSC-derived Extracellular Vesicles
MSCs also release subcellular particles, termed extracellu-
lar vesicles, which incorporate cellular components, includ-
ing mitochondria42 and gene products (i.e., mRNA and 
microRNAs).53 Two types of extracellular vesicles exist, 
namely microvesicles, which are in the 50- to 1000-nm 
range, and exosomes, which are in the 40- to 100-nm 
range. Microvesicles from MSCs decrease lung53 and kidney 
injury.118 These microvesicles decreased pulmonary edema, 
reduced the alveolar influx of neutrophils, and decreased 
alveolar macrophage inflammatory protein-2 concentrations 
after endotoxin-induced acute lung injury in mice,40 mainly 
through keratinocyte growth factor mRNA transferred to 
the injured alveolar epithelium. MSC-derived microvesi-
cles decreased murine E. coli–induced severe pneumonia.53 
MSC-derived exosomes exerted cardioprotective effects in 
polymicrobial sepsis through miR-223 transfer to cardio-
myocytes and to macrophages, reducing the inflammatory 
response and enhancing survival of recipient cells.119 More 
recently, human-induced pluripotent stem cell–derived 
MSC exosomes had significant hepatoprotective effects in a 
hepatocellular injury model secondary to a combination of 
inflammatory response suppression, oxidative stress amelio-
ration, and reduced apoptosis.120

Strategies to Enhance MSC Efficacy
MSCs are activated by inflammatory mediators (includ-
ing IFN-γ, IL-1β, and TNF-α) released from stimulated 
immune cells, potentially enhancing MSC function in sep-
sis.101 MSCs can also be modulated by toll-like receptor acti-
vators,121 which can polarize MSCs in vitro toward either 
a proinflammatory (MSC1) or antiinflammatory (MSC2) 
phenotype, depending on the specific receptor activator 
ligand.122 Activation of umbilical cord–derived MSCs with 
poly (I:C), a toll-like receptor-3 ligand, increased their effi-
cacy in murine cecal ligation and puncture-induced systemic 
sepsis via inhibition of microRNA-143, which increased 
MSC expression of cyclooxygenase-2, leading to increased 
prostaglandin E2 production and enhanced MSC effects on 
macrophage function.89

Overexpression of potentially therapeutic proteins is 
another strategy used to enhance MSC efficacy. MSCs over-
expressing angiopoietin 1 were more effective than naive 
MSCs in reducing endotoxin-induced alveolar inflammation 
and lung permeability.123 Several gene overexpression strat-
egies, using genes such as angiotensin-converting enzyme 
2,124 fibroblast growth factor 2,125 and keratinocyte growth 
factor,126 have been demonstrated to enhance MSC efficacy 
in attenuating endotoxin-induced lung injury. MSCs trans-
duced with E-prostanoid 2 receptor demonstrate enhanced 
homing to the injured lung, decreasing lung inflammation 
and reducing permeability.127 MSCs that overexpress the 
orphan receptor tyrosine kinase ROR2 further improved 
MSC-mediated protection against epithelial impairment in 
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ARDS.128 Although these studies demonstrate useful proof-
of-concept, additional studies in live bacterial models of pul-
monary and systemic sepsis, with greater characterization of 
the effects on the immune response, would greatly enhance 
the translational potential of these approaches.

Insights from Clinical Studies of MSC 
Therapy
Despite multiple clinical trials of MSCs in diverse disease con-
ditions, the evidence for therapeutic efficacy remains scant. An 
open-label phase I dose escalation trial for early septic shock, 
led by Drs McIntyre and Stewart at the University of Ottawa 
(Ottawa, Ontario, Canada), is due to publish preliminary 
results at the time of writing (table 3). The Cellular Immu-
notherapy for Septic Shock trial is a safety and dose escalation 
study of freshly cultured (i.e., not cryopreserved) allogeneic 
bone marrow MSCs for patients fulfilling clinical criteria for 
septic shock within 24 h of intensive care unit admission. MSC 
doses of 0.3- to 3.0-million cells per kilogram were used in the 
study. The investigators also enrolled a historical cohort that 
met study eligibility criteria to examine the adverse advents 
risk (NCT02421484). This key safety study will inform the 
design of larger-scale phase II septic shock trials that will 
determine the efficacy of MSCs for sepsis.

A pilot study for a randomized, interventional trial, assess-
ing the effect of MSCs on organ failure during septic shock, 
is due to commence enrollment in France (NCT02883803). 
A clinical trial of bone marrow MSCs recently concluded 
in Russia, which assessed neutropenic patients with septic 
shock (NCT01849237), demonstrated potentially promis-
ing results, although mortality was high in both groups.129 
Of relevance to sepsis, a phase I trial of MSCs in ARDS has 
been published,39 a phase II trial has recently completed in 
the United States (NCT02097641), and a second is in prog-
ress in the Republic of Korea (NCT02112500).

However, despite multiple clinical studies of MSCs for 
diverse disease processes, there are no large-scale clinical trials 
demonstrating efficacy of MSC therapy. The study of MSC 
therapy for graft-versus-host disease, an immunologic condi-
tion with parallels to sepsis, is instructive. MSC therapy has 
been investigated for the prevention130 and treatment131 of 
graft-versus-host disease for more than 15 yr, and it is licensed 
for clinical use in certain countries, yet the clinical efficacy 
and mechanisms of action remain unclear. In acute graft-
versus-host disease, ambiguity arose after failure of a phase 
III trial in the United States in 2009 (NCT00366145) to 
reach its clinical endpoint.132 This unexpected result contra-
dicted European literature, with several smaller positive phase 
II trials emerging contemporaneously.133–136 Much discussion 
has focused on potential dissimilarities between large-scale, 
industrial-produced MSCs (used in a U.S. phase III trial) and 
smaller-scale MSC production in academic centers used in 
phase II trials, as a potential explanation for the contrasting 
trial results.137 Issues such as MSC donor variation, cell expan-
sion techniques, immunogenicity of transfused products, and Ta
b
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cryopreservation techniques are all challenges to large-scale 
MSC production. Currently, a number of graft-versus-host 
disease trials using MSCs have either recently completed 
(NCT01222039) or are currently enrolling (NCT01765634 
and NCT01765660) to address these issues.

Other clinical trials that have not proven clinical efficacy 
include a trial of autologous MSCs in patients with myocar-
dial ischemia138 and a trial of allogeneic MSCs in patients 
with chronic obstructive airways disease.139 These trials high-
light potential translational challenges that lie ahead with 
regard to MSC therapy for sepsis.

Challenges to Clinical Translation of MSCs 
for Sepsis
Considerable barriers and knowledge gaps exist that signifi-
cantly impede the clinical translation of MSCs for patients 
with sepsis. These issues will need to be better understood to 
enhance the likelihood of successful clinical efficacy studies. 
These challenges can be divided into those that relate MSCs 
as a therapy and that relate to sepsis as a disease target.

Challenges Relating to MSCs as a Therapy

Heterogeneity of MSC Populations
There is no single marker or characteristic that identifies a 
cell as an MSC. The International Society for Cell and Gene 
Therapy (Vancouver, British Columbia, Canada) first defined 
MSCs for cellular therapy in 2006 based on the presence of 
three specific criteria, namely: (1) adherence to plastic; (2) 
the expression of, or lack thereof, certain surface molecules; 
and (3) their capacity for differentiation.140 Even if MSCs are 
sorted by consensus positive and negative surface markers, 
the resulting population is functionally heterogeneous.141 
Consequently, MSC preparations produced by different cell-
manufacturing facilities may differ in subtle but important 
ways, meaning that effects seen with one particular MSC 
product may not be seen with another, increasing the risk of 
therapeutic heterogeneity and failure of clinical translation. 
A more specific and robust approach to defining an MSC is 
imperative to reduce this heterogeneity.142,143

Clonal derivation of MSCs has been described and may 
yield a more homogenous MSC population for subsequent 
expansion.144 Another approach to decrease MSC heteroge-
neity may be to generate them from homogenous popula-
tions of induced pluripotent stem cells.145 Proof of concept 
for this approach has been demonstrated, with induced plu-
ripotent stem cell–derived MSCs demonstrating comparable 
efficacy to bone marrow–derived cells in preclinical models 
of corneal injury.146

MSC Quality Assurance Issues Challenges
An advantage of MSCs as a therapy is their ease of passage 
and culture in vitro. However, this brings challenges, includ-
ing the risk that repeated passaging can alter the MSC pheno-
type, ultimately resulting in reduced therapeutic efficacy.147 

Repeated in vitro cellular passage can result in chromosomal 
damage, telomere shortening, and even malignant transfor-
mation.148 MSCs that have undergone cryopreservation and 
storage (generally used in clinical studies) may be less effec-
tive than fresh MSCs (used generally in preclinical studies), 
and this may explain inconsistencies in results between clini-
cal and preclinical studies.149 Optimizing cryopreservation 
strategies for MSCs that maintain cell viability, potency, and 
efficacy is an important translational challenge. The criteria 
for the selection of donors for the establishment of master 
cell banks, which are then used to manufacture the MSC 
batches for clinical use and release criteria for the release of 
cell batches for clinical use are specified by regulatory agen-
cies such as the U.S. Food and Drug Administration. Com-
pliance with these criteria is a key issue in ensuring that cells 
of the highest quality are used in the clinical setting.

Optimal MSC Tissue Source
MSCs can be isolated from many tissues and organs. The 
bone marrow remains the standard tissue source of MSCs, 
and most preclinical and early-phase clinical sepsis studies 
use bone marrow MSCs. Other, potentially more plentiful 
sources of MSCs, including the umbilical cord and adipose 
tissues, are receiving increasing attention as potentially more 
feasible sources of cells for clinical use. Umbilical cords have 
the additional advantage of being a plentiful source; they are 
a waste biologic product and donor heterogeneity is reduced. 
Menstrual-derived MSCs, when combined with antibiotic 
therapy, synergistically improved the survival rate in mouse 
cecal ligation and puncture-induced sepsis, enhancing bacte-
rial clearance and reducing organ injury.150

Interestingly, with regard to sepsis, there appears to be dif-
ferential immunomodulatory effects of MSCs derived from 
differing tissues. MSCs derived from the Wharton’s jelly of 
the umbilical cord attenuated increases in proinflammatory 
cytokines IL-1α, IL-6, and IFN-γ but did not modulate the 
response of antiinflammatory cytokines IL-4 and IL-10 in 
rats with cecal ligation and puncture-induced polymicrobial 
sepsis.73 Mouse adipose tissue MSCs protected mice from P. 
aeruginosa pulmonary infection by reducing lung bacterial 
load, neutrophil, and macrophage inflammatory protein-2 
levels.47 Adipose tissue MSCs also enhanced the phagocytic 
and bactericidal abilities of mouse bone marrow–derived 
macrophages in vitro by inhibiting prostaglandin E2 signal-
ing.47 Interestingly, it was observed that when prostaglandin 
E2 was administered to adipose tissue MSCs, their protec-
tive effects were negated.47 This contrasts with those effects 
observed with mouse bone marrow MSCs. Previous stud-
ies have suggested that bone marrow MSCs release prosta-
glandin E2, which enhances phagocytic ability and bacterial 
clearance by macrophages and stimulates them to release 
antiinflammatory IL-10.59,151 These differential immu-
nomodulatory effects of MSCs, depending on their tissue 
source, may be important to consider when determining the 
optimal MSC for clinical testing.
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Mechanisms of Action Relevant to Sepsis
The roles and relevance of the different mechanisms of 
action of MSCs in sepsis remain incompletely understood. 
Specifically, we need to better understand which MSC 
mechanisms of action are most relevant to sepsis and to 
develop strategies to enhance these effects. The most rel-
evant MSC effects will likely differ based on the etiology, 
source, and phase of sepsis, highlighting the need to better 
characterize the biology of sepsis. Multiple secreted prod-
ucts, including prostaglandin E2,59 keratinocyte growth fac-
tor,53 and LL-37,36 exert therapeutic effects in preclinical 
sepsis models. Other potentially important effects are cell 
contact dependent, such as alteration of macrophage phe-
notype and phagocytic capacity. MSC-derived microvesicles 
play an important role via mechanisms involving transfer of 
mitochondria and nucleic acids.53 The injury microenviron-
ment may further modulate MSC behavior.152 Evaluating 
the relative importance in sepsis of these diverse mecha-
nisms of action will be important for maximizing the thera-
peutic efficacy of MSCs for sepsis.

MSC Dose and Timing
The majority of preclinical studies have used intravenous cell 
delivery. Local or regional cell delivery, for example, intra-
peritoneal for abdominal sepsis or intrapulmonary for pneu-
monia, is a feasible alternative option that may minimize 
systemic effects. However, the best dose and dosing regimen 
for MSCs in patients with sepsis are not known. Extrapola-
tion from preclinical studies or from human studies for other 
conditions may be of limited relevance to patients with sep-
sis. The Cellular Immunotherapy for Septic Shock phase I 
study in sepsis is testing the safety of doses up to 3 million 
cells per kilogram. The optimal dose of MSCs may differ sub-
stantially in different disease states. The effect of factors such 
as the stage of illness, type of MSCs, route of cell delivery, 
viability and purity of MSCs, and condition of the patient, 
are all poorly understood. The timing of MSC therapy is also 
relevant, with preclinical studies to date generally focused 
on early MSC delivery. Characterization of MSC efficacy in 
later-phase sepsis, which is characterized by immune sup-
pression, is a priority. The safety of repeated doses remains 
to be determined, with evidence to suggest that repeated 
administration does elicit an immune response.153

MSC Safety Concerns
Although there is considerable experience in administering 
MSCs to patients, sepsis presents a number of safety concerns. 
Infusional toxicity is a concern during intravenous adminis-
tration due to the risk of MSC clumping into microemboli 
that could obstruct the pulmonary circulation. Encouragingly, 
no infusional toxicities were seen in patients with ARDS in a 
recent phase I dose escalation clinical study.39 In the longer 
term, MSCs could potentially enhance tumorigenesis either 
by direct malignant transformation of MSCs or indirectly by 
facilitating growth of other tumor cells. Reassuringly, increased 

tumorigenesis has not been reported in the more than 6,000 
patients who have received MSCs in clinical trials to date.154

Challenges Relating to Sepsis

Population Heterogeneity
Sepsis is not a disease but rather a syndrome defined by a 
set of consensus clinical criteria that lump together patients 
who vary considerably in terms of their underlying biology, 
the source and nature of the inciting agent(s) and the host 
response, and a varying severity of illness. Some patients ful-
filling clinical criteria for sepsis will not have a pathogen as 
the underlying inciting agent. The sepsis diagnostic criteria 
are useful in enabling rapid identification and early resuscita-
tion and organ support of severely ill patients with sepsis. In 
addition, patients in different phases of sepsis may respond 
very differently to a therapeutic intervention. Consequently, 
this heterogeneity constitutes an impediment in identify-
ing effective therapeutic strategies, especially where these 
strategies may have potentially harmful as well as beneficial 
effects.155 This heterogeneity of treatment effect may explain 
some negative trials in sepsis to date, whereby a treatment 
may have benefit in a particular patient subset, for example, 
severe sepsis with organ failure, but be ineffective or even 
harmful to patients with less severe sepsis.

It is very unlikely that MSC therapy will be useful in 
all patients with sepsis. Identification of patient subgroups 
within the population with sepsis that are more likely to 
respond to MSC therapy, and testing MSCs in these patient 
groups, will be necessary. In this regard, the identification 
of subphenotypes or endotypes within the sepsis popula-
tion, as has been done in patients with ARDS by Calfee et 
al.,31 would be a key advance. A related approach, termed 
theranostics, involves identifying biomarkers of therapeutic 
responsiveness. Man et al.156 used this approach to identify 
potential subgroups of patients in the trial of Drotrecogin 
Alfa (Activated) in Adults with Septic Shock (PROWESS-
SHOCK) that may have benefited from activated protein-
C therapy.157 Similarly, Wong et al.158 identified a pediatric 
septic shock subgroup that had a higher mortality from 
corticosteroid administration. Based on our current elucida-
tion of the biologic effects of MSCs, therapy might be more 
likely to be effective in patients with a hyperinflammatory 
phenotype.

Conclusions
Preclinical studies have demonstrated the therapeutic poten-
tial of MSCs for sepsis. The mechanisms of action of MSCs 
are increasingly well characterized and include modulation of 
the immune response, reduction of host injury from the pro-
inflammatory response while augmenting bacterial clearance 
by indirect and direct mechanisms of action, and enhanced 
resolution of inflammation and enhanced tissue repair after 
injury. Although we await evidence of MSC benefit in 
patients with sepsis, phase I to II studies are underway, and 
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initial reports are encouraging. However, significant hurdles 
still exist, both in terms of MSCs as a therapy and sepsis as 
a therapeutic target, which need to be overcome if the thera-
peutic potential of MSCs is to be realized. Addressing these 
ongoing knowledge gaps will help us to fully harness the ther-
apeutic promise of MSCs for our patients with sepsis.
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A “Dopeless” Diamond Belied Koca Nola’s Cocaine-laced Content

Because it had been widely used in soft drinks in the 1890s, cocaine gained rapid acceptance as a local anesthetic. In 1904 
Thomas H. Austin founded the Koca Nola Company, a soft-drink firm that produced copycat cocaine-laced beverages in 
Atlanta, the hometown of the largest cola company in the world at that time. By 1907 the Koca Nola diamond logo (above) 
had been trademarked. On the diamond, Koca Nola is touted as “The Great Tonic” that is not only “Delicious” but “Dopeless.” 
Unfortunately for the beverage company, federal chemists isolated cocaine in a jug of their Koca Nola. Consequently, in 
March of 1910, the United States Department of Agriculture published its “Notice of Judgment” that Koca Nola had violated 
the 1906 Food and Drugs Act by “Adulteration and Misbranding” its beverage, which, yes, still contained cocaine. Although 
its logo was “dopeless,” apparently Koca Nola was not. Bankrupt by 1910, the Koca Nola Company did not completely 
disappear until 8 yr later. (Copyright © the American Society of Anesthesiologists’ Wood Library-Museum of Anesthesiology.)
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