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binding, gating, desensitization, and/or membrane regula-
tion of the GABAAR.

Our manuscript demonstrates that flumazenil robustly 
inhibits the enhancement of GABA-mediated current by 
isoflurane. However, in isolation, our work is insufficient to 
ascribe a precise mechanism of action, and we accept Dr. 
Raines’s assertion that the antagonism may not be competi-
tive. By the same token, however, from the dataset provided, 
it is not possible to confidently say that flumazenil is a non-
competitive antagonist. Nor is it possible to say at which 
site(s) flumazenil is acting. The intrinsic efficacy we demon-
strate suggests that it is also a partial agonist. So, without a 
battery of new pharmacology experiments, we are in agree-
ment that (1) the sites and mechanisms of flumazenil action 
are far from well understood and (2) the status of flumazenil 
as a simple benzodiazepine competitive antagonist should be 
called into question.

During the construction of the published version of this 
manuscript, the electroencephalogram and behavioral results 
were emphasized, and some of the pharmacologic descrip-
tions were eliminated or simplified. Early versions of the 
manuscript described flumazenil as a “negative allosteric 
modulator of the GABAAR at site(s) unknown.” However, 
this wording is vague and imprecise. We decided it would 
be most appropriate to use similar wording to that in our 
human studies in this area.3 We look forward to following 
the work of others in this area to improve the collective 
knowledge of GABAAR pharmacology as applied to general 
anesthesia.

We also thank Drs. Petrenko and Baba for their interest 
in our work from a respiratory physiology perspective. In 
their letter, they raise the possibility that the influence of flu-
mazenil on emergence from isoflurane anesthesia observed 
in our rodent model may not be entirely mediated by the 
neurophysiologic changes observed in cortical neurons but 
could be, in part, influenced by an effect of flumazenil on 
brainstem nuclei controlling respiration.

As evidence for influence of this alternative mecha-
nism, they provide references to work in the awake rat that 
demonstrates respiratory changes when traditional GABA 
agonists7 and antagonists8 are applied by microdialysis to 
the retrotrapezoid nucleus in the ventral medulla. As dis-
cussed above, flumazenil does not affect the GABAAR like 
the traditional agonists/antagonists, i.e., muscimol and 
bicuculline. We are aware that GABA, in combination 
with adenosine, glutamate, and other neurotransmitters, 
is involved in regulating breathing in the retrotrapezoid 
nucleus, as well as other structures in the ventral respira-
tory group, and that a complex interplay exists between 
the ventral respiratory group and higher order structures 
(e.g., pons, hypothalamus, and cortex).9 For this reason, 
we carefully considered an influence of respiration on our 
results. Before initiation of our study, we performed a small 
(n = 6) pilot study on rats under near-identical conditions, 
and blood-gas measurements from these animals revealed 
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Our study1 was primarily motivated by commonly 
encountered clinical scenarios, and our conclusions focused 
on network and in vivo actions of the combination of flu-
mazenil in the setting of decreasing isoflurane concentra-
tion. While we are confident in concluding that flumazenil 
modulates emergence in rodents, there are insufficient data 
to completely describe the range of pharmacologic interac-
tions between flumazenil and γ-aminobutyric acid (GABA) 
type A receptors (GABAARs), including site-specific interac-
tions. Our demonstration of “antagonistic activity” by flu-
mazenil on GABAARs in heterologous expression systems 
in the presence and absence of coapplied isoflurane mainly 
served to emphasize a GABA-mediated effect of flumazenil 
and isoflurane.

Based on our previous work2,3 and that of several other 
successful laboratories4–6 focused on GABA pharmacology, 
we are forced to constantly reevaluate the biophysical rela-
tionships of these compounds with the GABAAR. We still 
struggle with a comprehensive understanding of moiety-spe-
cific interactions with regard to the effects of flumazenil on 
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physiologically normal blood acidity (pH = 7.398) and 
slightly elevated partial pressure of carbon dioxide (48.6) 
at the end of the isoflurane anesthetic exposure. This can 
be sufficiently explained by the reduced respiratory rate 
of rodents under isoflurane anesthesia (1.2 to 2%). Our 
results are consistent with those of other investigators,10 
who reported that rodents at this concentration of iso-
flurane respire more slowly (60 to 100 breaths/min). The 
respirations are consistently observable as profound chest/
abdominal excursions, and our anecdotal observation is 
that the rodents are breathing at normal (or slightly larger) 
tidal volumes while anesthetized with isoflurane. This 
assumption is supported by the near-normal blood gas 
measurements in our pilot studies. Upon administration 
of flumazenil, we did not observe any apparent differences 
in chest excursion. We carefully measured respiratory rate 
in our experiments, as tidal volume would have been very 
difficult to measure in our setup while maintaining the rel-
evance to the clinical situation of emergence in the oper-
ating room. Furthermore, adding an additional invasive 
procedure such as blood gas measurements via intracardiac 
blood sampling would invalidate our behavioral measure-
ments of emergence.

Drs. Petrenko and Baba also provide references to human 
studies involving reversal of midazolam with flumazenil. As 
we did not use midazolam in our study, we find the effects of 
flumazenil on midazolam-induced respiratory changes irrel-
evant to our findings.

We are very familiar with the work by Dr. Solt’s research 
group on the pharmacology of active emergence11–13 and 
applaud their elegant demonstration of immediate transitions 
to arousal during steady-state administration of low-dose 
anesthesia.13 Our study aimed to more closely reproduce, 
in a reductive setting, the clinical conditions under which 
flumazenil may be used as a reversal agent. For this reason, 
we purposefully chose to characterize behavioral endpoints 
during the decrease of anesthetic concentration that occurs 
after cessation of general anesthesia. Although this approach 
cannot determine the actual anesthetic concentration at 
which the transition to arousal takes place, it more closely 
mirrors the clinical situation, where a variety of factors (e.g., 
auditory stimulation, postsurgical pain, and individual het-
erogeneity in anesthetic sensitivity) influence the transition 
from unconsciousness to arousal. We agree that replicating 
our experiments in conditions of steady-state, low-dose iso-
flurane anesthesia could provide interesting results and will 
take that under consideration as we investigate the molecular 
mechanisms of flumazenil in greater detail.

Overall, we are pleased that Drs. Petrenko and Baba agree 
with the practical implications of our work. They suggest 
that flumazenil could be a valuable tool to facilitate recovery 
in clinical situations. Despite their concerns about the possi-
ble effects of flumazenil on respiration, we conclude that it is 
unlikely that the modulation of emergence by flumazenil is 
driven by changes in respiration, and that any minor effects 

of flumazenil on GABA signaling in the respiratory circuits 
were noncontributory in our study.
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