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I N the intensive care unit (ICU), the care of patients with 
acute organ injuries leading to organ failure remains 

challenging. Organ failure was defined by the 1991 Consen-
sus Conference of the American College of Chest Physicians 
and the Society of Critical Care Medicine as “the presence 
of altered organ functions in an acutely ill patient such that 
homeostasis cannot be maintained without intervention.”1 
This disorder represents a dynamic continuum of change 
over time.2 Multiple organ dysfunction syndrome (MODS) 
can lead to a mortality rate of 60% after severe trauma, 40% 
in sepsis, 50% in pancreatitis, 30% in burn injury, and 30% 
in patients admitted postcardiac arrest.3 The higher the 
number of failed organs, the higher the mortality.4 In the 
context of single organ injury without MODS, acute kidney 
injury (AKI),5 acute respiratory distress syndrome (ARDS),6 
and acute liver failure (ALF)7 are responsible for up to 60%, 
40%, and 30% of mortality, respectively.

The underlying mechanisms leading to cell death in organ 
injury are diverse: the proinflammatory nuclear factor-kappa 

B pathway, endothelial activation with coagulation disor-
ders, lipid mediators, microcirculatory dysfunction, and 
ischemia–reperfusion (I/R) injury including oxidative stress 
(OS)-, metabolomic disruption-, and proapoptotic-induced 
injuries. Aside from the diversity, many mechanisms are 
also dependent on the sequence in time of injury and/or are 
organ specific. For instance, nuclear factor-kappa B pathway 
can be either damaging in the acute phase of sepsis, and/or 
can be involved in the repair process during the resolution 
phase of injury. Similarly, the function of phagocytes is dual-
faced. Although beneficial in sepsis by clearing pathogens, 
macrophages can also generate neuron damage through 
phagocytosis and apoptosis.

This complexity probably explains in part why treatment 
strategies geared toward a single pathway and/or during a 
specific time point have failed, highlighting the limited ther-
apeutic strategies available to clinicians to target the multior-
gan injuries which may result, aside from the treatment of the 
initial cause of injury. Clinical management currently focuses 
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review the biological capabilities of MSC and the results of clinical trials using MSC as therapy in acute organ injuries. 
Although preliminary results are encouraging, more studies concerning safety and efficacy of MSC therapy are needed to 
determine their optimal clinical use. (Anesthesiology 2014; 121:1099-121)
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on supporting failed organs until they recover, a period where 
patients may be exposed to new iatrogenic complications.3 
Consequently, innovative therapies are needed. Therapeu-
tic use of adult stem cells may be one of them. Stem cells 
are undifferentiated precursor cells capable of self-renewal 
and multilineage differentiation. They are classified by their 
potency (pluripotent vs. multipotent) and origin (adult vs. 
embryonic). Adult stem cells include hematopoietic stem 
cells, mesenchymal stem cells (MSC), endothelial progenitor 
cells, and organ specific stem cells. Although originally the 
beneficial effect of adult stem cells was thought to be through 
engraftment and regeneration,8 subsequent studies demon-
strated the main therapeutic effects were mediated primarily 
through the secretion of soluble factors.

In this review, we focused on the potential therapeutic use 
of human MSC for acute organ injury, specifically in ARDS, 
AKI, ALF, acute brain injury encompassing stroke and trau-
matic brain injury (TBI), sepsis, and MODS. To accomplish 
this goal, we searched PubMed for relevant studies pub-
lished over the past 10 yr (2003–2013) and the proceed-
ings of major relevant conferences, clinical trial databases, 
the reference lists of identified trials, and major reviews. In 
this work, we decided to use the term “organ failure” and 
“organ injury” to define respectively the altered functional 
outcomes and the tissue lesions leading to this alteration in 
the corresponding organ.

Definition of Mesenchymal Stem Cells
MSC are adult nonhematopoietic precursor cells derived 
from a variety of tissues such as the bone marrow, adipose 
tissue, and placenta. The definition of MSC by the Interna-
tional Society of Cellular Therapy in 2006 is based on three 
criteria: (1) MSC must be adherent to plastic under stan-
dard tissue culture conditions; (2) MSC must express certain 
cell surface markers such as CD73, CD90, and CD105, but 
must not express CD45, CD34, CD14, or CD11b; and (3) 
MSC must have the capacity to differentiate into mesenchy-
mal lineages including osteoblasts, adipocytes, and chondro-
blasts under in vitro conditions.9

Engraftment versus Paracrine Effects
Therapeutic properties of MSC were originally thought to 
derive from their engraftment in the organ of injury and 
regeneration. However, subsequent in vivo studies demon-
strated limited replacement of damaged tissue by transdiffer-
entiated stem cells (<5%). Thus, the role of paracrine soluble 
factors with its endocrine actions were studied as potential 
mechanisms mediating the therapeutic effects.10–13 Despite 
the transient presence of MSC in the injured organ, rang-
ing from several hours to several days,14,15 MSC are able 
to exert complex paracrine and endocrine actions, through 
the secretion of growth factors and cytokines.12 Moreover, 
recent in vivo studies also underscore the new potential role 
of microvesicles, small (50 to 200 nm) anuclear membrane 

bound particles released from MSC as a paracrine vehicle to 
deliver messenger RNA (mRNA), micro RNA or proteins 
that may reprogram the injured cells or induce secretion of 
cytoprotective factors.16–21 All these effects have been dem-
onstrated in multiple organ injury models: acute lung injury 
(ALI),22–24 AKI,14,15,25–27 ALF,28–30 and acute brain injury.31–33

Mesenchymal Stem Cells Homing Capacity
The ability of stem cells to preferentially traffic to inflamma-
tory sites is thought to play a crucial role in the success of 
cellular therapy for organ injury. Intravenous or intraarterial 
infusion of MSC often initially result in the entrapment of 
the administered cells in organ capillary beds, especially in 
the lung and liver.34 In non-injured states, intravenous MSC 
tend to migrate to the bone marrow.35,36 However, following 
injury, MSC preferentially home to the site of inflammation 
where they migrate across the inflamed endothelium and 
enter the injured tissue bed.37–41 MSC trafficking have been 
shown to be driven by different interactions between chemo-
kines released from the injured tissue and chemokine recep-
tors expressed by MSC. For instance, stromal cell-derived 
factor-1/CXCR4 pathway, which is up-regulated under isch-
emic or hypoxic conditions, can mediate the localization of 
injected MSC into the injured brain or kidneys.42–46 Inter-
action between CD44 expressed by MSC and hyaluronic 
acid in the injured tissue, expressed when the extra-cellular 
matrix is exposed,47,48 is another major pathway.38

Organ Injury Pathways Specifically 
Impacted by Mesenchymal Stem Cells
The multiple mechanisms involved in organ injury are 
diverse. Although organ injuries do not fit into a single 
common combination of pathways, we will highlight those 
impacted by MSC.

Acute Proinflammatory Pathway
In addition to “septic” inflammation, a severe inflammatory 
response can be triggered by non-infectious sources, such 
as danger associated molecular patterns.49,50 In the acute 
phase of organ injury, multiple cells express pattern recogni-
tion receptors that can recognize either pathogen or danger 
associated molecular patterns. Pattern recognition receptors 
sense endogenous and exogenous danger signals and induce 
proinflammatory cytokines and type I interferons49 (fig. 1). 
Monocytes-macrophages and polymorphonuclear neutro-
phils migrate quickly to sites of injury and secrete reactive 
oxygen species (ROS) and proinflammatory cytokines/che-
mokines. Antigen-presenting cells also migrate to the site of 
injury and internalize and process either pathogen or dan-
ger-associated molecular patterns and initiate the adaptive 
immune response. Adaptive immune cells such as natural 
killer cells, natural killer T cells, mast cells, T-lymphocytes, 
and B-lymphocytes then converge, participating in the pro 
or antiinflammatory response. T cells are essential players 
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in the acute and intermediate inflammatory phase of organ 
injury, bridging together innate and adaptive immunity. 
CD4+ T helper (Th) cells lead to polarization of the immune 
response in multiple pathways (Th1, Th2, Th17, Th22, Th3, 
T-regulatory), and CD8+ T cells are dramatically involved 
in the cytotoxic response leading to the lysis of the targeted 
cells. Rather than a patchwork process, acute organ injury is 
a continuum of responses from innate to adaptive immune 
cells.

Ischemia–Reperfusion Pathways: Oxidative Stress Injury, 
Metabolomic Disorders, and Apoptosis
Oxidative stress is caused by increased production of reac-
tive oxygen and nitrogen species or by depletion of protective 

antioxidants. Resulting oxidative products can damage DNA, 
promoting cell death/apoptosis and cause end-organ tissue 
damage. OS is present in many pathological situations, such 
as during reperfusion after ischemia or following toxic expo-
sures. Whether through low regional blood flow or hypox-
emia or both, ischemia is responsible for a dramatic shift in 
cell metabolism. The lack of oxygen to drive oxidative phos-
phorylation and other oxygen dependant metabolic reactions 
(aerobic glycolysis, fatty acid beta oxidation) results in inef-
ficient anaerobic glycolysis as the major source of adenosine 
triphosphate (ATP) production and leads to ATP deficit.51–54 
Proteomic profiling indicate that during ischemia, metabolic 
key enzymes are decreased.53 The resultant ATP-dependant 
metabolic reaction shutdown then produces deep imbalance 

Fig. 1. Pattern recognition receptors in immunity and their involvement in sterile and sepsis-related inflammation. Pattern rec-
ognition receptors (PRRs) expressed by antigen presenting cells (dendritic cells, monocytes, macrophages) constitute the first 
interaction between the extra-cellular environment and innate immunity. They are proteins, which include membrane-bound 
and cytoplasmic receptors that bind either pathogen-associated molecular patterns (PAMPs) or damage-associated molecular 
patterns (DAMPs) derived from exogenous microorganisms (i.e., sepsis from infection) or endogenous molecules (i.e., sterile 
inflammation). Interaction of PRRs with PAMPs/DAMPs induces nuclear factor-kappa B signaling pathways, resulting in the se-
cretion of proinflammatory cytokines and co-stimulatory molecules. In sepsis, the initial immune response triggered by PAMPs/
PRRs interaction can lead to tissue damage and the release of DAMPs, which may act synergistically with PAMPs to enhance 
inflammation. Nevertheless, even without microorganism involvement, DAMPs released from dead or dying cells in response 
to injury or stress, are able to induce similar proinflammatory cytokine production from tissues, driving “sterile inflammation.” 
ATP = adenosine triphosphate; DAMPs = damage-associated molecular patterns; IL-1β = interleukin-1 beta; IL-6 = interleukin 
6; IL-18 = interleukin 18; LPS = lipopolysaccharide; M-CSF = macrophage colony-stimulating factor; NF-κB = nuclear factor 
kappa-light-chain-enhancer of activated B cells; PAMPs = pathogen-associated molecular patterns; PRRs = pattern recogni-
tion receptors; S100A8/9 = (also known as calgranulins A and B, or MRP8 and MRP14, respectively) members of the S100 
multigene subfamily of cytoplasmic EF-hand Ca2+-binding proteins which are endogenous activators of Toll-like receptor 4;  
TNF = tumor necrosis factor.
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in cellular homeostasis eventually leading to cell death.53,55–57 
Furthermore, any reduction in organ perfusion in terms of 
oxygen delivery51 can lead to organ damage by generating I/R 
injuries.58 I/R injury is present in most clinical conditions 
leading to acute organ injury such as shock, hypoxemia, sep-
sis, cardiac arrest, trauma, burn injuries, or following certain 
surgeries (cardiac, aortic, and organ transplantation surger-
ies). Although ischemia-induced tissue hypoxia can lead to 
irreversible tissue injury if the period of ischemia is prolonged, 
much of the tissue damage occurs following restoration of 
perfusion.59,60 While reperfusion can induce mitochondria to 
generate ATP and restore cell metabolism in less damaged 
tissue, it can also paradoxically exacerbate ischemia-induced 
injury in severely ischemic cells leading to release ROS gen-
erated by damaged mitochondria and nicotinamide adenine 
dinucleotide phosphate oxidase.58,61–64 Proteomic profil-
ing show that reperfusion can lead to proglycolytic enzyme 
depletion, proapoptotic proteome shift, and mitochondrial 
dysfunction inducing OS.65 These I/R-induced pathways can 
lead to cell death and organ failure (fig. 2).

Properties of Mesenchymal Stem Cells

Immunomodulatory Properties
MSC can modulate innate and adaptive immune cells, by 
enhancing antiinflammatory pathways in the injured organ 
milieu.66–68 This immunomodulation is mediated by cell-
contact-dependant and independent mechanisms through 
the release of soluble factors such as tumor necrosis factor-
stimulated gene 6,69 prostaglandin E2,

70 interleukin (IL)-
10,70,71 IL-1 receptor antagonist,72 transforming growth 
factor (TGF)-β,73 hepatocyte growth factor73 or indolamine 
2,3-dioxygenase.67 Both decrease in proinflammatory medi-
ators (IL-1β, tumor necrosis factor (TNF)-α, interferon-γ, 
IL-6), and increase in antiinflammatory cytokines (IL-10, 
basic fibroblast growth factor, TGF-α, TGF-β) have been 
also pointed out as a key factor in preventing cell damage 
in acute kidney15,26 and liver30,74–76 injury models. Similar 
findings have been reported in acute stroke77 and sepsis78,79 
animal models (fig. 3A).

Human MSC promote repolarization of monocytes and/
or macrophages from a type 1 (proinflammatory) to a type 
2 (antiinflammatory) monocyte phenotype characterized 
by high levels of IL-10 secretion, increased phagocytosis 
and low levels of TNF-α and interferon-γ production and 
major histocompatibility class II expression.80–82 This abil-
ity of MSC to reprogram monocytes/macrophages has been 
demonstrated in vivo in different models of sepsis,70,83–85 
endotoxin86 or live Escherichia coli bacteria-induced ALI,87,88 
ischemia,89 and regenerative medicine.82,90 Often in these 
injury models, MSC reprogrammed type 2 monocytes pro-
duced large quantities of IL-10, which blocked polymor-
phonuclear neutrophil influx into the injured tissue and 
prevented further damage (fig. 3A). However, in a mouse 
model of TBI, intracerebral administered MSC modulated 

the inflammatory response through decreasing the phago-
cytic capability of microglia macrophages.91 In this specific 
context, the reduction of phagocytosis by macrophages 
was beneficial, leading to better outcomes. These findings 
revealed the complexity of the crosstalk between MSC and 
macrophages, which may be organ specific and influenced 
by the injury milieu.

MSC can interfere with dendritic cells differentiation, 
maturation, and function, skewing them toward a regula-
tory phenotype.92,93 Dendritic cells generated in the pres-
ence of MSC have decreased capacity to induce activation of 
T cells, and exhibit an altered cytokine production pattern 
with lower proinflammatory and higher antiinflammatory 
cytokines66,92 (fig. 3A).

MSC also modulate natural killer cells, which are 
involved in both the elimination of virus-infected and dam-
aged cells and the secretion of an array of proinflammatory 
cytokines such as interferon-γ. Several studies clearly show 
that MSC, when co-cultured with natural killer cells, impair 
their cytotoxic activity, cytokine production, and granzyme 
B release94–96 (fig. 3A). However, other studies have shown 
that MSC could enhance their proinflammatory phenotype 
depending on the culture conditions. Thus, the complex 
interplay between MSC and natural killer cells could result 
either in a proinflammatory or an antiinflammatory pheno-
type depending on the type of the activation state of both 
cells and on the surrounding milieu.67

In addition, MSC are able to suppress T cell activation 
and proliferation and decrease their response by shifting them 
from a T helper (Th)1 to a Th2 immune phenotype.72,73,97,98 
MSC have been shown to (1) inhibit the differentiation of 
naive T cells into Th17 cells,99–101 (2) inhibit secretion of 
proinflammatory cytokines by differentiated Th17 cells, (3) 
promote induction of immunosuppressive FoxP3+ T-reg-
ulatory cells,100,102 and (4) drive reprogramming of Th17 
cells into FoxP3+ T-regulatory cells100 (fig. 3B). MSC also 
potentially inhibit cytotoxic effect of antigen-primed cyto-
toxic T cells98 and induce T cell anergy.67,73,103 This T regula-
tory–skewed response has been also demonstrated in vivo. 
In an ALI model, Sun et al. showed that MSC could up-
regulate T-regulatory cells, reducing some key Th1 cytokines 
(interferon-γ, TNF-α, macrophage inflammatory protein-2) 
and increasing Th2 cytokines (IL-10). Others have also dem-
onstrated that MSC decreased proinflammatory cytokines/
chemokines such as macrophage inflammatory protein-1, 
B-lymphocyte chemoattractant, and IL-12, with subsequent 
decrease in Th cells.104

Overall, an emerging body of data demonstrates at mul-
tiple levels the impact of MSC upon key cells involved in the 
continuum between innate and adaptive immunity, modu-
lating inflammation in acute organ injury.

Antimicrobial Properties
Studies using bacteria-induced acute organ injury models 
demonstrated that MSC could exert direct and indirect 
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antimicrobial properties. In E. coli pneumonia in mice, we 
demonstrated that MSC secreted antibacterial proteins/pep-
tides such as LL-37105 and lipocalin-2,87 leading to improved 
bacterial clearance. Other antibacterial mechanisms of MSC 
include tryptophan catabolism by indolamine 2,3-dioxy-
genase106 or increased pathogen phagocytosis which inhibit 
overall bacterial growth.79,107–109 Using different in vivo and 
ex vivo models of sepsis or pneumonia, MSC were found to 
increase phagocytosis of bacteria by macrophages by switch-
ing from a type 1 to type 2 monocyte phenotype.79,87,88,110 
In a mouse model of Pseudomonas aeruginosa-induced peri-
tonitis, Krasnodembskaya et al.110 demonstrated that MSC 
reduced the number of colony-forming units of P. aerugi-
nosa in the blood by increasing the monocyte phagocytic 
potency. The authors highlighted two potential underlying 
mechanisms: (1) the up-regulation of phagocytosis receptor 
CD11b on monocytes and (2) the increase in CD163 and 
CD206-positive activated monocytes/macrophages in the 

spleen.110 In a cecal ligation and puncture mice model of sep-
sis, Nemeth et al. showed a decrease in blood bacteria counts 
in the MSC treated group. The authors speculated that this 
increase in blood bacteria clearance could be explained by 
IL-10-mediated neutrophil retention within the vascu-
lar compartment.70 Recently, toll like receptor 3-triggered 
human MSC were shown to promote polymorphonuclear 
neutrophil activity, viability and improve its respiratory 
burst, increasing ROS release which is bactericidal108 (fig. 4).

Antioxidative Effect
Recent studies of organ injuries involving the heart,57 
brain,111,112 kidneys,113–115 and liver116–119 demonstrated that 
MSC could exert an antioxidative effect leading to a decrease 
in the severity of organ injury.56 This antioxidative property 
has been best exemplified in sepsis-induced organ failure 
models. In this context, authors have shown that MSC can 
reduce neutrophil-mediated oxidative injury in lungs, liver, 

Fig. 2. Impact of mesenchymal stem cells on ischemia–reperfusion injury pathways. Ischemia is a significant cause of acute 
organ injury that results from a decrease in regional oxygen delivery (such as low blood flow or hypoxemia), leading to inefficient 
anaerobic glycolysis as the major source of ATP production and ATP deficit. However, much of the tissue damage occurs during 
the reperfusion phase, leading to mitochondrial permeability transition pore opening, proglycolytic enzyme depletion, proapop-
totic proteome shift and mitochondrial dysfunction inducing oxidative stress. MSC can decrease ischemia–reperfusion induced 
injury by: (1) restoring ATP levels by possibly mitochondrial transfer through connexin-43 channels and replenishing depleted 
glycolytic enzymes; (2) decreasing reactive oxygen species/reactive nitrogen species generated during oxidative stress by either 
preventing their release, circumventing the depletion of key enzymes or by transferring reactive oxygen species scavengers 
(such as peroxiredoxins and glutathione S-transferase) into injured cells; and (3) restoring proteomic alterations by activating 
prosurvival phosphatidylinositide 3-kinases/protein kinase B pathway via cluster of differentiation 73 or inhibiting p38 MAPK-
caspase 3 pathway. ATP = adenosine triphosphate; CD73 = cluster of differentiation 73; MAPK = mitogen-activated protein 
kinases; MSC = mesenchymal stem cell; OS = oxidative stress; PI3/Akt = phosphatidylinositide 3-kinases/protein kinase B;  
PTP = permeability transition pore; RNS = reactive nitrogen species; ROS = reactive oxygen species; TCA = tricarboxylic acid cycle.
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Fig. 3. Immunomodulatory properties of mesenchymal stem cells on innate and adaptive immunity. (A) MSC can modulate 
innate and adaptive immune cells by: (1) promoting repolarization of macrophages from type 1 to type 2 phenotype charac-
terized by high levels of interleukin-10 secretion, which can block polymorphonuclear neutrophil influx into the injured tissue 
and prevent further damage; (2) interfering with dendritic cells differentiation, maturation, and function, skewing them toward a 
regulatory phenotype and decreasing their capacity to induce activation of T cells; and (3) impairing natural killer cells cytotoxic 
activity, cytokine production, and granzyme B release. However, recent studies suggest that the complex interplay between 
MSC and natural killer cells may depend on the surrounding milieu. (B) MSC can suppress T cell activation and proliferation and 
also decrease their response by shifting them from a T helper 1 to a T helper 2 immune response. MSC have been shown to (1) 
inhibit the differentiation of naive T cells into T helper 17 cells and prevent the secretion of proinflammatory cytokines by T helper 
17 cells; and (2) promote induction of immunosuppressive T regulatory cells in part by reprogramming T helper 17 cells into T 
regulatory cells. DC = dendritic cell; HGF = hepatocyte growth factor; iDC = immature dendritic cell; IDO = indolamine 2,3-dioxy-
genase; IL-6 = interleukin-6; IL-10 = interleukin-10; M1 = type 1 phenotype; M2 = type 2 phenotype; MSC = mesenchymal stem 
cell; NK cell = natural killer cell; PGE2 = prostaglandin E2; PMN = polymorphonuclear neutrophil; TGFβ = transforming growth 
factor beta; Th = T helpers cell; Treg = T regulatory cell; TSG6 = tumor necrosis factor-stimulated gene 6.
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and kidneys.70,78 This effect was primarily mediated through 
secretion of soluble factors, which prevent ROS accumula-
tion through enhanced scavenging and antioxidant up-reg-
ulation.57,120 Interestingly, many of these studies focused on 
the adoptive transfer of antioxidant effects from exosomes 
by stem cells.59,60,121 Similar to microvesicles, exosomes are 
bilipid membrane vesicles with a diameter less than 50 nm. 
They can carry a complex cargo of proteins, lipids, DNA, 
mRNA, or microRNA which could be delivered into tar-
geted cells and impact multiple cellular pathways.16,122 MSC 
release a large quantity of exosomes in their environment 
upon diverse stimuli.120 Both in vitro and in vivo studies 
have shown that MSC derived exosomes can decrease OS-
induced injury by reversing the depletion of key enzymes 
in ROS metabolism and the resultant accumulation of toxic 
products from the electron transport chain.59,60,65,121,123 For 
example, the transfer of peroxiredoxins and glutathione 
S-transferase by MSC derived exosomes into injured cells 
has been shown.65 In addition, Zhou et al.121 recently dem-
onstrated that the antioxidant effect of exosomes derived 
from human umbilical cord MSC in a cisplatin-induced 
AKI model may involve the inhibition of the p38 mitogen-
activated protein kinases-caspase 3 pathway (fig. 2).

Metabolomics
Any potential treatment aimed at reversing the metabolomic 
disorders in acute organ injury should ideally overcome ATP 
deficit, compensate the proteomic alteration and repair the 
mitochondrial electron transport chain. Several studies demon-
strate some direct beneficial effects from MSC on metabolo-
mics disorders. Beiral et al.124 demonstrated in a rat kidney I/R 
model that MSC could restore ATP synthesis. In addition, pro-
teomic and genomic profiling of MSC-derived exosomes (Exo-
carta,125 Vesiclepedia126) showed that they contain key enzymes 
involved in the ATP-generating stage of glycolysis so that they 
could potentially restore proteomic alterations in injured tissue. 
Lai et al.60 showed in injured rat cardiomyoblast, that MSC-
derived exosomes increased intracellular ATP levels by 75 and 
55% after 15 and 30 min, respectively. In an ex vivo myocardial 
I/R injury model, MSC-derived exosomes increased ATP pro-
duction in reperfused myocardium.59 And in a model of lipo-
polysaccharide-induced ALI, Islam et al.127 demonstrated that 
mitochondrial transfer through connexin-43 may be involved 
in the restoration of ATP levels (fig. 2).

Promitotic/Antiapoptotic Effects
Multiple groups have studied the underlying mechanisms of 
MSC antiapoptotic effects in various organ injury models. 

Fig. 4. Antimicrobial properties of mesenchymal stem cells. MSC can exert direct and indirect antimicrobial activity by: (1) se-
creting antibacterial proteins/peptides such as cathelicidin-related antimicrobial peptides and lipocalin-2, leading to improved 
bacterial clearance; (2) promoting repolarization of monocytes and/or macrophages from a proinflammatory to an antiinflamma-
tory phenotype characterized by high levels of interleukin-10 secretion and phagocytosis receptor cluster of differentiation 11b 
expression, low levels of tumor necrosis factor-α and interferon-γ production and major histocompatibility class II expression. 
Type 2 monocytes-macrophages have increased phagocytosis capability against bacteria; and (3) promoting neutrophil activ-
ity and viability with improved respiratory burst and increased reactive oxygen species release, which are bactericidal. CD11b 
= cluster of differentiation molecule 11b; H2O2 = hydrogen peroxide; IFN-γ = interferon gamma; IL-10 = interleukin-10; LL-37 =  
cathelicidin-related antimicrobial peptides; M1 = type 1 phenotype; M2 = type 2 phenotype; MHC II = major histocompatibility class 
II; MSC = mesenchymal stem cell; O2 = oxygen; O2

- = superoxide anion radical; OH = hydroxide; OH− = hydroxyl radical; PGE2 = 
prostaglandin E2; PMN = polymorphonuclear neutrophil; ROS = reactive oxygen species; TNF-α = tumor necrosis factor alpha.
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Two main mechanisms have been proposed. (1) MSC secre-
tion of growth factors. In animal models of AKI,27,128–131 
acute stroke,132–135 and traumatic brain injury,91,136,137 a wide 
array of secreted growth factors such as insulin growth fac-
tor-1,128,131,133,134 vascular endothelial growth factor,27,130,135 
hepatocyte growth factor,129 brain-derived neutrophic fac-
tor,91,132,136,137 nerve growth factor,91,133,134,136,137 and neu-
rotrophin-391,136,137 have been linked to the proregenerative 
effects mediated by MSC. (2) And increased expression of 
proregenerative/antiapoptotic genes and/or possibly mRNA 
transfer to injured cells by MSC or MSC derived microvesicles 
or exosomes. In ALF, MSC induced over-expression of genes 
involved in hepatocellular regeneration such as hepatocyte 
growth factor, epidermal growth factor, transforming growth 
factor-β, stem cell factor, and tissue metalloproteinase 3.74 In 
AKI, Bruno et al.18,19 showed that MSC released microvesicles 
could transfer mRNAs or microRNAs involved in cell prolif-
eration to damaged renal cells.138 In a glycerol-induced AKI 
model in immunocompromised mice, MSC microvesicles 
had a proliferative effect in tubular epithelial cells.19 RNAse 
pretreated microvesicles lost their therapeutic potencies, sug-
gesting a RNA-dependent effect. The underlying mechanisms 
were mainly attributed to a microvesicle induced up-regulation 
of antiapoptotic genes (Bcl-xL, Bcl2) and to a down-regulation 
of apoptotic genes (caspase-1, caspase-8, lymphotoxin-α) in 
tubular epithelial cells. A similar decrease in apoptotic genes 
expression (caspase-3 pathway) and up-regulation of phos-
phorylated protein kinase B prosurvival pathway leading to 
new neuron generation139,140 were found in TBI treated with 
MSC.136,141 Finally, the over expression of genes involved in the 
antiapoptotic pathways (such as growth hormone and insulin 
growth factor-1 signaling) also played a therapeutic role in a 
model of sepsis treated with MSC78,79 (fig. 5).

Ischemia–Reperfusion Injury
Several in vivo studies have pointed out the beneficial effects 
of MSC with respect to I/R of the heart,142 lungs71,104,143–145 
brain,146 kidney,15,147,148 and gut.149,150 More specifically, 
studies focused in I/R-induced ALI model, showed some 
beneficial effects through a combination of immunomodu-
lation,71,143,145 antioxidant71,143,145 or antiapoptotic143 prop-
erties. Others demonstrated that MSC could increase the 
activity of antioxidant enzymes in I/R.151 Interestingly in a 
gut I/R model, MSC reduced rat intestinal I/R injury by 
increasing the expression of the intestinal tight junction pro-
tein zona occludens-1 and reducing tight junction disrup-
tion by suppressing the action of TNF-α.150 The proteomic 
alteration in I/R injury65 can be supplemented by the cellu-
lar contents of MSC-derived exosomes.60,123 By replenishing 
depleted glycolytic enzymes, supplementing damaged cells 
with additional protein components of the cellular antioxi-
dant system, and activating prosurvival phosphatidylinosit-
ide 3-kinases/phosphorylated protein kinase B pathway via 
cluster of differentiation 73, MSC exosomes can increase 
ATP level and decrease OS and cell death59 (fig. 2).

Given the diversity of mechanisms involved in the 
potential therapeutic effect of MSC in various organ inju-
ries (fig. 6), we will review the current literature underlying 
the rationale for the use of MSC in ARDS, AKI, ALF, acute 
brain injury, and sepsis.

Mesenchymal Stem Cells in Acute 
Respiratory Distress Syndrome
ARDS is major cause of acute respiratory failure in critically 
ill patients. Despite improvements in supportive care, mortal-
ity associated with ARDS remains high, up to 40%, depend-
ing on the etiology.152,153 Current treatments remain focused 
on supportive care such as lung protective ventilation, fluid 
conservative strategy, and prone positioning.154–156 No phar-
macological therapies from preclinical models have yet been 
translated to effective clinical treatment options. Past studies 
showed that focusing on either antiinflammatory or antifi-
brotic pathways were too simplistic as a therapy. Pathophysi-
ology of ARDS involves complex crosstalks between the 
immune system and the alveolocapillary barrier leading to an 
excess of proinflammatory Th1 polarized responses, increase 
in lung protein permeability and formation of pulmonary 
edema. Pulmonary edema results in impaired gas exchange 
and eventual hypoxemia.153

Mesenchymal Stem Cells Lung-specific Mechanism of 
Action
Aside from their immunomodulatory, antibacterial, antioxi-
dant, and anti-I/R injury properties, MSC can also display 
some lung specific functional effects.
Alveolar Fluid Clearance. ARDS is characterized by 
impaired alveolar fluid clearance (i.e., inability to decrease 
pulmonary edema) induced by excessive inflammation in 
the injured alveolar milieu.157 Several studies have demon-
strated that MSC secrete keratinocyte growth factor, which 
increases alveolar fluid clearance by up-regulating key epi-
thelial sodium channel gene expression and Na-K-ATPase 
activity, or by increasing trafficking of epithelial sodium 
channel proteins to the apical membrane.158 These kerati-
nocyte growth factor mediated effects were shown in animal 
models83,159,160 as well as in an ex vivo perfused human88,161 
preparation. Most recently, we demonstrated that MSC-
derived microvesicles could protect against lipopolysac-
charide-induced ALI through delivery of the keratinocyte 
growth factor mRNA with subsequent expression of the 
protein in the injured alveolus.21

Lung Permeability. In ARDS, the injured lung capillary 
endothelium leads to protein leakage from the vascular bed 
into the alveolar space. This phenomenon aggravates the 
ability of the lung epithelium to reduce pulmonary edema. 
Recently, MSC have been shown to secrete angiopoietin-1, 
a soluble factor capable of reducing endothelial permeability 
through enhanced endothelial survival and vascular stabili-
zation, through the preservation of cell adhesion molecules 
and cell junctions and the prevention of actin “stress fiber” 
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formation.162 We and others have demonstrated that angio-
poietin-1 secreted by human MSC was essential to prevent 
an increase in lung protein permeability.163–165

Preclinical Acute Lung Injury Studies
A recent review reported the benefits of administering MSC 
in preclinical small animal lung injury models.6 More than 
half of experimental studies concerned intratracheal lipo-
polysaccharide-induced ALI in rodents and intratracheal 
administration of MSC, whereas the intravenous route of 
delivery of MSC was preferred in bleomycin-induced, I/R 
or ventilator-induced lung injury. The beneficial effects of 
MSC have also been reported in bacterial-induced ALI mod-
els,84,87,88,105 such as pneumonia, peritonitis, and sepsis from 
cecal ligation and puncture, highlighting the antibacterial 
properties of MSC. Gupta et al.87 found a survival advantage 
from syngeneic mouse MSC in an E. coli bacterial pneumo-
nia-induced ALI model. Lee et al.88 also showed beneficial 
effects of MSC in E. coli bacterial-induced ALI in an ex vivo 
perfused human lung preparation. Although this model 
excluded other systemic organs, which may generate an 
inflammatory response, it replicated many of the injury pat-
terns seen in patients with ARDS. Aside from bone marrow, 
other sources of MSC have been studied. Human umbilical 

cord-derived MSC is currently being investigated in clini-
cal trials, due to their accessibility (from the placenta), lack 
of ethical concerns, and their faster population doubling 
time.84,102,166 Although promising, adipose derived human 
MSC104,145 require further studies to clarify their potential 
therapeutic effects in ALI.

In ALI models in rodents, the mean dose of MSC typi-
cally was 20 to 30 × 106 cells/kg, and the timing of administra-
tion was within 6 h following ALI. The maximum therapeutic 
effect of MSC was found 2 to 3 days following administration. 
One study using an ALI model in mice with a large dose of 
MSC (889 × 106 cells/kg) showed a delayed effect on day 28.167 
However, no dose response study has been yet published. 
Thus, it is still unclear whether there is a therapeutic ceiling or 
if a second dose of MSC is needed, especially during the reso-
lution phase of ALI. Aside from the role of paracrine soluble 
factors, the role of MSC microvesicles or exosomes has been 
recently studied. Lee et al.20 found that murine MSC-derived 
exosomes could prevent hypoxic pulmonary hypertension 
by reducing vascular remodeling, pulmonary influx of mac-
rophages, and proinflammatory and proliferative mediators. 
More recently, we demonstrated that human MSC microves-
icles can reduce the severity of E. coli endotoxin-induced ALI 
in mice through the transfer of keratinocyte growth factor 

Fig. 5. Promitotic/antiapoptotic properties of mesenchymal stem cells. Mesenchymal stem cells can exert antiapoptotic effects 
in different organs through two main mechanisms: (1) secretion of a wide array of growth factors promoting cell regeneration 
and tissue repair; and (2) promotion of proregenerative/antiapoptotic gene expression by either inducing their transcription 
or transferring mRNA or microRNA involved with cell proliferation to damaged cells. AKI = acute kidney injury; ALF = acute 
liver failure; ARDS = acute respiratory distress syndrome; Bcl2 = B-cell lymphoma 2; Bcl-xL = B-cell lymphoma-extra large;  
BDNF = brain-derived neutrophic factor; Casp-1 = caspase 1; Casp-3 = caspase 3; Casp-8 = caspase 8; HGF = hepatocyte 
growth factor; IGF-1 = insulin growth factor 1; KGF = keratinocyte growth factor; MODS = multiple organ dysfunction syndrome; 
NGF = nerve growth factor; p-Akt = phosphorylated protein kinase B; VEGF = vascular endothelial growth factor.
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mRNA to the injured lung epithelium.21 These recent find-
ings shed first light on a new stem cell-free therapy in ALI, 
circumventing caveats of MSC use such as genetic instability 
and potential malignant transformation.

Clinical Trials
Despite these multiple encouraging preclinical studies, transla-
tion into human clinical trials remains limited. Currently, two 
phase I/II clinical trials are underway (table, Supplemental Dig-
ital Content 1, http://links.lww.com/ALN/B92, which lists the 
ongoing clinical trials). One Phase I/II study (NCT01775774) 

uses human bone marrow-derived MSC (BM-MSC) in ARDS 
patients. The aim of this multi-center, single group assignment 
study is to assess the safety and then the feasibility of using 
escalating intravenous doses (1 to 10 × 106 cells/kg) of alloge-
neic human BM-MSC in patients with moderate or severe 
ARDS. Another randomized, double blind, placebo-controlled 
trial (NCT01902082), targets not only safety but also efficacy 
outcomes, using allogeneic adipose-derived MSC. In both 
studies, inclusion criteria are similar, the intravenous route is 
used and MSC therapeutic doses vary from 1 to 10 × 106 cells/
kg. Both trials are still recruiting.

Fig. 6. Therapeutic effects of mesenchymal stem cells on multiple signaling pathways leading to acute organ injury. Both 
infection and non-infectious causes can trigger organ damage through the activation of diverse cell signaling pathways such 
as inflammation, metabolomic disorders, oxidative stress, and apoptosis, eventually leading to organ injury and failure. MSC 
can exert pleiotropic therapeutic effects through the secretion of a wide array of soluble factors, which lead to: (1) antimicrobial 
activity with secretion of cathelicidin-related antimicrobial peptides and lipocalin and increased phagocytosis by monocytes 
and macrophages; (2) antiinflammatory activity by switching the phenotype of monocytes or macrophages from a M1 to a M2 
phenotype, which is characterized by an enhanced phagocytosis capacity and increased antiinflammatory cytokine secre-
tion; Inhibition of T-lymphocyte and dendritic cell activation and increase in T regulatory cells; (3) increase in ATP cellular levels 
and decrease in ROS accumulation, reducing oxidative stress; and (4) switch from a proapoptotic to a pro-mitotic phenotype.  
AKI = acute kidney injury; ALF = acute liver failure; ALI = acute lung injury; DC = dendritic cell; LL-37 = cathelicidin-related an-
timicrobial peptides; LT = T lymphocyte; M1 = type 1 monocyte/macrophage; MODS = multiple organ dysfunction syndrome; 
MSC = mesenchymal stem cells; ROS = reactive oxygen species; Treg = T regulatory cell.
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Mesenchymal Stem Cells in Acute Kidney 
Injury
AKI is a clinical syndrome characterized by rapid loss of 
excretory function leading to accumulation of products of 
nitrogen metabolism and metabolic acids, increased potas-
sium and phosphate serum concentration and decreased 
urine output. Incidence varies from 5,000 cases per million 
people per year for non-dialysis-requiring AKI to 295 cases 
per million people per year for dialysis-requiring disease.168 
In critically ill patients, the AKI prevalence reaches 40% at 
admission to the ICU if sepsis is present169 and 60% dur-
ing ICU stay.170 No pharmacological therapies are available. 
Treatment is essentially supportive, including renal replace-
ment therapy if needed. Mortality from AKI ranges from 
44.7 to 53% in critically ill patients.171 Most patients who 
survive recover their renal function ad integrum after a few 
weeks. However, some remain in chronic renal failure requir-
ing definitive renal replacement therapy.

Etiology of clinical AKI is often multifactorial involving 
diverse triggers such as hypovolemia, ischemia, I/R, sepsis, 
and toxic injuries. Most of the AKI seen in the ICU, occur 
within 72 h from a combination of pre renal and renal inju-
ries.171 Most existing preclinical animal AKI models use isch-
emia induced by acute occlusion of the renal artery.172–174 
Although not wholly clinically relevant, these ischemic AKI 
models do imitate several activated pathways involved in 
AKI, such as coagulation system activation,175 leukocyte 
infiltration,176 endothelium injury177 with over-expression of 
adhesion molecules,178 cytokines release,179 Toll-like recep-
tors induction,180 intrarenal vasoconstriction pathway, and 
apoptosis.181 In addition, in septic and hepatorenal preclini-
cal AKI models, triggered by a decrease in blood pressure 
secondary to a systemic or hepatosplanchnic vasodilation,182 
the renal sympathetic system,183 the renin–angiotensin–
aldosterone system,184 and the tubuloglomerular feedback 
system184 are all activated. Depending on the intensity and 
the period of time of their association, these different factors 
contribute to a continuum ranging from tubular injuries to 
apoptosis/necrosis to renal failure.171

Preclinical Acute Kidney Injury Studies
MSC therapy is effective in reducing AKI in diverse 
experimental models including those induced by  
cisplatin,19,25,38,128,130,185–190 glycerol,19,38 and I/R  
injury.14,15,26,129,191–193 Systemic route of administration 
is widely used via intravenous or intraperitoneal injec-
tion, except for I/R model where MSC are infused intra-
arterial.14,15,26,129,191–193 Delivered doses range from 8 × 106 
to 2 × 108 cells/kg.186,187 In cisplatin-induced AKI models, 
MSC prevented renal function impairment, improved renal 
function and preserved tubular integrity,25,128 leading to 
an increase in the survival rate of mice following cisplatin 
injection188–190 compared with saline control. Interestingly, 
Morigi et al.188,189 found that, in the cisplatin-AKI model, 
cord blood derived MSC were more effective than BM-MSC 

in terms of renal function improvement and survival, whereas 
MSC derived from human adipose tissue did not improve 
renal function.194 In addition, mice treated by human adi-
pose tissue-derived MSC showed some tubular alterations 
such as casts, nuclear fragmentations and necrosis. However, 
because these histological alterations are similar to those 
observed in a cisplatin-induced AKI, these lesions could not 
be interpreted as being harmful effects of MSC.

In a lethal AKI model induced by cisplatin administration, 
Bruno et al.18 showed MSC microvesicles could enhance sur-
vival in immunocompromised mice. In this model, a single 
administration of microvesicles increased survival rate and 
ameliorated renal failure but did not prevent chronic tubu-
lar injury. However, multiple injections of microvesicles not 
only improved survival but also normalized histology and 
renal function at day 21.

Clinical Trials
Despite strong preclinical evidence of the therapeutic effect 
of MSC in AKI, only three Phase I/II clinical trials have been 
carried out12,195,196 (table, Supplemental Digital Content 1, 
http://links.lww.com/ALN/B92, which lists the ongoing 
clinical trials). One ongoing trial (NCT00733876)12,196 
aims to investigate safety and efficacy of allogeneic MSC 
in preventing and treating AKI following on-pump coro-
nary artery bypass surgery, using suprarenal aortic MSC 
infusion. Patients at high risk of postoperative acute renal 
failure patients are included. Preliminary data from the trial 
indicates that MSC infusion is safe and feasible. Moreover, 
MSC infusion prevented any postoperative renal failure (0% 
vs. 20% AKI incidence compared with case control) and 
reduced by 40% the length of hospital stay and readmission 
rates.12,196 A double-blind, placebo controlled, multicenter 
phase II trial is planned by the same investigators. Another 
clinical trial used allogeneic human BM-MSC in a mul-
ticenter, double-blind, placebo-controlled phase II study 
(NCT01602328) in patients with post cardiopulmonary 
bypass-induced AKI. Safety and also efficacy outcomes such 
as time to kidney recovery and dialysis were the primary 
aims. The third ongoing pilot study (NCT01275612)195 
investigates the safety and the feasibility of systemic infu-
sion of donor ex vivo-expanded MSC in cisplatin-induced 
acute renal failure in chemotherapy treated patients with 
solid organ cancer. Preliminary data from these clinical tri-
als are pending.

Mesenchymal Stem Cells in Acute Liver 
Failure
ALF still remains a leading cause of death in 30% of the 
cases.7 Principal etiologies include acetaminophen-induced 
injury, idiosyncratic drug induced liver injury, viral hepatitis, 
autoimmune hepatitis, Budd-Chiari syndrome, and Wilson 
disease. Up to 15% of the etiology of ALF are indeterminate. 
Depending on the cause, spontaneous recovery may vary 
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from 30 to 60%.7 However, supportive therapies in ALF are 
dramatically limited and liver transplantation remains the 
gold standard for treating end-stage liver failure.7,197

In ALF, innate immunity with its resultant inflammatory 
cascade is activated. Uncontrolled hepatic inflammation with 
clinically high serum levels of proinflammatory cytokines such 
as IL-1, TNF-α, IL-6, and IL-8 have been reported198–200 with 
resultant hepatic cytotoxicity.201 Necrosis and/or apoptosis 
may also take an important part in the loss of hepatic func-
tion, overwhelming hepatocyte regeneration.197 I/R and OS 
injuries can also take place in different causes of ALF such as 
toxic, post hepatectomy, or post transplantation injury. The 
prognosis of ALF is directly linked to liver regeneration, which 
in 40% of the cases can overcome the hepatocyte destruction.

Preclinical Acute Liver Failure Studies
To circumvent organ donor shortage, replacing injured 
hepatocytes by stem cells initially appeared as the main aim 
of liver-oriented cell-based therapy. Although several studies 
showed that MSC can transdifferentiate towards a hepato-
cyte phenotype in vitro and in vivo,202 the beneficial effects 
of MSC are more complex, encompassing regenerative,203–207 
immunoregulatory,206–208 and anti-OS injury117 pathways.

Most preclinical studies using MSC used mice and rats with 
carbon tetrachloride,30,76,209–212 thioacetamide,118 d-galactos-
amine,29,74,75,213,214 or I/R-induced liver injury.116,215,216 How-
ever, two studies used d-galactosamine induced fulminant 
hepatic failure in pigs.29,213 Therapeutic dose ranged from 2 to 
10 × 106 cells/kg.217 Most of the studies used intravenous MSC 
administration, but others chose the intraportal route29,215 
aiming at circumventing trapping in the pulmonary circula-
tion.215 Overall, MSC decreased the severity of histological 
liver injury,74,75,210,213–215 improved liver function,75,210–212,215 
and finally enhanced survival.29,74,75,210,213–215 In contrast, 
Boeykens et al.218 did not find any beneficial effects of intra-
portally administrated MSC in terms of improved liver recov-
ery. However, the authors used MSC in a complex liver injury 
model, combining a partial hepatectomy in a previously stea-
totic liver which may not be applicable to ALF. Regardless all 
these promising findings, no clinical trial has been carried out 
in this field.

Mesenchymal Stem Cells in Acute Brain 
Injury: Stroke
Stroke causes 15 million death worldwide every year.219 In the 
United States of America, it remains the leading cause of dis-
ability and the third leading cause of mortality behind cardio-
vascular disease and cancer.220 Currently, tissue plasminogen 
activator administration within 4.5 h of the onset of ischemia 
is the only validated treatment for ischemic stroke. Alternate 
or complementary therapeutics are urgently needed.

In acute stroke, reduction in the oxygen and glucose sup-
plies lead to neuronal cell death through several mechanisms 
including intracellular calcium movement and energetic 

metabolism impairment.221–224 Secondary, restoration of the 
cerebral blood flow leads to I/R. As in the other organs, I/R 
injury in the brain triggers ROS production as well as pro-
inflammatory pathways.225,226 Microglia cells secrete proin-
flammatory cytokines such as IL-6, TNF-α, and IL-1β.227,228 
Taken together, all these mechanisms increase neuronal cell 
damage.

Preclinical Stroke Studies 
Most preclinical animal studies using MSC have involved 
rodent, preferentially rats, in models of middle cerebral artery 
occlusion. Although some teams carried out a permanent 
occlusion model,77,134,229–232 most of the studies used a tran-
sient middle cerebral artery occlusion model ranging from 90 
to 120 min of ischemic time. Three routes of MSC admin-
istration have been investigated: intracerebral,77,132,229,231–236 
intracarotid,237,238 and intravenous.133–135,230,239–242 Time 
of treatment delivery after stroke varied from 2 h236 to 1 
month.32 Both routes of MSC administration, intracere-
bral132,233–236 or intravenous,243 decreased infarct size and 
improved neurological outcomes in rats. Either intravenous 
or intracarotid administration of MSC also improved behav-
ioral outcomes.244 However, it remains unclear which route, 
intracerebral243 or intravenous route,245 is more efficacious. 
The MSC doses range from 4 × 105 to 1.2 × 108 cells/kg 
depending on the model.77,240 A relation between cell dose 
and efficacy have been demonstrated with both neurological 
outcomes240 and neurotrophic factors secretion.77

Clinical Trials 
Based on the accumulation of these preclinical studies, clini-
cal trials using MSC in stroke have increased dramatically. 
The number of clinical trials involving MSC in stroke (isch-
emic, hemorrhagic, acute, subacute, or chronic) rose from 
one completed phase I study in 2009246,247 to 22 phase I/
II clinical trials.248 Bang et al.246 carried out the first phase 
I study for assessing feasibility and safety of intravenous 
administration of 108 autologous MSC in patients with 
severe neurological deficits due to subacute ischemic stroke. 
Five patients were included in the treatment group versus 
25 in the control group. Although intravenous cell infu-
sion appeared safe and feasible, the small sample size in 
the treated group and the non-blinded design of this study 
prevented any conclusions concerning the potential thera-
peutic benefits of MSC on neurological outcomes. Five 
years later, the same authors published a randomized pla-
cebo-controlled long-term follow-up study carried out on 
52 subacute ischemic stroke patients.249 In this study, 16 
patients were included in the intravenous MSC group. No 
difference was observed between groups concerning adverse 
events. More importantly, some of the neurological recov-
ery scores were improved in the MSC group compared with 
the placebo group. Currently nine studies are underway to 
investigate the effect of intravenous or intraarterial admin-
istration of MSC in acute ischemic stroke patients (table, 
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Supplemental Digital Content 1, http://links.lww.com/
ALN/B92, which lists the ongoing clinical trials). All are 
phase I/II studies except one phase III. Four of the trials use 
autologous whereas five use allogeneic MSC. Time of MSC 
administration ranges from 1 day to 6 weeks after the onset 
of clinical signs of stroke. The therapeutic dose ranges from 
1 to 2.5 × 106 cells/kg. Primary outcomes are safety, feasibil-
ity, tolerance, improvement of functional recovery assessed 
by neurological scores, and size of infarct. The maximum 
follow-up ranges from 1 month to 24 months after MSC 
administration. Despite the number of clinical trials, little 
data is yet available to demonstrate the potential therapeutic 
use of MSC in stroke management. Results of ongoing trials 
are expected soon, especially long-term safety data and the 
potential impact of MSC on neurological outcomes.

Mesenchymal Stem Cells in Acute Brain 
Injury: Traumatic Brain Injury
TBI remains a significant cause of morbidity, mortality, and 
disability among patients.250 After the initial trauma, mul-
tiple pathological pathways converge, generating second-
ary lesions and leading to increased neuronal cell death and 
brain damage. These different pathways include increased 
neurotransmitter release, ROS generation with OS injury, 
calcium-mediated signaling and increased apoptosis, mito-
chondrial dysfunction, and proinflammatory response.

Preclinical Traumatic Brain Injury Studies 
MSC can both suppress these different injury mecha-
nisms and also express neuronal and glial markers,251 
although regeneration may not be a significant thera-
peutic mechanism. Most preclinical studies in TBI have 
used BM-MSC,39,136,137,139,252–255 except two studies 
which used peripheral blood-derived141 or umbilical cord-
derived MSC.91 Rats were the most frequent small animal 
used,39,137,139,141,252–256 although, a few studies with TBI 
have been performed in mice.91 In these studies, MSC 
were typically given from 24 h to 7 days following TBI and, 
doses varied from 6 × 106 to 3.2 × 108 cells/kg depending 
on the administration route,91,254 which included intrave-
nous39,136,137,139,140,252–255,257 or intracerebral.91,140,141 MSC 
route of administration in TBI remains controversial. 
Multiple studies demonstrated that in rat models of TBI, 
most of the MSC are initially trapped in the lungs, liver, 
and spleen, leaving a small portion of cells, ranging from 
0.0005%256 to 1.4%,33 to cross the blood brain barrier to 
reach the cerebral parenchyma. Harting et al.256 showed that 
intravenous MSC treatment failed to improve any motor 
or cognitive outcomes in a rat TBI model. Although some 
studies highlighted the beneficial effects of intravenous 
MSC in TBI,39,136,137,140,253–255 most of studies were from the 
same experimental team. Interestingly, Mahmood et al.140 
compared the intravenous with the intracerebral route of 
administration of MSC at doses of 3 × 106 and 7 × 106 cells/

kg in a rat TBI model. They found differences in terms of 
localization of the induced neuronal cells proliferation but 
none regarding neurological functional recovery. Overall, 
the beneficial effects of MSC have been demonstrated in 
terms of functional neurologic improvements from 15 to 
90 days after TBI.39,136,137,140,141,253–255,257 MSC are believed 
to migrate into the injured brain parenchyma91,141,255 with 
a high affinity for the periphery of the lesions,253 leading to 
a decrease in the contusion volume measured one month 
after the TBI.91 Possibly due to the small number of pub-
lished preclinical animal studies and to the unresolved issue 
of optimal route of delivery, no clinical trial using MSC in 
TBI have been yet carried out.

Mesenchymal Stem Cells in Sepsis and 
Multiple Organ Dysfunction Syndrome
Despite decades of clinical trials and improvement in anti-
biotic and supportive care, sepsis remains a challenging life-
threatening disease in critically ill patients and the leading 
cause of morbidity and mortality in ICU patients.258 In the 
United States, sepsis is responsible for more than 200,000 
patient deaths and utilizes US$17 billion per year.259,260 Sep-
sis results from a complex host-pathogen interaction leading 
to a dysregulation of the host response in terms of inflamma-
tion and coagulation. Proapoptotic pathways, metabolomic 
disorders, OS, and I/R injuries are also involved in patients 
treated for sepsis. Eventually, sepsis can evolve toward septic 
shock, MODS, and death. Currently, all clinical trials using 
therapeutics targeting a single specific pathway have failed 
to demonstrate any clinical benefits261–264 such as high dose 
corticoids265,266 or activated protein C.267 Consequently, 
immunomodulatory approach using a multifaceted therapy 
is required to overcome the inflammatory imbalance. MSC 
is an attractive approach due to its ability to home to injured 
sites, mitigate the proinflammatory cascade, modulate 
multiple immune cell types, promote cell survival, protect 
against OS injuries, and exhibit some antibacterial proper-
ties. In addition, another advantage of cell-based therapy in 
sepsis is that stem cells can potentially interact with their 
environment, so that they can adopt some dynamic pheno-
types and secrete a variety array of soluble factors depending 
on the pathological context.268,269

Preclinical Sepsis Studies
In this review, we have excluded studies using endotoxin-
induced injury models of sepsis and focused only on preclini-
cal studies using live bacteria. Although lipopolysaccharide 
represents one part of the multiple bacterial factors involved 
in the septic process, these models have obvious limitations.270 
Thus, we considered the live bacteria models more clinically 
relevant. The therapeutic use of MSC has been used in three 
different sepsis models: cecal ligation and puncture,70,78,79  
P. aeruginosa peritonitis,110 and E. coli pneumonia.86,88 
The cecal ligation and puncture model is the only one that 
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generates a polymicrobial sepsis, since the procedure exposes 
directly the peritoneum to the gut microbiome. Intrave-
nous,70,79,110 intraperitoneal,78 and intratracheal87,88 route of 
MSC administration have been used. Dose of MSC ranged 
from 1 × 107 to 4 × 108 cells /kg.79,88 The main findings were 
that MSC were able to enhance bacteria clearance and atten-
uate septic organ injury in lungs, liver, and kidneys.70,78,79

Although MSC have been extensively studied in heart 
I/R injury and used in clinical trials in patients with acute 
myocardial infarction,271 no data have been published con-
cerning their potential therapeutic effects in sepsis-induced 
cardiac injury.272,273 And yet, half of patients with severe 
sepsis and septic shock present with reversible left ventric-
ular systolic or diastolic dysfunction274 which is associated 
with increased mortality. Since the main pathways involved 
in this sepsis-related heart injury are those encountered in 
inflammation and I/R injuries, it seems to be important to 
study MSC in this context.

Beyond their ability of organ functional improvement in 
sepsis-induced injury, several studies showed a significant sur-
vival advantage in mice treated with MSC in peritonitis70,78,79 
or pneumonia models.87 In addition, Lee et al.88 demonstrated 
a similar beneficial effect of MSC on macrophage phagocyto-
sis and bacteria clearance in an E. coli bacterial-induced lung 
injury in an ex vivo human lung preparation. Even though 
most of these studies highlighted promising therapeutic prop-
erties of MSC within the early inflammatory phase of sepsis, it 
is still unknown whether they could be beneficial or harmful 
during the later antiinflammatory phases where immunity is 
impaired.275 However, what makes the therapeutic use of MSC 
unusual is that their phenotype can be skewed either towards 
a pro or antiinflammatory side depending on the surrounding 
milieu.268,269,276 The importance of this property of MSC needs 
to be studied, such as their use in the later phase of sepsis.

Possibly due to the heterogeneity of the animal septic 
models and the lack of data comparing MSC to the multiple 
therapeutics commonly used in sepsis, no clinical trial has 
been carried out yet.

Remaining Questions and Limitations in 
Clinical Use of Mesenchymal Stem Cells
As we described previously, the dose of MSC used in the 
preclinical small animal studies are extremely large and varies 
substantially (from 4 × 105 to 4 × 108 cells/kg). The optimal 
dose remains unknown in clinical trials although the typi-
cal dose in human is 5 to 10 × 106 cell/kg per dose. Addi-
tionally, the optimal route of delivery to generate the best 
therapeutic effect is still largely unknown between systemic 
and local administration. For example, the two clinical trials 
(NCT02097641, NCT01902082) in ARDS use intravenous 
administration whereas, in bronchopulmonary dysplasia in 
neonates, the only clinical trial (NCT01297205) uses intra-
bronchial administration.

Most injury models have shown benefits of MSC administra-
tion shortly after injury. Given that organ injury is a dynamic 

process over time, it is still unknown whether any beneficial 
effects might be found if MSC was given at a later phase such as 
during the resolution of injury; thus, it is unclear whether a sec-
ond dose of MSC is needed for the resolution phase. Overall, the 
optimal dose, route, and time-sequence remain to be determined.

Even though organ failure is associated with poor out-
come, it remains unclear whether organ failure or the initial 
underlying cause of injury or both is responsible for death. 
Organ failure has been even seen by others as an adaptive 
process of the organism in response to injury. Consequently, 
MSC should be considered as an adjuvant therapy; treat-
ing the initial cause of injury still remains the priority. For 
example, MSC should be considered an adjuvant therapy to 
ARDS caused by bacterial pneumonia, not supplanting anti-
biotics or other supportive therapies.

In addition, although MSC have antimicrobial proper-
ties in preclinical animal models, it is still worth questioning 
whether an immunosuppressive therapy such as MSC is appro-
priate during injury from an infectious etiology. For example, 
recent studies suggest that MSC fail to improve outcomes in 
acute phase of severe influenza.277 Whether this is a limitation 
to the murine model used needs to be studied further.

And finally, although a recent meta-analysis demonstrated 
no severe adverse outcome associated with MSC therapy,278 
the potential of malignant transformation of MSC or the 
ability of MSC to enhance preexisting tumors still remains 
a serious clinical question, especially in light of the limita-
tions of the tests available to detect cancer (i.e., computer-
ized tomography scan).

Conclusion
The beneficial effects of cell-based therapy with MSC are 
apparent in multiple preclinical injury models involving all 
the organs in MODS. Attracted by signals from the injured 
and inflamed tissues, MSC appear to migrate to the site of 
damage and secrete an array of soluble factors and/or exo-
somes/microvesicles which suppress the injury. This review 
highlights the preclinical evidence which provided the 
underlying rationale for several phase I/II clinical trials in 
ARDS, AKI, and stroke. Based on promising preliminary 
results, further phase II and III trials are underway, the 
results of which are pending. However, no clinical studies 
are underway for ALF, TBI, sepsis, and MODS.

Some concerns still remain with MSC cell-based therapy 
which will need to be addressed in ongoing Phase I/II clinical 
trials such as the long term adverse effects of systemic immune 
suppression, potential for ectopic tissue formation, and MSC 
immunogenicity. Although very promising, the evidence is still 
unclear whether MSC cell-based therapy is superior to current 
therapies. We still await the results from the clinical trials.
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