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C HRONIC pain disorders, including fibromyalgia, 
headache, temporomandibular disorder (TMD), and 

vestibulodynia, constitute a significant healthcare problem, 
affecting more than 100 million Americans.1–7 These disor-
ders occur more frequently in women than in men8 and are 
persistent in nature, characterized by pain that occurs daily 
and spans years. While the mechanisms underlying chronic 
pain are poorly understood, emerging evidence indicates a 
role for adrenergic pathways. Patients with chronic pain 
exhibit increased levels of catecholamines9–11 alongside dimin-
ished activity of catechol-O-methyltransferase (COMT),12,13 
a ubiquitously expressed enzyme that metabolizes catechol-
amines to their inactive derivatives.14 An increase in catechol-
amines is similarly observed in patients with inflammatory 
conditions such as arthritis and complex regional pain syn-
drome (CRPS).15–17 Furthermore, functional variants in the 
COMT gene that reduce COMT activity13,18,19 are associated 
with increased susceptibility to fibromyalgia,20–24 TMD,25 
and experimental pain25,26 as well as impaired response to 
treatment.27,28 It is estimated, based on the frequency of allele 

variation, that nearly two thirds of patients with chronic pain 
disorders possess the low-activity COMT variants.20,29

Consistent with clinical disorders, we found in our labo-
ratory that administration of the COMT inhibitor OR486 
(Tocris, USA) in rodents produces increased hypersensi-
tivity at multiple body sites and alters cognitive–affective 

What We Already Know about This Topic

•	 Decreased catecholamine-O-methyltransferase activity is 	
associated with increased clinical and experimental pain in 	
humans, and inhibition of catecholamine-O-methyltransferase 
in animals results in hypersensitivity 

•	 Although β-adrenoceptors appear important to these 	
observations, the sites of receptor activation are unknown

What This Article Tells Us That Is New

•	 In rats, sustained administration of a catecholamine-O-	
methyltransferase inhibitor produces hypersensitivity to 	
mechanical and thermal stimuli, which is prevented by peripheral, 	
but not spinal or supraspinal, administration of β-adrenoceptor 
antagonists, suggesting a peripheral site of action
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ABSTRACT

Background: Patients with chronic pain disorders exhibit increased levels of catecholamines alongside diminished activity of 
catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines. The authors found that acute pharmaco-
logic inhibition of COMT in rodents produces hypersensitivity to mechanical and thermal stimuli via β-adrenergic receptor 
(βAR) activation. The contribution of distinct βAR populations to the development of persistent pain linked to abnormalities 
in catecholamine signaling requires further investigation.
Methods: Here, the authors sought to determine the contribution of peripheral, spinal, and supraspinal βARs to persistent 
COMT-dependent pain. They implanted osmotic pumps to deliver the COMT inhibitor OR486 (Tocris, USA) for 2 weeks. 
Behavioral responses to mechanical and thermal stimuli were evaluated before and every other day after pump implantation. 
The site of action was evaluated in adrenalectomized rats receiving sustained OR486 or in intact rats receiving sustained βAR 
antagonists peripherally, spinally, or supraspinally alongside OR486.
Results: The authors found that male (N = 6) and female (N = 6) rats receiving sustained OR486 exhibited decreased paw 
withdrawal thresholds (control 5.74 ± 0.24 vs. OR486 1.54 ± 0.08, mean ± SEM) and increased paw withdrawal frequency to 
mechanical stimuli (control 4.80 ± 0.22 vs. OR486 8.10 ± 0.13) and decreased paw withdrawal latency to thermal heat (control 
9.69 ± 0.23 vs. OR486 5.91 ± 0.11). In contrast, adrenalectomized rats (N = 12) failed to develop OR486-induced hypersen-
sitivity. Furthermore, peripheral (N = 9), but not spinal (N = 4) or supraspinal (N = 4), administration of the nonselective 
βAR antagonist propranolol, the β2AR antagonist ICI-118,511, or the β3AR antagonist SR59230A blocked the development 
of OR486-induced hypersensitivity.
Conclusions: Peripheral adrenergic input is necessary for the development of persistent COMT-dependent pain, and periph-
erally-acting βAR antagonists may benefit chronic pain patients. (Anesthesiology 2016; 124:1122-35)
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behaviors linked to pain (e.g., avoidance of painful heat and 
bright light).30–32 Pharmacologic studies further revealed that 
OR486-induced hypersensitivity is blocked by administra-
tion of the nonselective β-adrenergic receptor (βAR) antago-
nist propranolol or by combined administration of selective 
β2- and β3AR antagonists.30–32 These results are in line with 
those from clinical studies, showing that propranolol allevi-
ates pain among fibromyalgia and TMD patients.33,34 Col-
lectively, these studies suggest that increased catecholamine 
levels, resulting from reduced COMT activity, drive pain via 
β2- and β3ARs.

β2- and β3ARs are G-protein–coupled receptors expressed 
in peripheral and central regions where they could drive pain. 
β2ARs are located on peripheral terminals35–39 and cell bod-
ies40–42 of primary afferent nociceptors; keratinocytes,43–45 
immune cells,46–49 and adipocytes50 in the periphery; and 
neurons51,52 and glial cells53 in the central nervous system. 
β3ARs are located on primary afferent nociceptors,54 adipo-
cytes50 and immune cells47,48 in the periphery, and norad-
renergic neurons in the brain.55 Thus, we hypothesized that 
peripheral, spinal, and/or supraspinal β2- and β3ARs con-
tribute to persistent COMT-dependent pain.

To test this hypothesis, we employed a clinically-relevant 
model of persistent COMT-dependent pain and evaluated 
responses to mechanical and thermal stimuli in adrenalec-
tomized rats lacking peripheral epinephrine, and in intact 
rats receiving continuous delivery of βAR antagonists via 
intraplantar, intrathecal, or intracerebroventricular routes. 
Potential sexual dimorphism in the contribution of adren-
ergic systems to persistent COMT-dependent pain was also 
assessed.

Results demonstrated that male and female rats receiving 
sustained OR486 exhibited COMT-dependent mechani-
cal and thermal hypersensitivity, persisting for 2 weeks. In 
contrast, adrenalectomized rats failed to develop OR486-
induced hypersensitivity. Furthermore, intraplantar, but not 
intrathecal or intracerebroventricular, administration of the 
nonselective βAR antagonist propranolol, β2AR antago-
nist ICI118,551, or β3AR antagonist SR59230A blocked 
OR486-induced hypersensitivity. These findings demon-
strate the importance of peripheral β2- and β3ARs in mediat-
ing persistent pain and suggest that peripherally-acting βAR 
antagonists may provide an effective treatment option for 
patients with chronic pain disorders.

Materials and Methods

Subjects
Adult male and female Sprague–Dawley rats (N = 24 intact, 
N = 24 adrenalectomized, and N = 23 sham) were purchased 
(Charles River Laboratories, USA) for the first set of experi-
ments. For subsequent βAR antagonist experiments, adult 
male Sprague–Dawley rats (N = 111) were bred in-house. 
Rats weighed between 200 and 400 g for all experimental 
studies. Rats had ad libitum access to standard laboratory 

chow and water. Adrenalectomized rats were provided with 
saline water (0.9%) to compensate for the loss of sodium 
in urine due to the absence of aldosterone. All animal pro-
cedures were approved by the Institutional Animal Care 
and Use Committee at the University of North Carolina at 
Chapel Hill. Although rodent models of pain only partially 
correlate with human conditions, rats were chosen for these 
experiments because an extensive body of literature exists 
regarding nociceptive pathways and behavior in this species 
and because rat pain behavior assays are readily available and 
well characterized.56–58

General Experimental Conditions
First, the effects of sustained COMT inhibition on hyper-
sensitivity were evaluated in intact rats receiving the COMT 
inhibitor OR486 or vehicle systemically for 14 days via a 
2002 Alzet Osmotic Pump (Durect Corporation, USA). 
Next, the contribution of peripheral adrenergic systems 
to persistent OR486-induced hypersensitivity was evalu-
ated in adrenalectomized rats lacking peripheral epineph-
rine or sham rats receiving OR486 or vehicle systemically 
for 14 days via an osmotic pump. Finally, the contribution 
of peripheral, spinal, and supraspinal βARs to persistent 
OR486-induced hypersensitivity was evaluated in separate 
groups of intact rats receiving intraplantar, intrathecal, or 
intracerebroventricular βAR antagonists alongside systemic 
delivery of OR486 or vehicle for 14 days via an osmotic 
pump. The βAR antagonists were delivered via a catheter 
attached to a separate 2002 Alzet Osmotic Pump.

Animals were handled and habituated to the experi-
menter and environment for 4 days before testing. Responses 
to punctuate mechanical and thermal stimuli were assessed 
in intact and adrenalectomized animals 1 day before and on 
days 1, 3, 5, 7, 9, 11, and 13 after pump implantation. For 
βAR antagonist experiments, pain behaviors were assessed 
1 day before and on days 2, 4, 6, 8, 10, 12, and 14 after 
pump implantation. The rest day between surgery and test-
ing allowed animals to fully recover from catheter implan-
tation. On baseline and testing days, rats were habituated 
to the mechanical and thermal testing environments for  
10 to 15 min. Although we were unable to eliminate all envi-
ronmental factors (e.g., season, humidity, and noise) from 
this study, we minimized others (e.g., experimenter consis-
tency, testing time of day, and cage density) that were in 
our control.59,60 Animals were randomly assigned to groups; 
were tested by a single, blinded experimenter at a consis-
tent time of day (morning); and were housed with one to 
two other rats. The primary outcome reported in this study 
is behavioral changes, in the form of mechanical allodynia, 
mechanical hyperalgesia, and thermal hyperalgesia, which 
are described in detail below under their respective subtitles.

Drug Preparation
OR486 (Tocris) was dissolved in a 5:3:2 ratio of dimeth-
ylsulfoxide, 0.9% saline, and ethanol.32 For peripheral 
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experiments, βAR antagonists propranolol hydrochloride 
(Tocris), ICI-118,511 (Tocris), and SR59230A (Tocris) were 
each dissolved in 5:3:2 ratios of dimethylsulfoxide, 0.9% 
saline, and ethanol. For intrathecal and intracerebroventric-
ular experiments, βAR antagonists were dissolved in 0.9% 
saline. Drug solutions were injected into pumps, which were 
placed in 15-ml conical tubes containing sterile 0.9% saline 
and primed overnight in a dry heat bath (Lab Armor, USA) 
at 37°C. All pumps (other than those for intrathecal deliv-
ery) were attached to corresponding catheters before prim-
ing. Subcutaneous delivery of OR486 was at a constant rate 
of 15 mg ∙ kg−1 ∙ day−1 for a 2-week period. Peripheral deliv-
ery of propranolol hydrochloride was at 9 mg ∙ kg−1 ∙ day−1, 
ICI-118,511 was at 1.5 mg ∙ kg−1 ∙ day−1, and SR59230A was 
at 1.67 mg ∙ kg−1 ∙ day−1. Intrathecal delivery of propranolol 
hydrochloride was at 50 μg/day for the low-dose experiments 
and 100 μg/day for the high-dose experiments, ICI-118,511 
was at 30 μg/day, and SR59230A was at 20 μg/day. Intra-
cerebroventricular delivery of propranolol hydrochloride was 
at 50 μg/day for the low-dose experiments and 100 μg/day 
for the high-dose experiments; ICI-118,511 delivery was at 
30 μg/day, and SR59230A delivery was at 20 μg/day.

Surgical Procedures
For all surgical procedures, rats were anesthetized by isoflu-
rane inhalation (5% induction, 1.5 to 5% maintenance). 
Incision sites were shaved and disinfected with ethanol and 
betadine. Sterile technique was employed throughout the 
duration of all procedures according to Institutional Ani-
mal Care and Use Committee requirements. Stainless steel 
wound clips (Braintree Scientific, USA) were used to close 
the wounds.

For systemic delivery of OR486, a small incision was 
made over the left shoulder blade of the rat. Hemostats were 
used to create a small subcutaneous pocket in which the 
pump was placed.

For intraplantar delivery of βAR antagonists, a modified 
version of the protocol published by Haddad and Adams61 
was used. Pumps were attached to a 15-cm, Y-shaped, bifur-
cated 3-French silicone catheter (SAI Infusion Technologies, 
USA). The pump was implanted subcutaneously over the 
right shoulder blade, and a stainless steel 10-gauge × 20-cm 
semiblunt tip trocar (SAI Infusion Technologies) was used 
to subcutaneously route the catheter ends to incisions made 
at either hind paw. The catheter ends were attached to the 
plantar fascia using 4-0 silk sutures (Oasis Medical, USA).

For intrathecal delivery62 of βAR antagonists, a small 
incision was made on the nape of the neck, and scissors and 
hemostats were used to lift muscle and expose the atlanto-
occipital membrane. The membrane was carefully incised 
using the tip of scissors, causing the escape of cerebrospinal 
fluid. A 27.3-cm, polyurethane Alzet Short Rat IT Cath-
eter (Durect Corporation) was inserted into the intrathecal 
space, dorsal to the spinal cord. The other end of the catheter 
was sutured to the surrounding tissue and attached to the 

osmotic pump, which was subcutaneously implanted over 
the right shoulder blade. Four animals did not wake up after 
intrathecal surgery. These animals were replaced in future 
intrathecal groups to account for the decrease in sample size.

For intracerebroventricular delivery63 of βAR antago-
nists, pumps were attached to a 38-gauge stainless steel can-
nula via a short vinyl catheter (Alzet Brain Infusion Kit 2; 
Durect Corporation). The cannula was implanted into the 
right lateral ventricle (from the bregma: −0.8 mm anteropos-
terior, −1.6 mm mediolateral, −5 mm dorsoventral) and was 
cemented to two anchoring screws on the skull. The attached 
pump was subcutaneously implanted over the right shoulder 
blade.

Assessment of Behavioral Responses to Mechanical and 
Thermal Stimuli
Paw withdrawal threshold was assessed using the von Frey 
up–down method.64 Nine calibrated and logarithmically 
spaced von Frey monofilaments (bending forces: 0.40, 0.68, 
1.1, 2.1, 3.4, 5.7, 8.4, 13.2, and 15.0 g; Stoelting, USA) 
were applied to the plantar hind paw. First, the middle fila-
ment (3.4 g) was applied to the hind paw for 3 s. If the rat 
responded with a withdrawal, an incrementally lower fila-
ment was applied. In the absence of a withdrawal, an incre-
mentally higher filament was applied. A series of six total 
responses were recorded for each paw. Results were entered 
into the Paw Flick module within the National Instru-
ments LabVIEW 2.0 software (LabVIEW, USA), which 
uses a logarithmic algorithm to determine the gram-force 
value that would elicit paw withdrawal in 50% of trials  
(10(Xf + kδ)/10,000, where Xf = value [in log units] of the final 
von Frey hair used; k = tabular value of positive and negative 
responses, and δ = mean difference [in log units] between 
stimuli). Mechanical allodynia was defined as a heightened 
response to a normally innocuous stimulus, as determined 
by a decrease in paw withdrawal threshold.

Mechanical hyperalgesia was assessed using a 15.0-g von 
Frey filament. This filament was chosen as a normally nox-
ious stimulus, as it has a gram-force value well over the 50% 
withdraw threshold for animals tested in this study. The fila-
ment was applied to the hind paw 10 times for a duration 
of 1 s, with an interstimulus interval of 1 s.32 The number 
of paw withdrawals (which could range from 0 to 10) was 
recorded for each hind paw at each time point. Mechanical 
hyperalgesia was defined as an increase in the number of paw 
withdrawals in response to a normally noxious mechanical 
stimulus.

Thermal hyperalgesia was assessed using the Hargreaves 
method.65 Animals were placed in plexiglass chambers, and 
a radiant beam of light was applied to the hind paw through 
a glass floor heated to 30°C. Paw withdrawal latencies were 
recorded in duplicate per paw. If the second latency recorded 
was not within ±4 s of the first, a third measure was recorded. 
The two latencies closest in value were averaged to determine 
overall latency to withdrawal. Thermal behavioral data are 
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reported in text and figures as the difference in paw with-
drawal latency from baseline (day 0). Thermal hyperalge-
sia was defined as a decrease in paw withdrawal latency in 
response to a noxious thermal stimulus.

Statistical Analyses
Sample sizes were selected based on their ability in previous, 
similarly structured rat studies to accurately demonstrate 
behavioral differences between groups.30–32 Mechanical 
allodynia, mechanical hyperalgesia, and thermal hyperal-
gesia data were analyzed by 2-way ANOVA (for group × 
time). In ANOVA analyses, groups correspond to the sepa-
rate groups on the graph of interest, as denoted by differ-
ent symbols and names (e.g., groups in fig. 1 = vehicle and 
OR486). Post hoc comparisons were performed using the 
Bonferroni test, which corrected for multiple comparisons. 
Statistical significance was defined as P < 0.05. All statistical 
analyses were performed using GraphPad Prism (GraphPad 
Software, USA).

Results

Sustained COMT Inhibition Produces Persistent Pain
Genetic and pharmacologic alterations resulting in reduced 
COMT activity are associated with increased experimental 
pain and likelihood of developing chronic pain disorders. 
Acute administration of the COMT inhibitor OR486 results 
in enhanced mechanical and thermal hypersensitivity in 
rats.32 To evaluate the effects of sustained COMT inhibition 
on hypersensitivity, responses to mechanical and thermal 
stimuli were measured in separate groups of rats receiv-
ing systemic OR486 (15 mg ∙ kg−1 ∙ day−1) or vehicle over 
a 2-week period. Compared to rats receiving vehicle, those 
receiving OR486 exhibited mechanical allodynia (group:  
P < 0.0001; group × day: P = 0.0043; fig. 1A), mechanical 
hyperalgesia (group: P < 0.0001; group × day: P = 0.0109; 
fig. 1B), and thermal hyperalgesia (group: P < 0.0001; 
group × day: P < 0.0001; fig. 1C) beginning on day 1 and 
lasting throughout the duration of the experiment. Sexual 
dimorphism was not observed, as both male and female rats 

developed mechanical allodynia (male group: P < 0.0001; 
female group: P < 0.0001; fig. 1A, Supplemental Digital 
Content 1, http://links.lww.com/ALN/B262), mechani-
cal hyperalgesia (male group, P < 0.0053; female group:  
P < 0.0001; fig. 1B, Supplemental Digital Content 1, http://
links.lww.com/ALN/B262), and thermal hyperalgesia (male 
group: P < 0.0001; female group: P < 0.0001; fig. 1C, Sup-
plemental Digital Content 1, http://links.lww.com/ALN/
B262). See figure 1, Supplemental Digital Content 1 (http://
links.lww.com/ALN/B262), for all sexual dimorphism data 
in intact rats.

Adrenalectomized Rats Fail to Develop Persistent  
COMT-dependent Pain
Previous work has demonstrated that acute COMT-depen-
dent pain is mediated via β2- and β3ARs, which are located 
in peripheral, spinal, and supraspinal regions where they 
could potentially drive pain transmission. To evaluate the 
potential contribution of peripheral adrenergic systems to 
COMT-dependent pain, separate groups of adrenalecto-
mized rats (lacking peripheral epinephrine) or sham sur-
gery rats received systemic OR486 (15 mg ∙ kg−1 ∙ day−1) or 
vehicle over a 2-week period, and responses to mechanical 
and thermal stimuli were measured. Compared to sham 
rats receiving vehicle, those receiving OR486 developed 
mechanical allodynia (group: P < 0.0001; group × day:  
P < 0.0001; fig. 2A), mechanical hyperalgesia (group:  
P < 0.0001; group × day: P = 0.0044; fig. 2B), and ther-
mal hyperalgesia (group: P = 0.0005; group × day:  
P < 0.0001; fig. 2C). In contrast, adrenalectomized rats did 
not develop mechanical allodynia, mechanical hyperalgesia, 
or thermal hyperalgesia.

Sexual dimorphism was not observed, as both male and 
female sham rats developed mechanical allodynia (male 
group: P < 0.0001; female group: P < 0.0001; fig. 2A, 
Supplemental Digital Content 1, http://links.lww.com/
ALN/B262), mechanical hyperalgesia (male group: P = 
0.0053; female group: P < 0.0001; fig. 2B, Supplemental 
Digital Content 1, http://links.lww.com/ALN/B262), and 

Fig. 1. Sustained administration of the catecholamine-O-methyltransferase inhibitor OR486 leads to mechanical and ther-
mal hypersensitivity. Compared to vehicle, sustained systemic OR486 administration produces (A) mechanical allodynia,  
(B) mechanical hyperalgesia, and (C) thermal hyperalgesia. N = 12 (6 males and 6 females) per group. Data are expressed as  
mean ± SEM. ***P < 0.001, **P < 0.01 different from vehicle. BL = baseline; Veh = vehicle.
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thermal hyperalgesia (male group: P < 0.0001; female group:  
P < 0.0001; fig. 2C, Supplemental Digital Content 1, http://
links.lww.com/ALN/B262). Both male and female adre-
nalectomized rats failed to develop mechanical allodynia  
(fig. 2D, Supplemental Digital Content 1, http://links.lww.
com/ALN/B262), mechanical hyperalgesia (fig. 2E, Sup-
plemental Digital Content 1, http://links.lww.com/ALN/
B262), and thermal hyperalgesia (fig. 2F, Supplemental Digi-
tal Content 1, http://links.lww.com/ALN/B262). See figure 
2, Supplemental Digital Content 1 (http://links.lww.com/
ALN/B262), for all sexual dimorphism data in sham and 
adrenalectomized rats.

Peripheral βAR Antagonist Administration Prevents the 
Development of Persistent COMT-dependent Pain
Adrenalectomized rats failed to develop persistent hyper-
sensitivity after COMT inhibition, suggesting a peripheral 
adrenergic site of action. In order to further investigate this 
hypothesis, pharmacological methods were used to deter-
mine the contribution of peripheral, spinal, and supraspinal 
βARs to persistent COMT-dependent pain. First, the contri-
bution of peripheral βARs to mechanical and thermal hyper-
sensitivity was evaluated in separate groups of rats receiving 
sustained intraplantar administration of propranolol (9 mg ∙ 
kg−1 ∙ day−1), ICI-118,551 (1.5 mg ∙ kg−1 ∙ day−1), SR59230A 
(1.67 mg ∙ kg−1 ∙ day−1), or vehicle alongside sustained sys-
temic administration of OR486 (15 mg ∙ kg−1 ∙ day−1)  
or vehicle over a 2-week period. Peripheral antagonist 
doses were selected based on the results from a prelimi-
nary study that evaluated the ability of three different doses  
per antagonist to reduce or block COMT-dependent pain 
(fig. 3).

Compared to rats receiving vehicle, those receiving 
sustained intraplantar administration of the nonselective 
βAR antagonist propranolol, the β2AR antagonist ICI-
118,511, or the β3AR antagonist SR59230A alongside 
systemic OR486 did not develop mechanical allodynia 
(group: fig. 3A, P < 0.0001; fig. 3B, P < 0.0001; fig. 3C,  
P < 0.0001) or mechanical hyperalgesia (group: fig. 3D,  
P < 0.0001; fig. 3E, P < 0.0001; fig. 3F, P < 0.0001). Rats 

receiving sustained intraplantar administration of the β3AR 
antagonist SR59230A also did not develop OR486-induced 
thermal hyperalgesia (group: fig. 3I, P < 0.0001). In con-
trast, rats receiving propranolol (fig. 3G) or ICI-118,551  
(fig. 3H) alongside OR486 exhibited a 15% decrease in paw 
withdrawal latency from baseline, similar to rats receiving 
vehicle. Animals receiving sustained intraplantar administra-
tion of βAR antagonists alongside systemic vehicle failed to 
develop mechanical allodynia (fig. 3A, Supplemental Digital 
Content 1, http://links.lww.com/ALN/B262), mechani-
cal hyperalgesia (fig. 3D, Supplemental Digital Content 1, 
http://links.lww.com/ALN/B262), or thermal hyperalgesia 
(fig. 3G, Supplemental Digital Content 1, http://links.lww.
com/ALN/B262). See figure 3, Supplemental Digital Con-
tent 1 (http://links.lww.com/ALN/B262), for control data 
demonstrating no effect of antagonists on hypersensitivity 
irrespective of administration route.

Intrathecal βAR Antagonist Administration Does Not Alter 
Persistent COMT-dependent Pain
Next, the contribution of spinal βARs to mechanical and 
thermal hypersensitivity was evaluated in separate groups of 
rats receiving sustained intrathecal administration of pro-
pranolol (50 μg/day), ICI-118,551 (30 μg/day), SR59230A 
(20 μg/day), or vehicle alongside sustained systemic admin-
istration of OR486 (15 mg ∙ kg−1 ∙ day−1) or vehicle over a 
2-week period (fig. 4). Intrathecal delivered antagonist doses 
were selected based on their ability to block hypersensitivity 
or pain-relevant behaviors in other rat models when admin-
istered intrathecally.66–68 Similar to animals receiving vehicle, 
those receiving sustained intrathecal administration of the 
nonselective βAR antagonist propranolol, the β2AR antago-
nist ICI-118,511, or the β3AR antagonist SR59230A along-
side systemic OR486 exhibited mechanical allodynia (group: 
fig. 4A, P < 0.0001; fig. 4B, P < 0.0001; fig. 4C, P < 0.0001), 
mechanical hyperalgesia (group: fig. 4D, P = 0.0002; fig. 4E, 
P < 0.0001; fig. 4F, P = 0.0018), and thermal hyperalgesia 
(group: fig. 4G, P < 0.0001; fig. 4H, P < 0.0001; fig. 4I,  
P < 0.0001). Animals receiving sustained intrathecal admin-
istration of βAR antagonists alongside systemic vehicle failed 

Fig. 2. Adrenalectomized (Adx) rats fail to develop OR486-induced hypersensitivity. In Sham (Shm), but not Adx, animals, sus-
tained systemic OR486 administration produces (A) mechanical allodynia, (B) mechanical hyperalgesia, and (C) thermal hyper-
algesia. N = 11 (5 males and 6 females) for Shm/vehicle (Veh) and N = 12 (6 males and 6 females) for all other groups. Data are 
expressed as mean ± SEM. ***P < 0.001, **P < 0.01, *P < 0.05 different from Shm/Veh. BL = Baseline.
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to develop mechanical allodynia (fig. 3B, Supplemental Dig-
ital Content 1, http://links.lww.com/ALN/B262), mechani-
cal hyperalgesia (fig. 3E, Supplemental Digital Content 1, 
http://links.lww.com/ALN/B262), or thermal hyperalgesia 
(fig. 3H, Supplemental Digital Content 1, http://links.lww.
com/ALN/B262). Animals receiving SR59230A alongside 
vehicle did exhibit transient elevations in paw withdrawal 
threshold on days 2 (vehicle/vehicle 4.47 ± 0.63 vs. vehicle/
SR59230A 10.80 ± 3.26, mean ± SEM) and 10 (vehicle/
vehicle 3.50 ± 0.73 vs. vehicle/SR59230A 10.97 ± 3.13) likely 
due to higher baseline values (vehicle/vehicle 4.76 ± 0.55 vs. 
vehicle/SR59230A 8.54 ± 2.59) and increased intergroup 
variability as compared to control animals (fig. 3B, Sup-
plemental Digital Content 1, http://links.lww.com/ALN/
B262).

To confirm that intrathecal βAR antagonists were unable 
to block OR486-induced hypersensitivity, we performed a 

duplicate set of experiments using a higher dose of the non-
selective βAR antagonist propranolol (100 μg/day). Similar 
to the original dose, intrathecal administration of the higher 
dose did not block OR486-induced mechanical allodynia 
(group: P < 0.0001; fig. 4A, Supplemental Digital Content 1, 
http://links.lww.com/ALN/B262), mechanical hyperalgesia 
(group: P = 0.0011; fig. 4D, Supplemental Digital Content 
1, http://links.lww.com/ALN/B262), or thermal hyperalgesia 
(group: P < 0.0001; fig. 4G, Supplemental Digital Content 1, 
http://links.lww.com/ALN/B262). See figure 4, Supplemental 
Digital Content 1 (http://links.lww.com/ALN/B262), for all 
intrathecal high-dose propranolol data.

Intracerebroventricular βAR Antagonist Administration 
Does Not Alter Persistent COMT-dependent Pain
Finally, the contribution of supraspinal βARs to mechani-
cal and thermal hypersensitivity was evaluated in separate 

Fig. 3. Peripheral administration of β-adrenergic receptor (βAR) antagonists blocks OR486-induced hypersensitivity. Peripheral 
delivery of the nonselective βAR antagonist propranolol (Prop) alongside sustained systemic OR486 administration prevents (A) 
mechanical allodynia and (D) mechanical hyperalgesia but does not alter (G) thermal hyperalgesia. Similarly, peripheral delivery 
of the β2AR antagonist ICI-118,551 (ICI) alongside sustained systemic OR486 administration prevents (B) mechanical allodynia 
and (E) mechanical hyperalgesia but does not alter (H) thermal hyperalgesia. Finally, peripheral delivery of the β3AR antagonist 
SR59230A (SR) alongside sustained systemic OR486 administration prevents (C) mechanical allodynia, (F) mechanical hyper-
algesia, and (I) thermal hyperalgesia. N = 9 per group. Data are expressed as mean ± SEM. ***P < 0.001, **P < 0.01, *P < 0.05 
different from vehicle (Veh)/Veh. BL = Baseline.
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groups of rats receiving sustained intracerebroventricular 
administration of propranolol (50 μg/day), ICI-118,551 
(30 μg/day), SR59230A (20 μg/day), or vehicle alongside 
sustained systemic administration of OR486 (15 mg ∙ kg−1 
∙ day−1) or vehicle over a 2-week period (fig. 5). Intracere-
broventricular antagonist doses were selected based on their 
ability to block hypersensitivity or related behaviors in other 
rat models.66–68 Similar to animals receiving vehicle, those 
receiving sustained intracerebroventricular administration 
of the nonselective βAR antagonist propranolol, the β2AR 
antagonist ICI-118,511, or the β3AR antagonist SR59230A 
alongside systemic OR486 exhibited mechanical allodynia 
(group: fig. 5A, P < 0.0001; fig. 5B, P < 0.0001; fig. 5C, 
P < 0.0001), mechanical hyperalgesia (group: fig. 5D,  
P < 0.0001; fig. 5E, P < 0.0001; fig. 5F, P < 0.0001), and 
thermal hyperalgesia (group: fig. 5G, P < 0.0001; fig. 5H,  
P < 0.0001; fig. 5I, P < 0.0001). Animals receiving sustained 
intracerebroventricular administration of βAR antagonists 
alongside systemic vehicle failed to develop mechanical allo-
dynia (fig. 3C, Supplemental Digital Content 1, http://links.

lww.com/ALN/B262), mechanical hyperalgesia (fig. 3F, Sup-
plemental Digital Content 1, http://links.lww.com/ALN/
B262), or thermal hyperalgesia (fig. 3I, Supplemental Digi-
tal Content 1, http://links.lww.com/ALN/B262). Animals 
receiving SR59230A alongside vehicle did exhibit transient 
elevations in paw withdrawal frequency on days 2 (vehi-
cle/vehicle 1.88 ± 0.40 vs. vehicle/SR59230A 4.62 ± 0.86) 
and 8 (vehicle/vehicle 2.00 ± 0.46 vs. vehicle/SR59230A 
5.00 ± 1.20) likely due to increased intergroup variability as 
compared to control animals (fig. 3F, Supplemental Digital 
Content 1, http://links.lww.com/ALN/B262).

To confirm that intracerebroventricular βAR antago-
nists are unable to block OR486-induced hypersensitiv-
ity, we performed a duplicate set of experiments using a 
higher dose of the nonselective βAR antagonist propranolol  
(100 μg/day). Similar to the original dose, intracerebro-
ventricular administration of the higher dose did not block 
OR486-induced mechanical allodynia (group: P < 0.0001; 
fig. 5A, Supplemental Digital Content 1, http://links.
lww.com/ALN/B262), mechanical hyperalgesia (group:  

Fig. 4. Intrathecal administration of β-adrenergic receptor (βAR) antagonists does not alter OR486-induced hypersensitivity. 
Intrathecal delivery of the nonselective βAR antagonist propranolol (prop) (A, D, G), the β2AR antagonist ICI-118,551 (ICI) (B, E, 
H), or the β3AR antagonist SR59230A (SR) (C, F, I) alongside sustained systemic OR486 administration does not alter mechani-
cal or thermal sensitivity. N = 4 per group. Data are expressed as mean ± SEM. ***P < 0.001, **P < 0.01, *P < 0.05 different from 
vehicle (Veh)/Veh. BL = Baseline.
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P < 0.0001; fig. 5D, Supplemental Digital Content 1, 
http://links.lww.com/ALN/B262), or thermal hyperalgesia 
(group: P < 0.0001; fig. 5G, Supplemental Digital Content 
1, http://links.lww.com/ALN/B262). See figure 5, Supple-
mental Digital Content 1 (http://links.lww.com/ALN/
B262), for all intracerebroventricular high-dose proprano-
lol data.

Discussion
Although the mechanisms underlying chronic pain disor-
ders are not well described, emerging evidence suggests a 
role for adrenergic pathways. Employing a rodent model 
of sustained COMT inhibition that mimics abnormalities 
in catecholamine signaling observed in patients with these 
disorders, we demonstrate that COMT-dependent pain is 
mediated via peripherally, but not spinally or supraspinally, 
located β2- and β3ARs.

In previous studies, we established a causal link between 
low COMT and pain. We demonstrated that a single 

injection of the COMT inhibitor OR486 produces mechan-
ical and thermal hypersensitivity, similar to that produced 
by intraplantar carrageenan. Subsequent pharmacologi-
cal studies further demonstrated that the development of 
acute OR486-induced hypersensitivity requires activation of  
β2- and β3ARs.30,32 Within hours, administration of OR486 
results in increased circulating levels of nitric oxide and 
the proinflammatory cytokines tumor necrosis factor-α, 
interleukin-1β, interleukin-6, and chemokine (C-C motif ) 
ligand 2 (CCL2),30 which are nociceptive transmitters 
implicated in chronic pain. Individuals with fibromyalgia, 
headache, and TMD exhibit increased levels of these mol-
ecules,69–72 which elicit pain by reducing nociceptor firing 
thresholds.73–83 Nitric oxide and proinflammatory cytokines 
also elicit pain by working synergistically to potentiate one 
another’s biosynthesis, as observed in the OR486 model.30

Here, we utilized a more clinically-relevant model of 
sustained COMT inhibition, characterized by enhanced 
sensitivity to noxious stimuli and altered pain-relevant cogni-
tive–affective behaviors that persist over a 2-week period, to 

Fig. 5. Intracerebroventricular administration of β-adrenergic receptor (βAR) antagonists does not alter OR486-induced hyper-
sensitivity. Supraspinal delivery of the nonselective βAR antagonist propranolol (prop) (A, D, G), β2AR antagonist ICI-118,551 
(ICI) (B, E, H), or the β3AR antagonist SR59230A (SR) (C, F, I) alongside sustained systemic OR486 administration does not alter 
mechanical or thermal sensitivity. N = 4–5 per group. Data are expressed as mean ± SEM. ***P < 0.001, **P < 0.01, *P < 0.05 
different from vehicle (Veh)/Veh. BL = Baseline.
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determine the site-of -action whereby βARs mediate persis-
tent COMT-dependent pain. The contribution of peripheral 
adrenergic systems was first examined in adrenalectomized 
rats. We found that, compared to sham surgery rats, adrenal-
ectomized rats lacking peripheral epinephrine fail to develop 
OR486-induced mechanical and thermal hypersensitivity. 
This finding is in line with those from previous studies show-
ing that adrenalectomized rats have blunted hypersensitiv-
ity after formalin administration84 or chronic constriction 
injury.85 Together, these results suggest that peripherally 
circulating catecholamines contribute to the transmission of 
hypersensitivity in models of inflammatory and neuropathic 
pain, as well as chronic pain disorders. This conclusion is fur-
ther supported by studies that have demonstrated increased 
urinary catecholamines in patients with myofascial pain10 
and increased circulating plasma catecholamines in women 
with fibromyalgia.9 Of note, adrenalectomy also results in a 
reduction of circulating corticosterone levels.86,87 Increased 
corticosterone levels after stress88 or nerve injury89,90 have 
been implicated in analgesia and pronociception. Thus, 
future experiments examining peripheral catecholamines 
should utilize adrenal medullectomized animals or should 
provide supplemental corticosterone to adrenalectomized 
animals to rule out corticosterone-mediated effects.

As previous preclinical and clinical studies have reported 
sex-specific differences in COMT-related phenotypes,91–95 
and as males and female rats exhibit different COMT 
expression patterns,96,97 we examined the contribution of 
peripheral adrenergic systems to COMT-dependent pain in 
both sexes. Counter to our expectation, male and female rats 
exhibited a comparable increase in mechanical and thermal 
hypersensitivity after sustained systemic OR486 administra-
tion, which was blocked by suppressing peripheral adrener-
gic tone. Despite these findings, future studies and clinical 
applications related to COMT-dependent pain should con-
tinue to consider possible sex-specific effects.

The independent contribution of peripheral, spinal, and 
supraspinal βARs to persistent COMT-dependent pain was 
next examined in separate groups of intact rats receiving 
targeted delivery of the nonselective βAR antagonist pro-
pranolol, the β2AR antagonist ICI-118,551, or the β3AR 
antagonist SR59230A alongside systemic OR486. We found 
that peripheral, but not spinal or supraspinal, administra-
tion of propranolol, ICI-118,511, or SR59230A blocked the 
development of OR486-induced hypersensitivity through-
out the duration of the testing period. While all three 
antagonists blocked the development of mechanical hyper-
sensitivity, only SR59230A blocked the development of 
thermal hypersensitivity. These findings significantly extend 
those from acute COMT inhibition studies,30,32 demon-
strating that peripheral β2- and β3ARs both contribute to the 
development of persistent mechanical hypersensitivity, while 
peripheral β3ARs independently contribute to the develop-
ment of persistent thermal hypersensitivity after sustained 
COMT inhibition.

The peripheral contribution of β2ARs to pain is in line 
with results from previous studies demonstrating that epi-
nephrine activates β2ARs located on the peripheral terminals 
of primary afferent nociceptors, increasing their excitabil-
ity and producing a hyperalgesic state.35–39 Also, elevated 
plasma norepinephrine activates β2ARs to promote visceral 
hypersensitivity.38 In humans, variants of the β2AR gene 
known to influence receptor expression are associated with 
increased risk of TMD.98

The contribution of peripheral β3ARs to persistent pain 
is more novel. Peripherally expressed β3ARs are known for 
their ability to regulate norepinephrine-induced changes in 
metabolism and thermoregulation.99 In 2010, it was discov-
ered that β3ARs are expressed on primary afferent nocicep-
tors, where they drive norepinephrine-induced ATP release 
and contribute to neuropathic pain.54 Recently, β3ARs have 
also been shown to mediate formalin-induced temporoman-
dibular joint pain.100 In contrast to acute COMT-dependent 
thermal hypersensitivity, which requires coincident activa-
tion of both β2- and β3ARs,32 persistent COMT-dependent 
thermal hypersensitivity requires independent activation of 
peripheral β3ARs. Unlike most G-protein–coupled recep-
tors, including β2ARs, β3ARs do not undergo desensitization 
after agonist stimulation.101,102 Thus, β3ARs are uniquely 
positioned to stimulate downstream effectors for prolonged 
periods of time.

In addition to their location on primary afferent 
nociceptors, β2- and β3ARs are expressed in numerous 
peripheral cell types, in which they could potentially 
mediate pain, including immune cells involved in adap-
tive responses (T cells, mast cells, and macrophages), adi-
pocytes, keratinocytes, and satellite glia. T cells, mast cells, 
and macrophages are immune cells in the periphery that 
express βARs and, after their activation by epinephrine 
or norepinephrine, orchestrate inflammatory responses. 
Increased catecholamine levels after stress or pharmaco-
logic manipulation led to activation of T cells, increased 
expression of β2- and β3ARs,49 and production of inter-
leukin-1, interleukin-6, and CCL2.103 T-cell infiltration 
in the spinal dorsal horn of adult rats has been shown to 
contribute to hypersensitivity after nerve injury.104,105 In 
line with these findings, patients with fibromyalgia have 
more activated T cells circulating in blood compared to 
healthy controls.106 Epinephrine activates mast cells and 
stimulates the release of interleukin-1β, interleukin-6, and 
other proinflammatory cytokines in a β2AR-dependent 
manner.46 Increased activation of mast cells has been 
observed in numerous chronic pain disorders, includ-
ing fibromyalgia, headache, vestibulodynia, and irrita-
ble bowel syndrome.107–112 Agonist activation of β2ARs 
expressed on macrophages in vitro results in activation of 
intracellular kinases and release of interleukin-6. Further, 
sustained systemic administration of epinephrine in mice 
results in β2AR-mediated increases in macrophage activa-
tion and interleukin-6 production.47,48
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Adipocytes are cells in the periphery that express both 
β2- and β3ARs and specialize in storing energy as fat.50 They 
also interface with immune cells to regulate inflammatory 
responses.113 Notably, adipocytes produce 30% of the interleu-
kin-6 circulating in the body,114 and studies have shown that 
activation of β3ARs on adipocytes produces a robust increase 
in interleukin-6 levels in plasma,115 as well as in tumor necro-
sis factor-α,116 CCL2,117 and NO118 levels in vitro.

Keratinocytes and satellite glial cells reside near the 
peripheral terminals and cell bodies, respectively, of pri-
mary afferent nociceptors. While a direct link between βAR 
activation on these cell types and pain has yet to be estab-
lished, catecholamine-induced activation of keratinocyte 
β2ARs results in increased intracellular kinase activation and 
interleukin-6 release.43–45 Similarly, activation of satellite 
glia by catecholamines results in βAR-mediated increases in 
intracellular cyclic nucleotides that facilitate neuronal–glial 
communication.119

Collectively, these findings demonstrate the importance 
of β2- and β3ARs located on immunoregulatory cells in the 
periphery to persistent COMT-dependent pain, account-
ing for clinical observations that βAR antagonists provide 
pain relief for patients with functional pain disorders, such 
as fibromyalgia and TMD,33,34,120 as well as inflammatory 
conditions, such as arthritis, rosacea, and CRPS.121–124 While 
these findings seem inconsistent with the ability of antide-
pressants to alleviate persistent pain by increasing synaptic 
levels of catecholamines, it is important to note that the 
analgesic effect of antidepressants is associated with descend-
ing inhibition of pain via actions at α2ARs or D2 dopamine 
receptors in the spinal dorsal horn.125,126 Thus, catechol-
amines can exert divergent influences on nociception as a 
function of localization and net influence on neuronal excit-
ability. Future studies are required to identify the specific 
cell type(s) in the periphery that express βARs and, upon 
activation, release proinflammatory molecules that initiate 
persistent hypersensitivity. By determining where, when, and 
how β2- and β3ARs and their downstream effectors mediate 
COMT-dependent pain, the field will better understand the 
diverse nature of catecholamine signaling so that patients suf-
fering from disorders resulting from reduced COMT and/or 
elevated catecholamines receive the most relevant treatments.

While the studies herein utilized a clinically-relevant 
rodent model of sustained COMT inhibition, additional 
mechanistic studies will implement a COMT−/− mouse 
model in order to more accurately represent the endog-
enously low levels of COMT activity observed in pain 
patients. Future studies are also necessary to elucidate the 
specific cell signaling pathways responsible for the initia-
tion and maintenance of β2- and β3AR-mediated hypersen-
sitivity. Finally, clinical studies are required to evaluate the 
efficacy of peripheral β2- and β3AR antagonist therapy in 
patients with chronic pain disorders and related conditions.

In conclusion, we utilized a clinically-relevant animal 
model that portrays the characteristics of patients with chronic 

pain disorders to demonstrate that both male and female rats 
are susceptible to the development of persistent COMT-
dependent pain, which is mediated via peripherally located 
β2- and β3ARs. These findings suggest that peripheral β2- and 
β3AR antagonist therapy may be an effective option for the 
treatment of chronic pain disorders, as well as those with over-
lapping peripheral β-adrenergic mechanisms (e.g., CRPS127).
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