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P ACLITAXEL is a first-line chemotherapeutic drug 
widely used for therapy of various types of cancers, 

such as lung, breast, and ovarian cancers.1 The use of pacli-
taxel is often associated with peripheral neuropathy that 
predominantly manifests as cold and mechanical hyper-
sensitivity and spontaneous pain in cancer patients.2,3 
Indeed, peripheral neuropathy after the administration 
of paclitaxel serves as the most common reason for treat-
ment discontinuation or dose reduction rather than tumor 
progression.4 Therefore, characterizing the underlying 
mechanisms is important for clinical use of paclitaxel and 
relieving associated pain.

Accumulating evidence has demonstrated that CX3CL1, 
a robust chemoattractant molecule, plays an important role 
in initiation of neuropathic pain.5,6 The evidence that inhibi-
tion of CX3CL1/CX3CR1 pathway attenuated the hyperal-
gesia and allodynia in neuropathic pain model7–9 promoted 
the identification of CX3CL1 as the potential target for 
the treatment of paclitaxel-induced pain. Recently, our and 
peer’s studies showed that CX3CL1-induced peripheral 

axonopathy and ganglionopathy is involved in painful 
neuropathy after chemotherapeutic drug treatment.10,11 
Although it has been well documented that the CX3CL1/
CX3CR1 signaling regulates the interaction between neu-
ronal-microglia in the spinal cord and thereby mediates 
the development of neuropathic pain,6,12 involvement of 
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ABSTRACT

Background: Up-regulation of CX3CL1 has been revealed to be involved in the neuropathic pain induced by nerve injury. 
However, whether CX3CL1 participates in the paclitaxel-induced painful peripheral neuropathy remains unknown. The aim 
of the current study was to elucidate the involvement of transcriptional factors nuclear factor-κB (NF-κB) and its causal inter-
action with CX3CL1 signaling in the paclitaxel-induced painful peripheral neuropathy.
Methods: Painful peripheral neuropathy induced by paclitaxel treatment was established in adult male Sprague-Dawley rats. 
The von Frey test were performed to evaluate neuropathic pain behavior, and real-time quantitative reverse transcription poly-
merase chain reaction, chromatin immunoprecipitation, Western blot, immunohistochemistry, and small interfering RNA 
were performed to understand the molecular mechanisms.
Results: The application of paclitaxel induced an up-regulation of CX3CL1 expression in the spinal neurons, which is reduced 
significantly by NF-κB inhibitor ammonium pyrrolidinedithiocarbamate or p65 small interfering RNA. Blockade of either 
CX3CL1 (n = 12 each) or NF-κB (n = 12 each) signaling pathway attenuated mechanical allodynia induced by paclitaxel. 
Chromatin immunoprecipitation further found that paclitaxel induced an increased recruitment of nuclear factor-κB (NF-
κB)p65 to the Cx3cl1 promoter region. Furthermore, an increased acetylation level of H4, but not H3, in Cx3cl1 promoter 
region in spinal neurons was detected after paclitaxel treatment, which was reversed by inhibition of NF-κB with ammonium 
pyrrolidinedithiocarbamate or p65 small interfering RNA.
Conclusions: These findings suggest that up-regulation of CX3CL1 via NF-κB–dependent H4 acetylation might be critical 
for paclitaxel-induced mechanical allodynia. (Anesthesiology 2015; 122:1142–51)
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What We Already Know about This Topic

•	 Chemotherapy-induced neuropathic pain is very difficult to 
control, and its mechanisms have not been fully described

•	 The chemokine CX3CL1 (fractalkine) is felt to support neuro-
pathic pain under some circumstances

What This Article Tells Us That Is New

•	 Using a rat model of paclitaxel-induced neuropathy, both 
pharmacological and siRNA-based techniques showed that 
CX3CL1 supports allodynia in this model

•	 Chromatin immunoprecipitation experiments demonstrated 
that an epigenetic mechanism controls CX3CL1 expression 
in the spinal neurons of neuropathic rats
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CX3CL1 in paclitaxel-induced painful peripheral neuropa-
thy still remains unknown.13–15

Nuclear factor-κB (NF-κB) is one of the most potent 
inducible transcriptional factors to modulate the expression 
of proinflammatory factors such as CXCL10 and CCL2 
during neuroinflammation.16,17 NF-κB exists in homo- or 
heterodimeric complexes consisting of different members of 
the Rel protein family.18 The p50/p65 heterodimer, the most 
prevalent complex of NF-κB, is bound to inhibitory proteins 
IκB in the cytoplasm and present in an inactive form in the 
quiescent cells. Upon activation by varieties of stimuli, IκB 
is rapidly phosphorylated, ubiquitinated, and then degraded. 
Subsequently, the active heterodimer of p50/p65 translocates 
into nucleus and induces DNA transcription by binding to 
specific promoter elements.19 NF-κB subunits can recruit sev-
eral types of histone acetyltransferases to the promoter region 
of the target gene and facilitate the expression of target gene by 
changing the acetylation profiles of histones.20,21 Histone acet-
ylation has been recognized as an important factor to modify 
the accessibility of the DNA to the transcriptional machin-
ery.22 Our and peer previous studies have demonstrated that 
NF-κB in the spinal cord plays a critical role in nerve injury-
induced neuropathic pain,23,24 and the activation of NF-κB 
induced by paclitaxel is also reported in several cancer cell 
lines.25–27

Therefore, we hypothesize that CX3CL1 mediates the 
neuronal-glial signaling in the spinal cord and thereby 
contributes to the development of mechanical allodynia 
induced by paclitaxel. In the current study, we further 
explore the involvement of NF-κB and its causal interac-
tion with CX3CL1 signaling and determine their therapeu-
tic potential target in paclitaxel-induced painful peripheral 
neuropathy.

Materials and Methods

Animals
Male Sprague-Dawley rats (220 to 250 g) were housed 
in a temperature-controlled room (22 ± 1°C) with a 12-h 
light-dark cycle. All animal experimental procedures were 
approved by the Sun Yat-Sen University Animal Care 
and Use Committee (Guangzhou, Guangdong, People’s 
Republic of China) and carried out in accordance with the 
guideline of National Institutes of Health on the animal 
care and the ethical guideline. All animals were randomly 
assigned to different experimental or control conditions in 
the current study.

Drug Administration and Behavioral Test
Paclitaxel (Taxol, 6 mg/ml, Bristol-Myers Squibb, New 
York, NY) was diluted with saline (1:3) and intraperitone-
ally injected (8 mg/kg, cumulative dose of 24 mg/kg) on 3 
alternate days (days 1, 4, and 7). Control animals received 
an equivalent volume of saline.

Intrathecal injection was preformed according to the our 
previously described method.28 In brief, a polyethylene-10 
catheter was inserted into the rat’s subarachnoid space through 
L5–L6 intervertebral space, and the tip of the catheter was 
located at the L5 spinal segmental level. Intrathecal injec-
tion of neutralizing antibody against CX3CL1 (10 μg/10 μl,  
Torrey Pines Biolabs, East Orange, NJ), ammonium 
pyrrolidinedithiocarbamate (PDTC) (200 ng/10 μl), or 
NF-κB p65 small interfering RNA (siRNA) (50 μg/15 μl)  
was initiated 30 min before the first dose of paclitaxel 
and maintained for 10 days. The withdrawal threshold of 
foot was determined by applying mechanical stimuli to the 
plantar surface of the hindpaw using von Frey hairs. The 
50% withdrawal threshold was defined as the lowest force 
that produced five or more responses.29 The experimenter 
who conducted the behavioral tests was blinded to all treat-
ments. All animals survived throughout the experiments 
after drugs treatment.

siRNA Preparation, Transfection, and Screening
Three 19-nt siRNA duplexes targeting rat RelA (NF-κB p65) 
gene were designed using the siRNA Target Finder and Design 
Tool* and were commercially obtained from Ribobio (Guang-
zhou, China). The sequences of these siRNAs were as follows:

siRNA1, target sequence 1: GCATCCAGACCAACAATAA
5′-GCAUCCAGACCAACAAUAA dTdT-3′ (sense)
3′-dTdT CGUAGGUCUGGUUGUUAUU-5′ (antisense)
siRNA2, target sequence 2: CTCAAGATCTGCCGAGTAA
5′-CUCAAGAUCUGCCGAGUAA dTdT-3′ (sense)
3′-dTdT GAGUUCUAGACGGCUCAUU-5′ (antisense)
siRNA3, target sequence 3: GCAGTTCGATGCTGATGAA
5′-GCAGUUCGAUGCUGAUGAA dTdT-3′ (sense)
3′-dTdT CGUCAAGCUACGACUACUU-5′ (antisense)

siRNA, which has no homology to RelA (NF-κB p65) 
gene, was used as control (Scramble). The efficacy of the 
RelA siRNAs was tested in a follow-up siRNA screening 
experiment. HBZY-1 cells were transfected with siRNA 
using Lipofectamine2000 (Invitrogen, Carlsbad, CA) 
according to the manufacturer’s instructions. NF-κB p65 
expression levels were determined using quantitative poly-
merase chain reaction (PCR) and Western blot. Compared 
with the blank control, RelA messenger RNA (mRNA) 
expression was suppressed by 84.7 ± 7.1%, 60.7 ± 4.6%, 
and 34.6 ± 2.8% in cells treated with sequence 1, 2, 3 RelA 
siRNA, respectively, when measured 24 h after transfec-
tion (fig. 1A). In agreement with the PCR results, NF-κB 
p65 protein expression level was dramatically reduced after 
treatment with siRNAs of sequence 1 by western blot anal-
ysis (fig. 1B). In vivo study also confirmed that intrathecal 
injection of siRNA 1 was effective in suppressing NF-κB 
p65 protein expression in the spinal cord (fig. 1C). There-
fore, the chemically synthesized siRNA 1 was chosen for 
the subsequent experiments in vivo.* http://www.ambion.com. Accessed February 12, 2013.
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Western Blot
Rats were deeply anesthetized with intraperitoneal injection 
of sodium pentobarbital (50 mg/kg) at different time points. 
Spinal cord was removed and sectioned in a cryostat. The spi-
nal dorsal horn punch was taken with a 15-gauge cannula and 
frozen at −80°C until used. Samples were homogenized on ice 
in 15 mmol/l Tris buffer containing a cocktail of proteinase 
inhibitors and phosphatase inhibitors. Protein samples were 
separated by gel electrophoresis (sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis) and transferred onto a polyvi-
nylidene fluoride membrane. The blots were placed in block 
buffer for 1 h at room temperature and incubated with primary 
antibody against CX3CL1 (1:1000, Torrey Pines Biolabs), 
NF-κB p65 (1:1000, Abcam, Cambridge, United Kingdom), 
phosphorylated NF-κB p65 (Ser311) (1:1000, Cell Signaling 
Technology, Danvers, MA), acetylated histone H4 (1:1000, 
Millipore, Billerica, MA), histone H4 (1:1000, Millipore), 
acetylated histone H3 (K9) (1:500, Abcam), or histone H3 
(1:500, Abcam) overnight at 4°C. The blots were then incu-
bated with horseradish peroxidase–conjugated immunoglob-
ulin G. Electrochemiluminescence (Pierce, Rockford, IL) was 
used to detect the immune complex. The band was quanti-
fied with computer-assisted imaging analysis system (ImageJ, 
National Institutes of Health, Bethesda, MD).

Immunohistochemistry
Immunochemistry was performed as we previously 
described.30 Briefly, rats were anesthetized with intraperi-
toneal injection of sodium pentobarbital (50 mg/kg) and 
perfused through the ascending aorta with 4% paraformal-
dehyde. The lumbar spinal cord segments were removed and 
postfixed in the same fixative overnight. Cryostat sections (16 
μm) were cut and processed for immunohistochemistry with 
primary antibody for CX3CL1 (1:300, Torrey Pines Bio-
labs), phosphorylated NF-κB p65 (Ser311) (1:300, Cell Sig-
naling Technology), NeuN (1:500; Chemicon, Darmstadt, 

Germany), glial fibrillary acidic protein (1:500, Chemicon), 
and OX-42 (1:200, Chemicon). After incubation overnight 
at 4°C, the sections were incubated with cy3-conjugated and 
fluorescein isothiocyanate–conjugated secondary antibodies 
for 1 h at room temperature. The stained sections were then 
examined with a Leica (Leica, Solms, Germany) fluorescence 
microscope, and images were captured with a Leica DFC350 
FX camera. For quantification of OX-42 immunostaining, 
the immunoreactive-positive area was analyzed with a Leica 
Qwin V3 image system.

RNA Extraction and Real-time Quantitative PCR
Total RNA was extracted from the rat’s spinal dorsal horn 
tissues with Trizol reagent (Invitrogen). The reverse transcrip-
tion was performed using oligo-dT primer and Moloney 
Murine Leukemia Virus Reverse Transcriptase (Promega, 
Madison, WI) according to the manufacturer’s protocol. Spe-
cific primer sequences of the examined mRNA and β-actin 
for PCR were listed in table 1. Real-time quantitative PCR 
was performed using SYBR Green qPCR SuperMix (Invitro-
gen) and the ABI PRISM7500 Sequence Detection System. 
The reactions were setup based on the manufacture’s protocol. 
PCR conditions were incubation at 95°C for 3 min followed 
by 40 cycles of thermal cycling (10 s at 95°C, 20 s at 58°C, 
and 10 s at 72°C). The relative expression ratio of mRNA 
in rat’s spinal tissues was quantified by the 2−ΔΔCT method.

Chromatin Immunoprecipitation Assays
Chromatin immunoprecipitation (ChIP) assays were per-
formed using the ChIP Assay Kit (Thermo). The rats’ spinal 
dorsal horn were removed quickly and placed in 1% formalde-
hyde for 2 min. The DNA was fragmented by sonication and 
digested with micrococcal nuclease. After addition of ChIP 
dilution buffer, 100 μl of sample was saved as input. Eight 
microliters of NF-κB p65 antibody (Abcam) or acetylated his-
tone H4 antibody (Millipore) was added to 500 μl precleared 

Fig. 1. Determination of efficacy of small interfering RNA (siRNA) in reducing nuclear factor-κB (NF-κB) p65 expression. HBZY-1 
cells were transfected with different sequence of siRNA targeting NF-κB p65 or scramble siRNA. After 24 h of transfection, the 
messenger RNA (mRNA) level of NF-κB p65 was significantly reduced by siRNA1 (**P < 0.01) and siRNA2 (*P < 0.05), but not 
by siRNA 3, compared with control group (A). Western blot results showed that siRNA1 also decreased the protein expression 
of NF-κB p65 compared with control group (**P < 0.01) (B). Intrathecal injection of siRNA1 (50 μg/15 μl for 10 days) suppressed 
NF-κB p65 expression in the spinal cord compared with control group (**P < 0.01) (C).
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chromatin solution, and the sample was incubated overnight. 
A “nonantibody” immunoprecipitation was performed as a 
negative control. Antibody/DNA complexes were captured, 
washed, eluted, and reverse cross-linked. The DNA was purified 
from the complexes and input fractions. The precipitated 
DNA was resuspended in 60 μl of nuclease-free water, and 
quantitative real-time PCR or semiquantitative PCR was 
performed on 5 μl of sample as described above. ChIP/
input ratio was calculated. Primers 5′-GCTGCCCTGAC-
CATAAAT-3′ and 5′-AGCTGTACGGCACTCACC-3′ 
were designed to amplify a -1941/-1931 region relative to 
the transcription start site of rat CX3CL1 promoter, con-
taining NF-κB–binding site.

Statistical Analysis
All data were expressed as means ± SEM and analyzed were 
using SPSS 13.0 (SPSS, Chicago, IL). Immunohistochemistry 

and western blot data were analyzed by two-way ANOVA 
followed by Tukey post hoc test. For behavioral analysis, two-
way ANOVA with repeated measures followed by Tukey 
post hoc test for all groups and between groups and one-way 
ANOVA followed by Tukey post hoc test for different groups 
on the same time point were carried out. The criterion for 
statistical significance was P < 0.05. The sample size, which 
was chosen based on our and peers’ experience in painful 
behavior studies, provides the reason of power analysis.

Results

Paclitaxel-induced Allodynia and Up-regulation of 
Cytokines in the Spinal Cord
Consistent with our previous study,29 administration with 
paclitaxel (3 × 8 mg/kg, cumulative dose 24 mg/kg) induced 
marked mechanical allodynia compared with the vehicle 
group (fig. 2A) (F = 38.379, P < 0.01). In view of the piv-
otal role of neuroinflammation in dorsal horn in the induc-
tion of paclitaxel-induced mechanical allodynia,31,32 we here 
determined whether paclitaxel would regulate the expression 
of cytokines and chemokines. After paclitaxel treatment on 
alternative days (days 1, 4, and 10), mRNA was extracted 
from rat spinal cord, and quantitative PCR was performed 
to examine specific mRNA using primers with differ-
ent sequences as listed in table  1. As shown in figure  2B, 
paclitaxel induced increase in the mRNA levels of several 
examined cytokines at different time points, respectively. 
Among these cytokine/chemokines, CX3CL1 underwent a 
significant dynamic change in the pattern consistent with 
pain behavior induced by paclitaxel. Considering its pivotal 
role in the communication between neurons and microglia 
in several settings of neuroinflammatory diseases,32 CX3CL1 
was chosen for the subsequent investigation of its role in the 
paclitaxel-induced painful peripheral neuropathy.

Table 1.  Specific Primer Sequences

Gene Primer Sequence

Interleukin 
(IL)-6

Forward 5′-CCACTGCCTTCCCTACTT-3′

Reverse 5′-TTGCCATTGCACAACTCT-3′
CCL1 Forward 5′-AGAAAGCTGCGCCTTAA-3′

Reverse 5′-CTCTGGTGCTGGGATGG-3′
IL-1β Forward 5′-GGATGATGACGACCTGCTA-3′

Reverse 5′-CACTTGTTGGCTTATGTTCTG-3′
CX3CL1 Forward 5′-CTCCAGCCATCCAGCCATG-3′

Reverse 5′-CATTTCGTCATGCCGAGGTG-3′
IL-10 Forward 5′-TGGACAACATACTGCTGACAG-3′

Reverse 5′-GGTAAAACTTGATCATTTCTGACAAG-3′
IL-15 Forward 5′-TGCACGAGTACAGTAACAT-3′

Reverse 5′-CCTCCAGCTCCTCACAT-3′
β-actin Forward 5′-AGGGAAATCGTGCGTGACAT-3′

Reverse 5′-GAACCGCTCATTGCCGATAG-3′

Fig. 2. Paclitaxel (Pacl)-induced allodynia and up-regulation of cytokines in the spinal cord. (A) Treatment with paclitaxel (8 mg/kg at 
day 1, 4, 7) significantly decreased the hindpaw withdraw threshold. Intrathecal injection of neutralizing antibody against CX3CL1 
(10 μg/10 μl for 10 days) attenuates mechanical allodynia induced by paclitaxel. n = 12 in each group; *P < 0.05, **P < 0.01 vs. 
corresponding paclitaxel group. (B) The messenger RNA (mRNA) levels of interleukin (IL)-6, CCL1, IL-1β, CX3CL1, IL-10, and IL-15 
were surveyed in the spinal dorsal horn of the rats at 1, 4, and 10 days after treatment with paclitaxel. n = 6 in each group; *P < 
0.05, **P < 0.01. IgG = immunoglobulin G.
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Up-regulation of CX3CL1 Contributes to  
Paclitaxel-induced Allodynia
Consistent with CX3CL1 mRNA change, western blot results 
revealed that paclitaxel induced an increase in the CX3CL1 
protein expression in the spinal cord compared with the con-
trol group. Up-regulation of CX3CL1 induced by paclitaxel 
started on day 4 and maintained to the end of the experi-
ment (day 10) (fig.  3A). To define the role of CX3CL1 in 
paclitaxel-induced peripheral neuropathy, neutralizing 
antibody against CX3CL1 (10 µg/10 µl) was intrathecally 
administrated for 10 days. Behavioral results demonstrated 
that blocking CX3CL1 significantly attenuated paclitaxel-
induced mechanical allodynia compared with the paclitaxel 
group (fig. 2A) (drug vs. paclitaxel in withdrawal threshold, 
13.17 [4.41] vs. 8.03 [2.63]; 10.22 [2.50] vs. 5.91 [1.77]; 
and 10.03 [2.7] vs. 2.44 [1.15], on days 4, 6, and 10, respec-
tively; n = 12 each) (F = 5.618, P < 0.01). Intrathecal injec-
tion of the neutralizing antibody alone had no effect on the 
mechanical withdrawal thresholds in the naive rats. To further 
investigate the specific role of CX3CL1 in the maintenance 
of paclitaxel-induced neuropathic pain, intrathecal injec-
tion of neutralizing antibody against CX3CL1 was initiated 
on day 8 and continued for another 2 days after paclitaxel 
treatments. The results showed no significant difference in 
mechanical allodynia between antibody + paclitaxel group and 

paclitaxel group when behavioral tests was performed on day 
10 (fig. 3B), suggesting that CX3CL1 might not contribute to 
the maintenance of paclitaxel-induced allodynia. In addition, 
immunohistochemistry results showed that CX3CL1 neutral-
izing antibody significantly suppressed the increased OX-42 
expression induced by paclitaxel application (fig. 3C). Double 
immunostaining also showed that CX3CL1 was exclusively 
located in the spinal neurons but not in astrocytes or microg-
lia (fig. 3D). These findings suggested that up-regulation of 
CX3CL1 in spinal neurons might be involved in chemothera-
peutic drug-induced neuroinflammation and mechanical 
allodynia.

NF-κB p65-mediated Up-regulation of CX3CL1  
Induced by Paclitaxel
NF-κB, an important transcriptional factor, regulates the 
expression of many cytokines and chemokines.33 To deter-
mine whether NF-κB signaling participated in the paclitaxel-
induced CX3CL1 up-regulation, phosphorylated NF-κB 
p65 level after paclitaxel treatment was first examined. The 
expression of phosphorylated p65 at Ser311 was significantly 
increased on days 4 and 10 after paclitaxel treatment (fig. 4A). 
Consistent with western blot result, immunohistochemis-
try staining showed that paclitaxel treatment significantly 
increased p-p65 in the spinal cord compared with control 

Fig. 3. Treatment with paclitaxel (Pacl) induced the up-regulation of CX3CL1 in the spinal neurons. (A) Representative blots and 
histogram showed up-regulation of CX3CL1 induced by paclitaxel treatment. n = 6 in each group; **P < 0.01 vs. corresponding 
control group (Con). (B) Intrathecal injection of CX3CL1 neutralizing antibody for two consecutive days on day 8 after paclitaxel 
treatments did not attenuates mechanical allodynia compared with the paclitaxel group. n = 12 in each group; **P < 0.01 vs. cor-
responding vehicle group. (C) Intrathecal injection of CX3CL1 neutralizing antibody inhibits the increased OX-42 immunostaining 
induced by paclitaxel n = 6 in each group; **P < 0.01 vs. corresponding paclitaxel group. Scale bar, 100 µm. (D) The immunofluo-
rescence staining of CX3CL1 (red) was colocalized with NeuN (neuron marker, green) but not glial fibrillary acidic protein (GFAP) 
(astrocyte marker, green) or OX-42 (microglia marker, green). Scale bar, 100 µm.

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/122/5/1142/485825/20150500_0-00030.pdf by guest on 18 April 2024



Anesthesiology 2015; 122:1142-51	 1147	 Li et al.

Pain Medicine

group (fig. 4B). Double immunostaining results revealed that 
NF-κB p-p65 was found in the spinal neurons and microglia 
but not in the astrocyte (fig. 4C). Next, we examined whether 
transcriptional factor NF-κB p65 modulated CX3CL1 up-
regulation after the treatment of paclitaxel. Double immu-
nostaining results demonstrated colocalization of p-p65 and 
CX3CL1 in the spinal dorsal horn (fig. 4D). Behavior study 
showed that continuous intrathecal administration of NF-κB 
p65 inhibitor PDTC (200 ng/10 µl) inhibited mechanical 
allodynia induced by paclitaxel (fig. 5A) (PDTC vs. paclitaxel 
in withdrawal threshold, 12.53 [3.88] vs. 8.34 [2.46]; 10.74 
[2.28] vs. 6.1 [1.92]; and 10.02 [2.7] vs. 2.53 [1.06], on days 
4, 6, and 10, respectively) (F = 6.991, P < 0.01). In addition, 
intrathecal injection of siRNA targeting NF-κB p65 (50 μg/15 
μl) suppressed mechanical allodynia further confirmed the role 
of NF-κB p65 in the paclitaxel-induced allodynia (fig.  5A) 

(siRNA vs. paclitaxel in withdrawal threshold, 11.9 [3.11] 
vs. 8.34 [2.46]; 11.1 [2.23] vs. 6.1 [1.92]; and 9.5 [2.77] vs. 
2.53 [1.06], on days 4, 6, and 10, respectively; n = 12 each) 
(F = 11.937, P < 0.01). Consistent with the inhibitory effect 
on the phosphorylation of NF-κB p65 (fig. 5B), intrathecal 
injection of PDTC or specific p65 siRNA reduced CX3CL1 
up-regulation at protein (fig. 5B) and mRNA (fig. 5C) levels in 
the spinal dorsal horn induced by paclitaxel. These results sug-
gest that up-regulation of CX3CL1 after paclitaxel treatment is 
dependent on NF-κB p65 signaling pathway.

Paclitaxel Treatment Promoted NF-κB p65-mediated 
Histone H4 Acetylation on the cx3cl1 Gene
Upon activation of NF-κB pathway, NF-κB p65 can bind 
to target gene promoter and modify acetylation of the his-
tones,20,21 thereby facilitating the expression of target genes. 

Fig. 4. Increased phosphorylation of NF-κB p65 is induced in the CX3CL1-positive neurons after paclitaxel (Pacl) treatment. (A) The 
expression of phosphorylated p65 at Ser311 was significantly increased after paclitaxel treatment. n = 6 in each group; **P < 0.01 
vs. corresponding control group (Con). (B) Increased phosphorylation of p65 was significantly induced after paclitaxel treatment 
compared with control group. Scale bar, 200 µm. (C) The immunofluorescence staining of p-p65 (red) was colocalized with NeuN 
(neuron marker, green) and OX-42 (microglia marker, green) but not with glial fibrillary acidic protein (GFAP) (astrocyte marker, green). 
Scale bar, 50 µm. (D) Double immunofluorescence staining indicated colocalization of p-p65 with CX3CL1 in the spinal neurons. 
Scale bar, 50 µm.

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/122/5/1142/485825/20150500_0-00030.pdf by guest on 18 April 2024



Anesthesiology 2015; 122:1142-51	 1148	 Li et al.

Role of CX3CL1 in the Paclitaxel-induced Allodynia

Therefore, we first determined whether application of pacli-
taxel promoted NF-κB p65 binding to the cx3cl1 gene 
promoter using ChIP-PCR assay. A potent-binding site of 
NF-κB p65 in the cx3cl1 gene at position -1941/-1931 was 
first identified using TFSEARCH and jaspar database. Then, 
the DNA precipitated by the NF-κB p65 antibody was sub-
jected to PCR using primers designed to amplify a 162-bp 
fragment (-2029/-1867) of the cx3cl1 promoter flanking the 
NF-κB–binding site. The results showed that the recruitment 
of p65 to the cx3cl1 gene promoter was significantly increased 
after paclitaxel treatment on day 10 compared with control 
group by quantitative real-time (fig. 6A) and semiquantita-
tive (fig. 6B) PCR analysis. Next, we examined whether treat-
ment with paclitaxel could modify histone acetylation in the 
cx3cl1 promoter region. The western blot results showed that 

application of paclitaxel significantly increased global acetyla-
tion of H4 (fig. 7A). No alteration of acetylation of H3 (K9) 
was detected (fig. 7A). For ChIP assay, the DNA precipitated 
by the acetylated H4 antibody was used for PCR analysis and 
the cx3cl1 promoter region flanking the NF-κB–binding 
site was amplified. The results showed that the level of H4 
acetylation on the CX3CL1 gene promoter was enhanced 
after treatment with paclitaxel (fig. 7B). However, the effect 
of paclitaxel on H4 acetylation was reduced by intrathecal 
administration of PDTC or p65 siRNA (fig. 7B), indicating 
that paclitaxel leads to an increase in histone acetylation at 
the CX3CL1 gene promoter through NF-κB signaling.

Discussion
It has been recently suggested that neuroinflammation might 
be involved in the chemotherapeutic drug-induced painful 
neuropathy. In the current study, we showed that application 
of paclitaxel induced an up-regulation of CX3CL1 protein and 
mRNA expression in the spinal neurons. Administration of the 
paclitaxel also increased the phosphorylation of NF-κB p65 
in the CX3CL1-expressing spinal neurons. ChIP assay further 
demonstrated that paclitaxel increased recruitment of NF-κB 
p65 to, as well as acetylation of histone H4 on, the cx3cl1 gene 
promoter in the spinal dorsal horn. Inhibition of NF-κB with 
PDTC or siRNA significantly decreased H4 acetylation on the 
cx3cl1 gene promoter region and suppressed the upsurge of 
CX3CL1 expression induced by paclitaxel. Blocking NF-κB-
CX3CL1 signaling pathway also attenuated mechanical allo-
dynia induced by paclitaxel. These findings suggested that 
up-regulation of CX3CL1 via NF-κB–mediated H4 acetyla-
tion contributes to paclitaxel-induced mechanical allodynia.

Fig. 5. Inhibition of NF-κB attenuated the up-regulation of CX3CL1 induced by paclitaxel (Pacl). (A) Continuous intrathecal injec-
tion of p65 inhibitor ammonium pyrrolidinedithiocarbamate (PDTC) (200 ng/10 µl for 10 days) or p65 small interfering RNA (siRNA) 
(50 μg/15 μl for 10 days) reduced mechanical allodynia in the rats treated with paclitaxel. n = 12 in each group; *P < 0.05, **P < 
0.01 vs. corresponding paclitaxel group. (B) Continuous intrathecal administration of PDTC or p65 siRNA decreased the expres-
sion of phosphorylated p65 NF-κB and CX3CL1 in the spinal dorsal horn of the rats receiving paclitaxel on day 10. n = 6 in each 
group; **P < 0.01 vs. corresponding paclitaxel. (C) PDTC or p65 siRNA reduced up-regulation of CX3CL1 messenger RNA (mRNA) 
level induced by paclitaxel treatment. n = 6 in each group; **P < 0.01 vs. corresponding paclitaxel group. Con = control group.

Fig. 6. Treatment with paclitaxel (Pacl) enhanced recruitment 
of nuclear factor-κB (NF-κB) p65 to the cx3cl1 gene promoter. 
Chromatin immunoprecipitation (ChIP) assays were performed 
with or without NF-κB p65 antibody. Increased recruitment of 
NF-κB p65 to the cx3cl1 gene promoter induced by paclitaxel 
was demonstrated by quantitative real-time polymerase chain 
reaction (A) and semiquantitative PCR (B). n = 7 in each group; 
**P < 0.01 vs. corresponding control group (Con). No Ab = normal 
immunoglobulin G without specific antibody.
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CX3CL1, a well-characterized chemokine released by 
neurons, has been identified to mediate painful responses in 
several pathological pain models.9,34,35 Our recent results that 
paclitaxel cause apoptosis and macrophage infiltration in the 
dorsal root ganglion via CX3CL1-suggested expression of 
CX3CL1 in dorsal root ganglion are involved in the pacli-
taxel-induced painful peripheral neuropathy.36 In addition, 
Elizabeth reported that CX3CL1/CX3R1 signal in the sciatic 
nerve participated in the vincristine-induced painful periph-
eral neuropathy.11 These research suggested that CX3CL1 in 
the peripheral nervous system might be a critical molecular 
in chemotherapeutic drug-induced peripheral neuropathy. 
In the current study, our data first revealed that paclitaxel 
treatment also increase the expression of CX3CL1 in dorsal 
horn neurons. Our results are supported by the recent report 
that application of paclitaxel up-regulated the chemokine 
CCL2 expression in the spinal cord.37 Although it is gener-
ally believed that paclitaxel does not penetrate blood–brain 
barrier,38,39 low concentrations of paclitaxel can be detected 
in spinal cord after systemic treatment.40 It has been reported 
that paclitaxel can directly impair neuronal activities.41 Thus, 
further study is needed to evaluate whether the up-regulation 
of spinal CX3CL1 is induced by a direct effect of paclitaxel or 
through its effects on peripheral targets, these results implied 
that CX3CL1 via action on the central and peripheral 
nervous system might be a critical molecular in paclitaxel-
induced peripheral neuropathy.

Previous studies have established a pivotal role of spinal 
microglia activation in the induction and maintenance of cen-
tral sensitization and behavioral mechanical allodynia in several 
models of neuropathic pain.9,42 The activation of spinal microg-
lia was reported with high-dose (cumulative dose 36 mg/kg)43 

but not low-dose (cumulative dose 8 mg/kg)44 paclitaxel treat-
ment. In our current studies, microglia activation was mea-
sured as an increase in the immunostaining area of OX-42 in 
the spinal dorsal horn. It has been reported that CX3CR1 is 
only expressed in the microglia and required for neuropathic 
pain facilitation.6,45 It is possible that CX3CL1 up-regulation 
via binding CX3CR1 activated the microglia in the spinal dor-
sal horn and mediated the paclitaxel-induced allodynia. Our 
previous study reported that inhibition of microglia activity 
by minocycline significantly suppressed mechanical allodynia 
after paclitaxel.15,29 Here, blockade of CX3CL1 signaling 
markedly inhibited microglia activation and mechanical allo-
dynia, which further confirmed the involvement of microglia 
in chemotherapeutic drug-induced painful neuropathy.

In addition, the current study revealed an NF-κB–
mediated epigenetic mechanism underlying the up-regulation 
of CX3CL1 after paclitaxel treatment. NF-κB is an impor-
tant transcription factor, which regulates the expression of 
many proinflammatory cytokines in various neuropathy dis-
eases.19,46,47 Furthermore, the activation of NF-κB induced by 
paclitaxel is also reported in several cancer cell lines.26,27 Here, 
we demonstrated that intrathecal injection of NF-κB activation 
inhibitor PDTC or p65 siRNA significantly reduced up-regu-
lation of CX3CL1 protein and mRNA, as well as the mechani-
cal allodynia. It is noteworthy that activation of NF-κB p65 
was significant induced in the spinal neurons and microglia 
after paclitaxel treatment. Although the role of microglia in 
the development of paclitaxel-induced allodynia cannot be 
excluded, the evidence that up-regulation of CX3CL1 was 
induced in the p-p65-positive spinal neurons suggested that 
NF-κB p65-dependent CX3CL1 up-regulation contribute to 
painful neuropathy after treatment of paclitaxel.

Fig. 7. Nuclear factor-κB (NF-κB) p65 activity is required for the increased acetylation of histone H4 on the cx3cl1 promoter 
region induced by paclitaxel (Pacl). (A) Treatment with paclitaxel significantly increased the global acetylation of histone H4, but 
not H3 K9, in the spinal dorsal horn. n = 6 in each group; **P < 0.01 vs. corresponding control group (Con). (B) Chromatin im-
munoprecipitation (ChIP) assay were performed with or without acetylated H4 antibody. Increased acetylation of histone H4 on 
the cx3cl1 promoter region flanking NF-κB p65-binding site was reduced by ammonium pyrrolidinedithiocarbamate (PDTC) or 
p65 small interfering RNA (siRNA) in rats receiving paclitaxel treatment. n = 7 in each group; **P < 0.01 vs. corresponding control 
group, ##P < 0.01 vs. corresponding paclitaxel group. No Ab = normal immunoglobulin G without specific antibody.
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Once disassociated with IκB in response to multistimuli, 
NF-κB may undergo significant translocation to the nucleus 
and subsequent recruitment to the binding site on target genes, 
thereby modifying the chromatin structure and gene expression 
via epigenetic mechanism. For example, it was reported that 
cytokine-induced CX3CL1 expression was accompanied by 
increased recruitment of NF-κB to the CX3CL1 gene promoter 
in human lung epithelial cells.48 NF-κB binding to the promoter 
is also required for IL-8 gene expression activated by paclitaxel in 
ovarian cells.27 In our current study, ChIP assay data showed that 
the increased binding of p65 to the CX3CL1 gene promoter 
was detected after paclitaxel treatment. Therefore, decreased 
CX3CL1 expression by inhibition of NF-κB phosphorylation 
by PDTC or p65 siRNA might result from reduction in NF-κB 
translocation to the nucleus and recruitment to CX3CL1 gene.

It is well-known that acetylation of histone increases the 
accessibility of transcriptional machinery by facilitation of 
DNA uncoiling.49 Modification of histone acetylation serves 
as an important mechanism underlying the epigenetic mod-
ulation of the expression of cytokines and chemokines, such 
as IL-8 and E-selectine, in several pathological conditions. 
In our current study, we found that enhanced H4 acetyla-
tion is closely related to CX3CL1 up-regulation after pacli-
taxel. It has been demonstrated that NF-κB subunits can 
recruit histone acetytransferases to the target gene promoter 
to change the histones acetylation, thereby facilitating the 
genes expression.20,21 For example, enhanced transcription 
of CCL11 after acetylation of histone H4 at gene promoter 
region is induced in a NF-κB p65-dependent way.50,51 Here, 
our ChIP study revealed that paclitaxel induced significantly 
increased histone H4 acetylation in cx3cl1 promoter region, 
which was largely reduced by inhibition of NF-κB pathway 
with PDTC or p65 siRNA. Therefore, combined with the 
result that inhibition of NF-κB pathway remarkably sup-
presses the CX3CL1 up-regulation, these data suggest that 
NF-κB p65-dependent histone acetylation might contribute 
to paclitaxel-induced up-regulation of CX3CL1.
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