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O ptimization of oxygenation to prevent tissue 
hypoxia is one of the cornerstones of critical care. Con-

currently, in the majority of patients admitted to the intensive 
care unit (ICU), inflammatory processes take place, which 
may affect outcome. As hypoxia and immunity are highly 
interdependent at molecular, cellular, and clinical levels, 
immunologic effects of hypoxia may represent therapeutic 
targets in critically ill patients. At the cellular level, hypoxia 
activates distinct hypoxia-signaling pathways, including a 
group of transcription factors known as hypoxia-inducible 
factors and adenosine signaling. In vitro and animal studies 
have shown that these pathways are involved in modulation 
of inflammatory responses, and animal studies have demon-
strated that these pathways are relevant to inflammatory con-
ditions that are frequently encountered in critically ill patients, 
such as sepsis1,2 and lung injury.3,4 In addition, inflammatory 
conditions are frequently characterized by tissue hypoxia due 
to enhanced metabolic demand as well as decreased metabolic 
substrates resulting from edema, microthrombi, and atelecta-
sis, in turn causing “inflammatory hypoxia.”5,6 As such, aim-
ing for specific tissue oxygenation levels could be favorable in 
a range of inflammatory conditions in critically ill patients. 
Alternatively, these effects may also be achieved with pharma-
cologic interventions targeting hypoxia-signaling pathways.

In the current review, we provide an overview of the 
immunologic consequences of hypoxia. We focus on in vitro, 
animal, and human studies concerning inflammatory condi-
tions relevant to critically ill patients, including a discussion 
of oxygen-dependent signaling pathways and intermediate 
signaling systems (e.g., the hypoxia-inducible factor [HIF] 
system and adenosine metabolism).2,7 Furthermore, we dis-
cuss the clinical potential of intervening in these mechanisms, 
including evidence on potential drawbacks of hyperoxia, fea-
sibility of therapeutic permissive hypoxia, and pharmacologic 
therapies that act on oxygen-dependent pathways. The role of 
hypoxia and HIFs outside the scope of inflammatory condi-
tions in critically ill patients is reviewed elsewhere.2,7–9

Immunologic Effects of Hypoxia
Evidence for immunologic effects of hypoxia has mainly 
been established in in vitro studies using myeloid cells 
(table 1).10–12 Long-term hypoxia has been shown to repre-
sent an inflammatory stimulus in itself, as prolonged hypoxia 
results in production of cytokines in a human macrophage 
cell line.14 In addition, hypoxia increases the production of 
proinflammatory cytokines upon stimulation with the tox-
ins lipopolysaccharide or phytohemagglutinin in primary 
human mononuclear cells.13,15 In contrast, other studies 
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have demonstrated that hypoxia skews the proinflamma-
tory character (M1-like) of macrophages toward an anti-
inflammatory M2-like phenotype.18,19 In addition to these 
contradictory findings, these in vitro studies are difficult to 
interpret, as the control condition is usually room air, which 
has a higher Pao2 compared to physiologic tissue Pao2. Nev-
ertheless, these in vitro studies demonstrate that oxygenation 
exerts immunologic effects, although the direction of this 
response may depend on the cell type and activation state.

Healthy volunteers subjected to hypoxia in vivo display 
enhanced ex vivo neutrophil chemotaxis, phagocytosis, and 
reactive oxygen species production24 and increased activity 
of the key inflammatory transcription factor nuclear factor 
of kappa-light-chain-enhancer of activated B cells (NF-κB) 
in monocytes.25 Furthermore, exposure of healthy subjects 
to high-altitude hypoxia (arterial oxygen saturation [Sao2], 
75 to 90%) for 4 days results in increased plasma levels of the 
proinflammatory interleukin-6,21,22 while shorter periods of 
hypoxia do not induce such systemic responses17,23 (table 1). 
Taken together, in vivo, prolonged hypoxia increases inflam-
matory responses of myeloid cells ex vivo and elicits a sys-
temic immune response.

Concerning the underlying mechanisms, hypoxia in vitro 
induces an expansive cascade of cellular processes, regulated 
by oxygen-sensitive pathways consisting of prolyl hydroxy-
lases (PHDs), the transcription factors HIFs and NF-κB, 
adenosine signaling pathways, and other oxygen-sensitive 
processes. These cellular mechanisms provide adaptation 
toward conditions of limited oxygen availability, and each 
pathway contributes in different ways to the immunologic 
effects of hypoxia. This may explain why hypoxia causes 
both pro- and antiinflammatory, as well as tissue-protective 
effects, as further detailed below.

Regulation of HIF-1α
HIFs represent a group of transcription factors that mediate 
a plethora of cellular adaptations in response to hypoxia.26 
HIFs are heterodimers consisting of HIF-β and one of the 
three oxygen-dependent transcriptionally active α sub-
units: HIF-1α, HIF-2α, and HIF-3α, of which HIF-1α is 
the most widely studied isoform. The cellular mechanisms 
responsible for the regulation of HIF-1α protein stabiliza-
tion and signaling under normoxic, hypoxic, and inflam-
matory conditions are detailed in figure 1. Under normoxic 
conditions, the oxygen-dependent PHD-1, PHD2, and 
PHD3 and the asparaginyl-hydroxylase factor–inhibiting 
HIF (FIH) hydroxylate HIF-1α, after which hydroxylated 
HIF-1α binds to the Von Hippel–Lindau complex. Binding 
of HIFs to Von Hippel–Lindau ultimately results in ubiqui-
tination and degradation in the proteasome. Under hypoxic 
conditions, the oxygen-dependent hydroxylases are inactive, 
which prevents degradation of HIF-1α. As such, hypoxia 
regulates HIF-1α in a posttranslational manner. A second, 
oxygen-independent, posttranslational mechanism of HIF-
1α regulation involves heat shock protein (HSP) 90. HSPs 

are key players in the response to cellular stress, functioning 
as chaperone proteins that facilitate conformation, localiza-
tion, and function of a diversity of proteins. HSP90 blocks 
the oxygen-independent degradation of HIF-1α and thereby 
results in stabilization of HIF-1α.27–29 Furthermore, HSP90 
binding to HIF-1α facilitates coupling with HIFβ and sub-
sequent transactivation.29

Finally, the transcription and translation of HIF-1α are 
increased by inflammatory stimuli. Therefore, hypoxia, cel-
lular stress, and inflammation (synergistically) enhance HIF-
1α stabilization.2,7

HIF-1α stabilization facilitates transcription of more than 
100 hypoxia-responsive genes,30 many of which result in 
hypoxia adaptation, e.g., erythropoietin and vascular endo-
thelial growth factor.31 Although the autoregulatory system 
of HIF-1α has not been fully elucidated, there appears to be 
a negative feedback system.32 In vitro, hypoxia induces HIF-
1α expression in a dose-dependent fashion, but prolonged 
hypoxia results in down-regulation of HIF-1α, mediated by 
a micro-RNA, which targets HIF (aHIF), of which levels 
increase over time under hypoxic conditions.33 In contrast to 
in vitro data, where hypoxia has only been shown to prevent 
HIF-1α degradation, hypoxia in vivo stimulates transcrip-
tion of HIF-1α, followed by a decrease to baseline levels, 
possibly resulting from the aHIF-mediated negative feed-
back.34 Human studies revealed a large interindividual vari-
ability in leukocyte HIF-1α expression35 and downstream 
target gene expression36 in response to hypoxia, implicating 
phenotypical differences in HIF regulation.

Involvement of HIF-1α and Adenosine 
Signaling in the Immunologic Effects of 
Hypoxia

The Molecular Interplay among Hypoxia, HIFs, and NF-κB

The regulation of HIF-1α and NF-κB, the latter consid-
ered the master regulator of inflammatory responses, is 
highly intertwined.37,38 In the inactivated state, NF-κB is 
bound to the inhibitory protein IκBα in the cytosol. Not 
only inflammatory stimuli but also other signals, activate 
the enzyme IκB kinase (IKK), resulting in phosphorylation 
of IκBα. Subsequently, NF-κB translocates into the nucleus, 
and an inflammatory response characterized by production 
of inflammatory cytokines is generated.39 Another down-
stream effect of NF-κB activity is enhanced HIF-1α tran-
scription.40–42 Conversely, HIF-1α activity enhances NF-κB 
activity by increasing abundance of IKK and the NF-κB sub-
unit p65.41,43 Moreover, hypoxia prevents PHD-dependent 
IKK degradation.44 In vitro studies confirmed this effect, as 
combined inhibition of PHD-1 and FIH enhanced basal 
NF-κB activity in a HIF-1α-independent fashion.45 Para-
doxically, PHD-1 and FIH inhibition suppress NF-κB activ-
ity under inflammatory conditions.45 These data illustrate 
that there is extensive interplay between hypoxia, oxygen-
dependent hydroxylases, HIF-1α, and NF-κB. Furthermore, 
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as alluded to before, effects are dependent on the cellular 
activation state.

Cellular and In Vivo Immunologic Effects of HIF-1α
At the cellular level, HIF-1α stabilization in immune cells 
results in a differentiated response, highly depending on 
the cell type. In neutrophils, the induction of β2-integrin 
involved in epithelial neutrophil binding,16 regulation of 
pathogen-binding neutrophil extracellular traps, and anti-
bacterial activity46 are all HIF-1α dependent.46 HIF-1α 

stabilization inhibits apoptosis of macrophages and neutro-
phils43,47 and is involved in the differentiation of monocytes 
to macrophages as well as in macrophage maturation.48 HIF-
1α also results in increased expression of toll-like receptor 
449 as well as in enhanced macrophage phagocytosis50 and 
bacterial killing.51

A wide diversity of animal studies using cell-specific trans-
genic knockout mice and pharmacologic HIF-1α modula-
tion also demonstrate the cell type–specific effects of HIF-1α. 
Myeloid HIF-1α knockout mice have a higher morbidity in 

Fig. 1. Hypoxia-inducible factor (HIF)-1α regulation and signaling under normoxic, hypoxic, and inflammatory conditions.  
HIF-1α subunits are constantly produced but rapidly degraded under normoxic conditions. Several pathways of HIF-1α regula-
tion have been described. First, under normoxic conditions, HIF-1α subunits are rapidly hydroxylated by oxygen-dependent 
prolyl hydroxylase domain enzymes (PHDs), which are subsequently captured by the ubiquitin ligase Von Hippel–Lindau (VHL) 
protein and degraded by the proteasome. Second, the oxygen-dependent asparaginyl hydroxylase factor-inhibiting HIF (FIH)  
hydroxylates a conserved asparaginyl residue, preventing the recruitment of coactivators P300 and cAMP-response element–
binding protein (CBP), in turn inhibiting dimerization with HIFβ. During oxygen deficiency, PHD and FIH activities decrease, re-
sulting in accumulation of HIF-1α subunits in the cytosol. The receptor for activated C kinase 1 (RACK1) and heat shock protein 
90 (HSP90) regulate HIF-1α in an oxygen-independent manner: RACK facilitates oxygen-independent proteasomal degradation 
of HIF-1α, while HSP90 competes with RACK, thereby stabilizing HIF-1α, and facilitates its transactivation. Upon accumulation, 
HIF-1α is coactivated by P300/CBP and dimerizes with HIFβ to form stable HIF-1αβ dimers. These dimers translocate to the 
nucleus and bind to hypoxia response elements (HREs) in promoter enhancer regions of genes, resulting in transcriptional activ-
ity. HIF-1α stabilization results in transcription of many (greater than 100) hypoxia responsive genes. As FIH remains active at 
lower oxygen concentrations than PHDs, FIH suppresses the activity of HIF-1α proteins that escape destruction during moder-
ate hypoxia. Not only hypoxia but also exposure to bacteria and bacterial products such as lipopolysaccharide (LPS) results in 
HIF-1α accumulation. NF-κB = nuclear factor of kappa-light-chain-enhancer of activated B cells; TLR = toll-like receptor.
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streptococcal skin infections than their wild-type littermates, 
which indicates that HIF-1α in myeloid cells is essential to 
mount an inflammatory response required to clear local 
infection.51 In severe systemic inflammation induced by 
lipopolysaccharide (to mimic Gram-negative infection)52 or 
lipoteichoic acid and peptidoglycan (to mimic Gram-posi-
tive infection),53 myeloid HIF-1α–deficient mice display an 
attenuated inflammatory response, associated with less tis-
sue damage and improved survival.52 In accordance, HIF-1α 
gain of function results in an overwhelming inflammatory 
response in sterile and bacterial peritonitis, with aggravated 
organ damage and impaired survival.1 As such, in myeloid 
cells, HIF-1α is essential for the generation of an effective 
inflammatory response to clear infections, while simultane-
ously, HIF-1α overexpression leads to the clinical picture of 
the early, proinflammatory phase of sepsis in mice.

In contrast to the proinflammatory effects observed in 
myeloid cells, HIF-1α activity induces antiinflammatory and 
tissue-protective effects in lymphocytes. For instance, HIF-1α 
induction results in increased numbers of regulatory T cells, 
with subsequent tissue protection due to attenuation of inflam-
mation.54 Furthermore, in a murine bacterial peritonitis model, 
T-cell–specific HIF-1α deficiency results in increased levels of 
proinflammatory cytokines.55 Suggestive of antiinflammatory 
effects of HIF-1α in B cells, PHD inhibition with dimethy-
loxalylglycine before lipopolysaccharide administration in 
mice resulted in enhanced interleukin-10 production by B1 
cells, which skewed macrophages toward an antiinflammatory 
M2-like phenotype.56 Moreover, other studies demonstrate 
that the transcriptional program that drives antiinflammatory 
regulatory T-cell differentiation is under the control of HIF via 
the induction of the HIF-target gene FoxP3.54

Apart from effects in dedicated immune cells, HIF-1α 
stabilization also exerts immunologic effects in other cells, 
e.g., intestinal and alveolar epithelium and myocytes. Phar-
macologic stabilization of HIF-1α through PHD inhibi-
tion in murine chemical-induced colitis results in reduced 
levels of TNFα, interleukin-6, and interleukin-1β, while 
levels of antiinflammatory interleukin-10 increase57 and 
clinical outcome improves.58,59 Similarly, pharmacologic 
PHD inhibition in ventilator-induced lung injury results in 
HIF-1α–dependent reduced lung injury and prolonged sur-
vival, whereas HIF-1α inhibition aggravates lung injury and 
shortened survival.4 The tissue-protective effects of HIF-1α 
are also involved in protection against ischemic injury. For 
instance, myocardial protection by remote ischemic precon-
ditioning is dependent on increased interleukin-10 produc-
tion mediated through HIF-1α,60,61 and myocardial HIF-1α 
expression mediates a metabolic switch to glycolysis, which 
is crucial for adaptation to ischemia.62 An overview of the 
immunologic effects of PHD inhibition in in vitro and ani-
mal studies is provided in table 2.45,63–74

Altogether, HIF-1α activity in myeloid cells is involved 
in the orchestration of immune responses aimed at patho-
gen clearance, whereas HIF-1α activity in lymphocytes, 

epithelium, and myocytes induces antiinflammatory and 
tissue protective effects (an overview is provided in fig.  2). 
Although these opposing effects may seem contradictory, 
studies in the field of oncology have shown that myeloid 
HIF-1α activity suppresses T-cell responses.75 Therefore, 
it is conceivable that, in the context of inflammation and 
infection, local interplay between different immune cells is 
required to optimize infection control and simultaneously 
prevent tissue damage.76

HIF-1α in Sepsis
The role of HIF-1α in sepsis is of particular interest, as inflam-
mation and tissue hypoxia often coexist, the latter due to a 
mismatch of oxygen demand and availability. The immu-
nologic host response during early sepsis is characterized by 
(over)production of proinflammatory cytokines, which is 
aimed at pathogen clearance, but also results in the clinical 
syndrome of septic shock. However, an antiinflammatory 
reaction is mounted simultaneously, presumably to curtail 
the proinflammatory response and thereby prevent collateral 
tissue damage. When too pronounced and/or sustained, this 
antiinflammatory response results in a profoundly suppressed 
state of the immune system. It is increasingly recognized that 
this phenomenon, known as “sepsis-induced immunoparaly-
sis,” renders patients more vulnerable to secondary infections 
and is a major contributor to late mortality in septic patients.77

Based on the data described earlier, HIF-1α activity 
may enhance proinflammatory effects and innate immune 
functions, which could be beneficial in sepsis-induced 
immunoparalysis. This concept is supported by the observa-
tion that endotoxin tolerance, which bears similarities to 
sepsis-induced immunoparalysis, was partially reversed by 
chronic mild hypoxia in mice.20 However, this single ani-
mal study does not fully reflect the complex dynamics of 
HIF-1α during human sepsis. Furthermore, it needs to be 
emphasized that the abovementioned studies on (the inter-
play between) inflammation and hypoxia have been con-
ducted in vitro and in animals. The translation from animal 
studies to the human situation is an important topic of 
debate.78,79 Fortunately, two recent observational studies 
in sepsis patients have increased our understanding of the 
dynamics of HIF-1α during sepsis. In one of these, samples 
were obtained within 2 to 4 h after admission, and HIF-1α 
mRNA expression in monocytes was increased.80 Further-
more, HIF-1α induced the negative toll-like receptor regu-
lator interleukin-1 receptor-associated kinase M, resulting 
in immunosuppression.80 In contrast, the other study found 
reduced leukocytic HIF-1α protein and mRNA expression, 
but samples were obtained at later time points (i.e., within 
24 h after admission).81 Although one has to be cautious 
when interpreting data from preclinical work in the context 
of clinical patient studies, it could be envisioned that the 
early proinflammatory response drives increased HIF-1α 
expression, resulting in the induction of negative regula-
tors such as interleukin-1 receptor-associated kinase M to 
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counteract excessive inflammation, ultimately resulting in 
reduced HIF-1α levels later in the course of sepsis.

Tissue-protective and Antiinflammatory Effects through 
the Adenosine Pathway

Hypoxia can also exert antiinflammatory and tissue-pro-
tective effects through the adenosine pathway, of which some 
elements have been reported to be HIF-1α dependent.82,83

Cellular distress (e.g., hypoxia84) results in increased avail-
ability of the adenosine progenitors adenosine triphosphate 
and adenosine diphosphate.85 Hypoxia leads to up-regula-
tion of CD39 (ectoapyrase),86,87 which converts adenosine 
triphosphate and adenosine diphosphate into adenosine 
monophosphate, and to HIF-1α–dependent up-regulation 
of CD73 (5ʹ-ectonucleotidase), which converts adenos-
ine monophosphate into adenosine.82 The tissue-protective 

Table 2.  In Vitro and Preclinical Studies on the Effects of PHD Inhibitors on Immunity

Reference Model
Inflammatory  

Stimulus/Model Intervention
Inflammatory Effect of  

PHD Inhibition

In vitro 63 Microgial cell line (BV2) Lipopolysaccharide EDHB ↓ mRNA, TNFα, and interleukin-6
64 Keratinocyte cell line 

(HaCaT)
Lipopolysaccharide AKB-4924 ↑ VEGF, interleukin-6, interleukin-8

65 Monocyte/macrophage 
cell line (U937) and 
neutrophils from 
healthy donors

Various Gram-positive 
and negative bacteria

AKB-4924 ↑ Bactericidal activity

66 Endothelial cell line 
(5A32)

TNFα Dimethyloxalylglycine ↓ VCAM-1

67 Macrophage cell line 
(RAW264.7)

Lipopolysaccharide Dimethyloxalylglycine ↓ TNFα

45 HeLa cell line Interleukin-1β Dimethyloxalylglycine ↓ NF-κB activity
Animal 

model
58 Mice TNBS (chemical colitis) FG-4497 ↓ Colonic TNFα, weight loss,  

histologic inflammation
59 Mice DSS (chemical colitis) Dimethyloxalylglycine ↓ Colonic interleukin-1β, TNFα, 

interleukin-12, interleukin-6,  
disease activity index, weight 
loss, histologic inflammation

74 Rats DNBS (chemical colitis) Dimethyloxalylglycine ↓ Neutrophil infiltration
68 Mice TNBS and DSS  

(chemical colitis)
TRC160334 ↓ Disease activity index, weight 

loss, histologic inflammation
57 Mice TNBS (chemical colitis) AKB-4924 ↓ Serum interleukin-1β, TNFα, 

interleukin-6, weight loss, disease 
activity

↑ Interleukin-10
69 Mice TNBS (chemical colitis) AKB-4924 ↓ Colonic interleukin-1β, TNFα, 

interleukin-12, interleukin-6, 
weight loss, histologic  
inflammation

70 Mice TNFΔARE/+ mice  
(spontaneous chronic 
terminal ileitis)

Dimethyloxalylglycine ↓ Histologic inflammation

71 Mice Lipopolysaccharide 
intraperitoneal  
(endotoxemic shock)

Dimethyloxalylglycine ↓ TNFα, mortality
↑ Interleukin-10

4 Mice Ventilator-induced lung 
injury

Dimethyloxalylglycine ↓ BAL MPO, pulmonary edema
↑ Gas exchange, survival time

65 Mice Staphylococcus aureus 
(cutaneous infection)

AKB-4924 ↓ Lesion size, bacterial load,  
disease severity

72 Mice Escherichia coli  
(urinary tract  
infection)

AKB-4924 ↓ Bacterial load, interleukin-1β, 
interleukin-6, KC,  
myeloperoxidase activity

63 Mice MPTP (neurotoxicity) EDHB ↓ Striatal interleukin-6
73 Rabbits Lipopolysaccharide and 

methylprednisolone 
(osteonecrosis)

EDHB ↓ Osteonecrosis

BAL = bronchial alveolar lavage; DNBS = dinitrobenzene sulfonic acid; DSS = dextran sulfate sodium; EDHB = ethyl-3,4-dihydroxybenzoate; KC = keratinocyte-
derived chemokine; MPO = myeloperoxidase; MPTP = 1-methyl-4-fenyl-1,2,3,6-tetrahydropyridine; NF-κB = nuclear factor of kappa-light-chain-enhancer of 
activated B cells; PHD = prolyl hydroxylase; TNBS = 2,4,6-trinitrobenzene sulfonic acid; TNFα = tumor necrosis factor alpha; TNFΔARE/+ mice = mice with gene 
targeted alterations in untranslated region of TNFα mRNA leading to development of severe ileitis; VCAM-1= vascular cell adhesion molecule-1; VEGF = vascular 
endothelial growth factor.
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effects of these enzymes have been demonstrated in stud-
ies using knockout mice. For example, mice lacking either 
CD39 or CD73 display increased morbidity and mortality 
after inflammatory or ischemic injury.88–90 Correspondingly, 
genetic overexpression of HIF-1α results in increased epithe-
lial expression of CD73 and improves outcome in murine 
chemically induced colitis.91 Finally, hypoxia increases the 
expression of the adenosine 2A (A2A) and 2B (A2B) recep-
tors, the latter in a HIF-1α–dependent manner.83 Stimulation 
of these receptors results in systemic antiinflammatory effects 
in murine models of ischemia–reperfusion,89 hypoxia,92 and 
inflammation.93 Furthermore, permissive hypoxia (fraction 
of inspired oxygen [Fio2], 10%) attenuated lung damage and 
improved survival in a murine model of acute lung injury 

in an A2A receptor-dependent manner,94 and induction of 
the A2B-receptor in type 1 alveolar cells during ventilator-
induced lung injury was shown to be dependent on HIF-1α3. 
Similarly, hypoxic preconditioning protected mice from liver 
ischemia and reperfusion injury in an A2B receptor-depen-
dent manner.95

The limited human data available substantiate that 
hypoxia results in enhanced adenosine availability. For 
instance, exposure to short-term hypoxia (20 min; Sao2, 
80%) in healthy volunteers increases plasma adenosine 
levels.96 Furthermore, several experimental human stud-
ies have demonstrated antiinflammatory effects of adenos-
ine signaling, as intravenous adenosine administration97 as 
well as oral treatment with the adenosine uptake inhibitor 

Fig. 2. The interaction between hypoxia and inflammation. Hypoxia enhances the immune response and is an inflammatory 
stimulus by itself. Hypoxia leads to cellular stabilization of hypoxia-inducible factor 1α (HIF-1α), resulting in a synergistic effect 
with the key inflammatory transcription factor nuclear factor of kappa-light-chain-enhancer of activated B cells (NF-κB). In addi-
tion, inflammation enhances transcription and translation of HIF-1α, leading to a synergistic effect in case of hypoxia and inflam-
mation. In myeloid cells, such as neutrophils and monocytes, HIF-1α activity exerts proinflammatory effects, aimed at clearance 
of pathogens. Conversely, in many other cells, such as T cells, pulmonary and interstitial epithelium, and myocytes, HIF-1α 
activity has antiinflammatory effects. Furthermore, hypoxia exerts antiinflammatory effects through the adenosine pathway, as it 
increases the availability of adenosine progenitors adenosine triphosphate (ATP) and adenosine diphosphate (ADP), upregulates 
the converting enzymes CD39 and CD73 to enhance adenosine production, and increases the expression of the antiinflamma-
tory adenosine 2A and 2B receptors (A2A and A2B). The up-regulation of CD73 and adenosine receptors is HIF-1α dependent. 
IL-10 = interleukin-10; TLR4 = toll-like receptor 4.
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dipyridamole98 attenuated the proinflammatory interleu-
kin-6 response during experimental human endotoxemia, 
and dipyridamole treatment also augmented antiinflamma-
tory interleukin-10 production.98 However, increased ade-
nosine availability in these latter studies was not induced by 
hypoxia. Finally, a proof-of-concept clinical study revealed 
that interferon-β-1a enhances CD73 expression in human 
lung tissue and that administration of this cytokine to acute 
respiratory distress syndrome (ARDS) patients is associated 
with reduced interleukin-6 and interleukin-8 levels as well as 
improved Pao2/Fio2 ratios and survival.99

In addition to HIF-1α, NF-κB, and adenosine metabo-
lism and signaling pathways, other oxygen-sensitive tran-
scription factors have been identified although the exact 
oxygen-dependent mechanisms and downstream effects are 
not fully elucidated (reviewed in Ref. 100).

A schematic overview of the complex interplay between 
hypoxia and inflammation is depicted in figure 2.

Hypoxia in Critically Ill Patients
Hypoxic respiratory failure is a common condition in ICU 

patients, with an incidence of 22 to 33%,101,102 depending 
on the definition (usually the need for mechanical ventila-
tion and/or a Pao2/Fio2 ratio of less than 300 mmHg101–103), 
and is associated with a mortality of 31 to 52%.101–103 A sub-
category of hypoxic respiratory failure is ARDS, comprising 
3 to 70% of patients with respiratory failure.101–103 ARDS 
severity can be classified according to the Berlin definitions as 
mild (200 to 300 mmHg), moderate (100 to 200 mmHg), 
or severe (less than 100 mmHg), with mortality ranging from 
32 to 65%.103–109 It is important to differentiate between the 
diagnosis of hypoxic respiratory failure (i.e., an indication for 
intubation and mechanical ventilation due to hypoxia) and 
actual hypoxia (i.e., low Pao2), as patients with hypoxic respi-
ratory failure can have normal Pao2 levels. The occurrence of 
hypoxia (i.e., Pao2 less than 80 mmHg) at ICU admission 
is frequent (40%),110 and in a retrospective cohort study in 
Dutch ICU patients, hypoxia at ICU admission or during 
ICU stay was shown to be associated with increased mortality, 
even after correction for disease severity and other confound-
ers.110 The association between hypoxia at ICU admission 
and increased mortality was confirmed in a similar analysis in 
Australian and New Zealand ICU patients.111 However, these 
studies are observational in nature, and although efforts have 
been made to eliminate bias, confounding factors may still 
play a role. Therefore, these studies cannot be used to guide 
oxygen therapy. Currently, oxygenation targets for critically 
ill patients are lacking. Since the landmark study on tidal 
volumes in ARDS, a target of 55 to 80 mmHg or Sao2 88 
to 95% is used in ARDS studies,112 even though there is no 
solid evidence supporting these targets.113

Results of clinical trials on the effects of oxygenation 
in ICU patients are necessary to determine optimal oxy-
genation targets in diverse subsets of patients. Currently, 
the O2-ICU study randomizes ICU patients with systemic 

inflammation to either a target Pao2 of 120 or 75 mmHg 
(Clinicaltrials.gov Identifier NCT02321072). The Hyper2S 
study (Clinicaltrials.gov Identifier NCT01722422), in 
which patients with septic shock were randomized in a 
2 × 2 fashion to normoxia (Sao2, 88 to 95%) versus Fio2 
100% for 24 h and resuscitation with isotonic saline versus 
hypertonic saline, was preliminary terminated because of 
a borderline significant increase in mortality in the hyper-
oxic/hypertonic group.114 Additionally, the Air Versus 
Oxygen in ST-Segment Elevation Myocardial Infarction 
trial has shown that normoxic patients with ST-elevation 
myocardial infarction treated with supplemental oxygen 
exhibit increased creatine kinase levels and myocardial 
infarct sizes compared with normoxic patients who did not 
receive additional oxygen.115 The putative harmful effects 
of hyperoxia have instigated further exploration of the 
safety and feasibility of conservative oxygenation targets. 
Two before-after studies in mechanically ventilated ICU 
patients applied Sao2 targets of 90 to 92%116 and 92 to 
95%,117 respectively, which was not associated with adverse 
outcomes. The safety and feasibility of a conservative oxy-
genation strategy was recently affirmed by a randomized 
controlled pilot study comparing a liberal oxygenation 
strategy (SpO2, greater than 96%) with a conservative 
strategy (SpO2, 88 to 92%).118These results may pave the 
way for the exploration of a personalized oxygen target to 
influence inflammation in critically ill patients.

The Translation of Preclinical Data 
on Hypoxia and Inflammation toward 
Treatment in Critically Ill Patients

As illustrated by animal studies and the limited clinical 
data available, hypoxia and downstream signaling path-
ways may represent important and amendable factors in the 
pathophysiology of inflammatory conditions in critically 
ill patients, such as sepsis and lung injury. However, many 
hurdles still have to be taken before we can translate these 
insights into clinical practice. The host responses in inflam-
matory conditions in critically ill patients are complex, with 
considerable interindividual differences and changes over 
time. Nevertheless, it is conceivable that modulating the 
immune response toward a targeted, personalized, favorable 
immunologic phenotype, e.g., immunostimulatory therapy 
in sepsis-induced immunoparalysis or antiinflammatory 
therapy in acute lung injury, may be of clinical benefit.119 
As many specific therapeutic target interventions have failed 
to show benefit in clinical trials,120 it would be naive to 
assume that targeting hypoxia-dependent pathways is “the 
magic bullet.” Nonetheless, optimization of all amendable 
parameters to tailor the inflammatory host response toward a 
more preferable profile should still be considered. As oxygen 
management is a daily practice in the ICU, the immunologic 
effects of oxygenation should therefore also be taken into 
account as a means of optimizing host responses.
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Although grossly based on in vitro and animal data, oxy-
genation-dependent immunomodulatory strategies could 
be envisioned as either pursuing a nullification of hypoxia-
induced immunologic effects by preventing hypoxia or 
enhancing immunologic effects of hypoxia by preventing 
hyperoxia or even permitting or inducing hypoxia. For 
example, animal data suggest that averting hyperoxia and 
even permitting hypoxia is beneficial in acute lung injury,94 
apart from prevention of direct oxygen toxicity. Naturally, 
intentional or permissive hypoxia as a therapeutic strategy is 
only expedient when safety margins are taken into account, 
especially as Pao2 targets would be at the steep part of the 
oxygen–hemoglobin dissociation curve. As previously pro-
posed, a suitable oxygenation monitoring and control system 
should use real-time data on pulse oximetry, tissue oxygen-
ation, and arterial oxygen tension to achieve a predefined 
oxygenation121 and should naturally be extensively tested for 
safety, feasibility, and efficacy.

However, caution is warranted, as there is an associa-
tion between long-term neurocognitive impairment and the 
amount of time that ARDS patients were hypoxic (i.e., Sao2, 
less than 90%).122 Therefore, short-term benefits of hypoxia, 
i.e., putative therapeutic effects in inflammation, and long-
term effects, i.e., neurocognitive impairment, need to be 
carefully weighed.

Alongside hypoxia, or if permissive hypoxia does not prove 
to be feasible, HIF-1α–mediated effects could also be pur-
sued through pharmacologic inhibition of PHDs. The PHD 
inhibitor FG-4497 increased HIF-1α stabilization in mice, 
with subsequent resistance of stem cells to irradiation,123 
improved kidney transplantation survival,124 and attenu-
ated TNFα expression and weight loss during colitis.58 A 
comparable PHD inhibitor (FG-2216) resulted in increased 
plasma erythropoietin levels in hemodialysis patients125; 
however, due to a case of fatal hepatic necrosis and other 
patients developing abnormal liver enzyme tests, the U.S. 
Food and Drug Administration suspended this clinical trial, 
and further development was discontinued.126 Nonetheless, 
clinical trials with new drugs targeting PHDs for treatment 
of anemia in patients with chronic renal disease and dialy-
sis are currently being performed.26 Whether pharmacologic 
HIF stimulation affects the immune response in humans has 
not been established yet. Additionally, the frequently used 
PHD inhibitor dimethyloxalylglycine and the aforemen-
tioned FG compounds are pan-hydroxylase inhibitors and 
are not specific for HIF-1α stabilization, which may lead 
to undesired effects. For example, dimethyloxalylglycine also 
stabilizes HIF-2α, which results in increased erythropoietin 
levels58,59 and could thus cause polycythemia. This can be 
circumvented by more specific PHD inhibitors, such as the 
selective PHD-1 inhibitor AKB-4924 and/or local instead of 
systemic drug delivery.69

Taken together, although the concept of tailoring the 
immune response through oxygenation or pharmacologic 
modulation of hypoxia-signaling pathways is tempting, the 

question remains if this approach is feasible and will result in 
clinical benefits for the patient. Therefore, studies assessing 
the putative therapeutic potential of these effects are highly 
warranted. Furthermore, immunomodulatory therapy in 
inflammatory conditions in the ICU still faces many chal-
lenges. For example, antiinflammatory strategies in sepsis 
have been unsuccessful in the past,120 possibly because they 
render patients increased vulnerability to secondary infec-
tions, although it might also be due to the profound heteroge-
neity of this patient population. Immunostimulatory therapy 
to prevent and/or reverse immunoparalysis is currently under 
investigation for sepsis.77 Meanwhile, a search for markers 
identifying the current “immune status” of ICU patients is 
ongoing and may result in better identification of patients 
who could benefit from immunomodulating therapy.127

Conclusion
There is extensive interplay between hypoxia and the 

immune system. Hypoxia and inflammation synergistically 
induce HIF-1α stabilization, resulting in cellular effects 
directed toward augmented pathogen clearance, of inter-
est, simultaneously antiinflammatory and tissue-protective 
mechanisms occur, for instance through enhanced adenos-
ine metabolism and signaling. The net effect of these effects 
is highly dependent on the cell type and activation state. 
Insights into these hypoxia-driven mechanisms promote the 
concept of personalizing oxygenation targets to tailor the 
immune response in inflamed critically ill patients. How-
ever, the development of such strategies requires exploration 
of the putative effects of hypoxia on the immune response 
in humans in vivo, as these data are currently lacking. Fur-
thermore, additional studies on pharmacologic HIF-1α 
stabilizers and agents acting on the adenosine pathway are 
required. In any case, the optimal Pao2 and oxygen deliv-
ery in critically ill patients are likely to depend on diagno-
sis and comorbidities, and clinicians should be aware that 
their oxygen therapy may affect not only saturation but 
also the inflammatory host response. As clinical guidelines 
on optimal oxygenation are currently not present, ongoing 
clinical trials exploring the feasibility of liberal versus restric-
tive oxygenation are highly warranted and currently in prog-
ress; these could further pave the way toward individualized  
oxygenation therapy.
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