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P REVENTING chronic pain after physical trauma, 
including that of major surgery, is an active area of 

research and drug development. Both research and devel-
opment can be guided by clinical observations, most typi-
cally from genetic predictors of chronic pain. We recently 
observed that an environmental and biologic stimulus—
childbirth—can affect the response to physical trauma. As 
such, chronic pain from delivery, including complicated 
vaginal delivery and surgical cesarean delivery, is remarkably 
rare.1 In rats, spinal nerve ligation, a surgical model of neu-
ropathic pain, results in less sustained mechanical hypersen-
sitivity when performed at the time of parturition than in 
virgin females, suggesting a similar protective phenomenon 
occurs in rodents.2

In this study, we advance our previous efforts by applying 
two novel approaches to the study of recovery from hyper-
sensitivity behaviors in rats after surgical trauma. First, we 
use partial spinal nerve ligation (pSNL), a recently described 
model in which hypersensitivity resolves slowly over 2 to 3 
months, with large interanimal variability, similar in many 
ways to the time course of and interpatient variability in 
resolution of pain after major surgery. We hypothesize that 
the postpartum period speeds recovery after pSNL and that 
this requires the presence of pups. In addition, we explored 
whether there is a sex difference in time course of recovery 

from pSNL, because women have a slightly higher incidence 
of chronic pain after surgery than men.

In laboratory studies, pain behavior over time is typi-
cally compared among experimental groups using repeated-
measures ANOVA (or one-way analysis of covariance)3 for 
data that satisfy parametric assumptions or a combination 
of Friedman rank test and Kruskal–Wallis test for non-
parametric data. Although quite useful, these methods are 
highly sensitive to unbalanced/unequal time points between 
subjects, missing values, and the violation of the underly-
ing assumptions of these tests, especially in small laboratory 
samples. Traditionally applied fixed-effect ANOVA methods 

What We Already Know about This Topic

•	 In	patients,	there	is	variability	in	recovery	and	resolution	of	pain	
after	nerve	injury.

•	 This	variability	has	not	been	studied	in	animal	models	of	nerve	
injury.

What This Article Tells Us That Is New

•	 The	authors	demonstrate	a	method	to	measure	recovery	from	
pain-related	responses	after	nerve	injury.	Using	this	methodol-
ogy,	sex	differences	were	not	evident,	but	enhanced	recovery	
was	observed	in	postpartum	rats.
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ABSTRACT

Background: Recovery from pain after surgery exhibits large interindividual variability, with very slow recovery equated to 
chronic pain. Surgical injury in the postpartum period modestly increases initial recovery after major nerve injury. In this 
study, the authors use a nerve injury that recovers over 2 to 3 months and apply growth curve modeling to further understand 
the effect of the postpartum period on speed of recovery.
Methods: Withdrawal threshold to mechanical stimulus on the hind paw was determined in 41 Sprague–Dawley rats before 
and for 10 weeks after partial spinal nerve ligation. Age-matched male and female rats and postpartum females with pups 
or those separated from pups at delivery were studied. Growth curve analyses were applied to model recovery after surgery 
despite varying timing of measurements across groups and missing data, and these results were compared with those of two-
way repeated-measures ANOVA.
Results: The recovery time course was similar between males and females. In contrast, recovery was hastened in the postpar-
tum groups, with nonoverlapping 95% CIs of modeled trajectories between days 6 and 66 after surgery. CIs were more precise 
at most time periods with growth curve analysis compared with ANOVA.
Conclusions: The authors describe a method of analysis to quantify recovery from hypersensitivity after surgery in rats with 
several distinct advantages over traditionally used methods. Study results do not support a sex difference in trajectory of recov-
ery but confirm and extend previous observations that injury at the time of obstetric delivery is associated with an abnormally 
rapid recovery. (Anesthesiology 2014; 121:1056-67)
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can elegantly examine pairwise contrasts (e.g., groups × 
time), or even polynomial contrasts, but cannot describe the 
degree of individual differences in the amount of change, or 
easily define the duration of treatment effects using tradi-
tional null hypothesis tests.

An alternative to ANOVA, growth curve modeling has 
been used extensively in large-scale clinical studies to ana-
lyze longitudinal data4–7 but only rarely in small-n studies.8 
In many situations, because of their flexible nature, growth 
curve models may offer several distinct advantages over that 
of ANOVA. Growth curve models allow the inspection of 
interindividual variability in the examination of within-sub-
ject change.9 Because the assumptions of growth curve mod-
eling are more flexible than traditional methods, data may be 
partially missing, time points can be unequally spaced, and 
the distributions of outcomes and their repeated-measure 
covariances can be uniquely specified. Also, growth curve 
models typically have higher statistical power than tradi-
tional methods, which can lead to decreased expense and a 
reduction in the number of patients or animals needed to 
test a hypothesis.10 A secondary purpose of this study was 
to test the application of growth curve modeling to examine 
the trajectory of recovery of pSNL over time.

Materials and Methods
Animals
Forty-one Sprague–Dawley rats (15 to 16 weeks old; 29 
females and 12 males) were acquired from Harlan Industries 
(Indianapolis, IN). Four groups were studied: postpartum-
with-pups (n = 10), postpartum-separated-from-pups (n = 9), 
virgin females (n = 10), and males (n = 12). These four groups 
underwent pSNL surgery and were euthanized at 24 to 25 
weeks of age. Pups were separated from their mothers after 
delivery in the postpartum-separated-from-pups group. Pups 
were housed with their dams after delivery in the postpartum-
with-pups group until weaning at 21 days postsurgery (which 
is being described as the intervention). Animals were housed 
under a 12-h light–dark cycle with food and water ad libitum. 
All experiments were approved by the Animal Care and Use 
Committee at Wake Forest University (Winston Salem, North 
Carolina). Animals were studied in two cohorts—female ver-
sus male and postpartum with and postpartum separated from 
pups. Assignment to postpartum group was randomized, and 
investigators were blinded to group by having a different indi-
vidual place the animals in the testing environment. No data 
were excluded from analysis.

Surgical Preparations
Partial spinal nerve ligation surgery was performed as previ-
ously described11 within 24 h of delivery in the postpartum-
with-pups and the postpartum-separated-from-pups groups. 
Surgery timing for the virgin females and males was age 
matched with the postpartum groups. On the day of pSNL 
surgery, rats were anesthetized with 2% isoflurane in oxy-
gen and a 3-cm incision was placed along the right dorsal 

surface near the spine under aseptic conditions, penetrat-
ing underlying muscles. The sixth lumbar transverse process 
was removed and the dorsal half of the L5 nerve was ligated 
using 8-0 silk. Muscles and skin were closed in separate lay-
ers. After surgery, animals were housed individually in plastic 
cages in a climate-controlled room under a 12-h light–dark 
cycle with free access to food and water.

Behavioral Testing
Withdrawal threshold to punctate mechanical stimulation 
was determined before and after pSNL surgery in all four 
groups by the application of calibrated von Frey filaments 
(Stoelting, Wood Dale, IL) to the hind paw. Animals were 
separated from pups, if present, and placed on a plastic mesh 
floor in individual clear plastic boxes and allowed to accom-
modate to their environment for at least 30 min. Filaments 
were applied to the bending point for 5 s, and a brisk paw 
withdrawal was considered a positive response. Withdrawal 
threshold was determined using an up–down statistical 
method.12 Behavioral testing was performed before surgery 
and commencing the day after surgery through postsurgery 
day 70. Because of the variability in day of the week of deliv-
ery of pups and behavioral testing largely restricted to week-
days, the timing of the withdrawal threshold measurements 
varied among animals in the postpartum groups. The person 
performing the behavioral testing was the same for all cohorts 
and was blinded to surgery and treatment, but not to sex.

General Approach to Growth Curve Model Development
In a growth curve model with experimental groups or inter-
ventions, the data can be viewed as a hierarchical structure 
where lower-level units consisting of within-subject repeated 
measurements (level 1) are nested in higher-level units such 
as animals or experimental group (level 2). Covariates that 
account for within-individual changes that occur across 
measurements are incorporated into level 1 (time-varying 
covariates). The level 2 equations model each of the level 
1 parameters (e.g., intercepts and slopes as outcomes) using 
time-invariant covariates (e.g., intervention group).

The appendix details the formulation of these models, 
including references. Following the steps set forth for the 
building of a generic growth curve model outlined, plots 
for each subject with the time variable on the x-axis and 
withdrawal threshold on the y-axis, superimposed with 
regression lines, were studied to determine the model form. 
The quadratic growth model appeared by visual inspection 
to be a good fit. This fit was confirmed by comparing the 
Bayesian Information Criterion of the linear and quadratic 
models (see the appendix for more details). To examine the 
variance components, an unconditional means model with 
no predictors at either level was estimated. In addition, the 
results of an unconditional growth model with time as a 
level 1 predictor and no predictors at level 2 were used to 
evaluate baseline change. Because the effect of group and 
intervention and the group × intervention interactions were 
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of interest, those predictors were added in level 2. The terms 
and parameters are as described in the generic quadratic 
model above and in the appendix. An examination of each 
residual separately e r r rti i i i, , ,0 1 2( ) with normal probability 
plots ensured that the error structure was independent and 
normally distributed with a mean of 0 and constant vari-
ance, σ2 and that the growth parameters did in fact vary 
across subjects.

Growth Curve Model Predictions
The model can be used to estimate interesting aspects of the 
experiment. For example, we can extrapolate when the post-
partum groups are expected to have similar thresholds. This 
could be done using simulation methods from the model 
(i.e., assuming random variation as observed from the sam-
ple), or simply using a calculation of a point estimate (i.e., 
solving the model equations for no difference between the 
two groups). The latter approach is made more complicated 
when large individual differences in the fitted parameters are 
observed such that any point estimate is not representative 
of any individual in the sample. As an illustration, the model 
created in this study predicts the two groups to have the same 
withdrawal threshold on day 77. In addition, a formal statis-
tical inference could be generated from a model of this type, 
but this would require an equivalence judgment (i.e., that 
the two groups do not likely differ by more than some criti-
cal threshold) that was not planned for here. Finally, extrapo-
lations outside the model space are always prone to error 
(e.g., a poorly specified model may fit the data well within a 
certain range, but lead to large errors on extrapolation).

Statistical Analysis
Independent samples Kruskal–Wallis testing was used to 
examine withdrawal threshold before surgery. Where appro-
priate, all hypothesis testing is two-tailed with a statistical 
significance threshold of P value less than 0.05.

Growth Curve Model
Statistical analysis for the growth curve model was performed 
with SAS version 9.2 (SAS Institute, Inc., Cary, NC). Full 
SAS code is available upon request. PROC MIXED uses 
restricted maximum likelihood estimation to analyze mul-
tilevel models, and can incorporate both random and fixed 
effects. To fit an individual subject growth model, individual 
intercepts and time (slopes) are allowed to vary randomly 
with the remaining terms in the model treated as fixed 
effects. Because of the small sample size, the quadratic term 
was also estimated as fixed. The primary inferences of the 
study involve examining if experimental condition impacts 
some aspect of the change process. To estimate these effects, 
group and intervention (Int = weaning at 21 days postsur-
gery) were entered as level-2 predictors of intercepts, slopes, 
and quadratic change parameters (i.e., as group × param-
eter interaction). Because subject intercepts and slopes do 
not have the same variance because of the introduction of 

heteroscedasticity from allowing the slopes to vary by sub-
ject, an unstructured variance/covariance matrix has been 
specified in the random statement, but other covariance 
structures were also considered.4

Two-way Repeated-measures ANOVA Model
For comparison with the growth curve modeling, the data 
were also examined using two-way repeated-measures 
ANOVA using SPSS version 22 (IBM, New York, NY). 
To minimize loss of data due to listwise deletion, measure-
ments were assigned to nearest neighbor days where possi-
ble. To meet the assumptions of two-way repeated-measures 
ANOVA, the positively skewed response variable was loga-
rithmically transformed. After transformation, there were no 
outliers and the distribution of the data satisfied parametric 
assumptions for each group.

Power Simulations
To illustrate the efficiency of the growth curve model in com-
parison with the two-way repeated-measures ANOVA model, 
statistical power analyses were performed on data simulated 
with R version 3.0.2 (R Foundation for Statistical Computing, 
Vienna, Austria) and RStudio version 0.98.501 (RStudio, Inc., 
Boston, MA). Using MASS package (version 7.3–29; Oxford, 
United Kingdom), data sampling was done from a multivari-
ate normal distribution so that the simulated data possessed 
the same means and SDs (within 0.005) by time point and 
similar correlations between time points as the actual observed 
data of the postpartum-with-pups and postpartum-separated-
from-pups groups only. Five thousand datasets (i.e., runs) 
were simulated for each sample size per group of n = 6, 9, 12, 
15, 18, 24, and 36, for a total of 35,000 datasets. Repeated-
measures ANOVA and growth curve analyses were performed 
on each individually simulated untransformed dataset as was 
done with the actual observed experimental data.

In the repeated-measures ANOVA power simulations, the 
proportion of runs with statistically significant differences (P 
< 0.05) found in the group × time interactions was interpreted 
as the statistical power for each sample size. This was the effect 
of interest given that group differences over time were the pri-
mary focus of the analysis. In the growth curve power analyses, a 
smaller model with parameters of intercept, time and time2 was 
considered nested within a larger model with additional param-
eters of group, group × time and group × time2 (i.e., group 
impacts multiple aspects of change). In both the larger and 
smaller growth curve models, intercepts and slopes were allowed 
to vary between subjects. The chi-square statistic for the likeli-
hood ratio test was obtained for each model by run and sample 
size. These 35,000 (5,000 per sample size) runs of both models 
were compared using chi-square difference tests that examine 
the difference in model fit between the larger (with group) and 
smaller (without group) models in the context of the number 
of parameters in each model.13,14 The proportion of statistically 
significant differences (P < 0.05) found between the two models 
were interpreted as the statistical power for each sample size.
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Results
Growth Curve Model
All the animals recovered from surgery without evidence of 
infection, and all deliveries occurred spontaneously with an 
average litter size of 11. Median (interquartile range) withdrawal 
thresholds before surgery did not differ among groups (males 
29 [20 to 36] g, virgin females 22 [17 to 26] g, postpartum-
with-pups 24 [19 to 26] g, postpartum-separated-from-pups 23 
[18 to 26] g, P = 0.22 by Independent Samples Kruskal–Wallis 
Test), nor did they meaningfully differ on the lower bounds 
of the 95% CIs estimated from the model (13.2, 11.2, 13.4, 
and 14 g, respectively). A gradual increase in withdrawal thresh-
old over 70 days after surgery, as previously noted in males11 

was present in all groups. In addition, a transient decrease in 
withdrawal threshold occurred after weaning on day 21 in the 
postpartum-with-pups group as previously described.2

Figure 1 shows the scatterplot of actual withdrawal thresh-
old measurements and the predicted trajectory fits of two 
representative subjects, one from the postpartum-with-pups 
group and the other from the virgin females group. The pre-
dicted group trajectories for all four groups are displayed in 
figure 2, where the postpartum are shown in figure 2A and 
the nonpostpartum in figure 2B. Individual subject modeled 
trajectories detailing missing data by breaks in the line plots 
and demonstrating individual variability by group are shown 
in the “spaghetti plots” in figure 3. The model coefficients 
predicting withdrawal threshold are reported in the appendix.

The virgin females group exhibited higher thresholds after 
surgery than the other groups (see intercepts in fig. 2, A and 
B). The postpartum-with-pups (pp w/pups) group exhib-
ited an increased trajectory before removal of pups compared 
with the postpartum-separated-from-pups (pp w/o pups) 
group (fig. 2A). The postpartum groups had nonoverlap-
ping 95% CIs of modeled trajectories between days 6 and 
66 after surgery demonstrating difference during the recov-
ery period (fig. 2A). Immediately after surgery, the trajectory 
of the males group was not different from the virgin females 
(fig. 2B) and postpartum-separated-from-pups groups, but 
was different from the postpartum-with-pups group with 
nonoverlapping 95% CIs of modeled trajectories between  
days 3 and 64 postsurgery (not shown). In addition, substantial 
individual differences were observed within groups as evidenced 
by the varying patterns of change within each group in figure 3.

Regarding the random effects, the variance component 
(standard error) for intercepts (2.60 [0.96], P = 0.004) and 
slopes (0.002 [0.0007], P = 0.005), were statistically sig-
nificantly different than 0, indicating that substantial indi-
vidual differences were observed for these parameters across 

Fig. 1. Withdrawal threshold measurements for two repre-
sentative subjects from the postpartum-with-pups (red) and 
virgin females (green) groups exemplifying missing data and 
differences in timing of measurements. At several time points, 
observations are available from one animal and not the other. 
The same two representative subject-predicted trajectories 
are overlayed to show model fit.

Fig. 2. Postpartum and nonpostpartum group trajectories. Lines represent predicted values and shaded areas represent 95% 
CIs of modeled trajectories. (A) Modeled trajectory when partial spinal nerve ligation is performed on day 0 in postpartum-with-
pups (pp w/pups; red) or postpartum-separated-from pups (pp w/o pups; blue) animals. (B) Modeled trajectory when partial 
spinal nerve ligation is performed on day 0 in virgin females (green) or male (gray) rats.
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individuals (fig. 3). There was no association between inter-
cepts and slopes, (−0.02 [0.02], P = 0.381), indicating that 
initial withdrawal thresholds are not good predictors of linear 
trajectories. Finally, the residual variance estimate (8.43 [0.53], 
P < 0.001) remained significantly different from 0, suggesting 
additional variation in intercepts and slopes not explained by 
the current factors and interactions (fig. 4). This leads to the 
assumption that there are additional factors that could explain 
the variation not considered in the present model.

Comparison of Growth Curve Model and Two-way 
Repeated-measures ANOVA
Main effects for group (P < 0.001) and time (P < 0.001) 
were both observed in the ANOVA model, a statistically 
significant group × time interaction was also observed, 
F(30,370) = 3.768, P < 0.001. This indicates that group 
differences change over time. This interpretation is simi-
lar to what was observed in the growth curve modeling. 

To visualize the intersubject variability within group, fig-
ure 5A shows a scatterplot of actual withdrawal threshold 
measurements for the postpartum-with-pups group. This 
within subject variability not accounted for by group and 
time is attributed to error in the two-way repeated-measures 
ANOVA model, whereas this variability is assigned to the 
distribution of random effects in the growth curve model.4 
To illustrate the difference in the nature of the estimates of 
each model and their corresponding precision, an example 
plot (fig. 5B) of the postpartum-with-pups group was ana-
lyzed using both approaches. Close inspection reveals nar-
rower 95% CI widths for the growth curve model which 
demonstrates greater precision (i.e., the point estimates of 
withdrawal threshold are associated with less uncertainty). 
This greater precision would translate into greater statisti-
cal power for the growth curve approach. Power analyses 
conducted on the simulated data, collected as set forth in 
the Materials and Methods, show that 80% statistical power 

Fig. 3. Spaghetti plots demonstrating individual subject variability. Large degrees of individual differences were observed with 
a range of intercepts and slopes. Individual subject model predicted trajectories are shown for (A) the postpartum-with-pups 
group; (B) the postpartum-separated-from-pups group; (C) the virgin females group; and (D) the males group.
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Fig. 4. (A–D) Group trajectories (predicted vs. actual withdrawal thresholds) and residual plots. The solid lines represent the 
model predicted withdrawal thresholds, whereas the dotted lines plot the actual group mean withdrawal threshold by time point 
for (A) the postpartum-with-pups group; (B) the postpartum-separated-from-pups group; (C) the virgin females group; and (D) 
the males group. (E–H) The dots represent the residual variance by day resulting from the model with a reference line for zero 
residual variance for (E) the postpartum-with-pups group; (F) the postpartum-separated-from-pups group; (G) the virgin females 
group; and (H) the males group.
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to detect group difference is obtained at 6 per group in 
growth curve modeling, whereas 14 per group are required 
to obtain 80% power in the repeated-measures ANOVA 
modeling (fig. 6). However, the two simulations estimate 
two very different parameters from the approaches and are 
not simply different estimates of the same construct. For 
instance, in the ANOVA simulations, the group × time 
interaction effect was examined, whereas a model fit was the 
focus of the growth curve simulations.

Discussion
These results carry both biologic and methodologic impli-
cations for the study of recovery from peripheral injury. 
As regards biology, we confirm previous observations that 
peripheral injury during the postpartum period results in 
a lesser degree of persistent hypersensitivity than in virgin 

females, that this effect requires the presence of pups, and 
that there is a transient worsening of hypersensitivity when 
pups are weaned.2 We also confirm that recovery from 
hypersensitivity after pSNL injury occurs over several weeks, 
in distinction to spinal nerve ligation, which is permanent in 
most animals with partial recovery over many months in a 
minority of subjects.15

We extend previous biologic work in two ways. First, we 
show that recovery from hypersensitivity occurs more rapidly 
after pSNL when this injury occurs in the postpartum period 
than in virgin females. The similar degree of initial hypersen-
sitivity and clear divergence of trajectory within days of injury 
(fig. 2A) strongly suggests an active process in the postpar-
tum period hastening recovery. These data agree with obser-
vational data in women after cesarean delivery, and a very low 
prevalence (<1%) of surgery-induced pain 1 yr after surgery.1 
Second, we demonstrate a lack of sex difference in the trajec-
tory of recovery from hypersensitivity after pSNL. Although 
this result superficially disagrees with clinical observations that 
chronic pain after surgery is more common in women than 
in men,16 this difference is small (10 to 30% increased risk 
in women) and could not be tested with adequate power in 
traditionally small laboratory studies in animals.

Withdrawal threshold decreased after removal of pups 21 
days after delivery, the time of normal weaning. The cause of 
this transient hypersensitivity, which also occurs in the absence 
of nerve injury,2 may reflect maternal stress at this time, because 
stress itself is associated with hypersensitivity in rats.17 Alterna-
tively, hypersensitivity at this time may reflect an acute reduction 
in oxytocin release with cessation of lactation, wince withdrawal 

Fig. 5. (A) Scatterplot of actual withdrawal thresholds for the 
postpartum-with-pups group only demonstrates the large de-
gree of variability observed across subjects. (B) The predicted 
withdrawal thresholds with 95% CIs for both the growth curve 
model (black) and two-way repeated measures ANOVA model 
(red) for the postpartum-with-pups group only. The reduction 
in CI width in the growth curve model illustrates greater preci-
sion in the estimates than in the two-way repeated measures 
ANOVA model.

Fig. 6. Plot of statistical power (y-axis) of repeated measures 
(RM) ANOVA model (red) and growth curve model (black) 
obtained from analyses of simulated data by sample size (n 
per group) (x-axis). The two simulations estimated two dif-
ferent parameters from the approaches and are not different 
estimates of the same construct. In the ANOVA simulations, 
the group × time interaction effect was examined, whereas a 
model fit was the focus of the growth curve simulations.
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threshold is temporarily reduced in postpartum rats with pups 
by intrathecal injection of an oxytocin receptor antagonist.2

The current study also illustrates the potential value of 
growth curve modeling to laboratory studies of recovery 
after injury and provides much of the information needed 
for researchers to apply this tool. Strengths of individual 
growth curve modeling relative to more traditional methods 
of analysis include flexible specification of how the outcome 
responds over time (i.e., the model form), and explicit mod-
eling of both group-level and subject-level growth curves. 
In this approach, change is modeled at the individual level 
using change parameters, allowing for the examination of 
individual variability in intercepts and rates of change in the 
outcome under investigation (random effects). The ANOVA 
approach focuses on change at the aggregate level and 
assumes variation around a fixed effect for each group. In 
addition, the growth curve model has the ability to accom-
modate embedded missing data, whereas listwise deletion is 
used in ANOVA. Due to its flexibility, growth curve model-
ing easily handles nonnormally distributed outcomes (e.g., 
binary, rates, counts), where an ANOVA model requires 
assumptions about the distribution under study.

Growth curve modeling is not without its weaknesses and 
is not advocated for all laboratory studies of change. Model 
misspecification can become an issue as there are many 
choices of model forms that can be used. For example, is a 
quadratic or a (log)linear model the correct choice? Models 
are evaluated to ensure they describe the data well as set forth 
in this article, but all models are wrong to varying degrees.18 
The number of repeated measures is an important consider-
ation, with small numbers of measurement occasions (e.g., t 
<4) greatly limiting the value of the approach. Furthermore, 
the estimation of complex random effects can be problematic 
in small-n studies. In the current study, because of the estima-
tion difficulties, we opted to only allow intercepts and slopes 
to vary randomly across subjects. In addition, because there is 
a higher level of technical sophistication needed, interpreta-
tion can be difficult for persons familiar with the ANOVA 
approach, although this can be overcome with plots and prac-
tice. Finally, at the time of this writing, there are no simple 
power calculations for most applications. Published tables do 
exist, but statistical simulations are generally helpful.13

In summary, using a model of surgical nerve injury with 
recovery of hypersensitivity over a couple of months, we dem-
onstrate a similar time course of recovery in males and females, 
but an accelerated rate of recovery in females when surgery 
occurs in the immediate postpartum period. These data agree 
with a high incidence of acute pain, but a low incidence of 
chronic pain in women undergoing traumatic or surgical deliv-
ery, as observed clinically. We describe the advantages of growth 
curve modeling to better understand and probe individual-
level and group-level differences in the time course of recov-
ery after injury in animal studies. Because recovery is modeled 
in each animal, this approach provides a unique tool to study 
the broader question of promoting recovery from injury rather 

than the dichotomous question of presence of pain/hypersensi-
tivity at an arbitrarily defined “chronic” time after injury.
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Appendix. Application of Growth Curve 
Modeling

General Approach to Model Development 
In a growth curve model with differing groups and interventions, the 
hierarchical structure where lower-level units are nested in higher-level 
units consists of repeated measurements/individual subject growth 
trajectories (level 1) and variation in between-subject growth (level 2). 
Covariates that account for within-person changes that occur across 
measurements are incorporated into level 1 (time-varying covariates). 
The level 2 equations model each of the level 1 parameters. Time-
invariate covariates are added in level 2. These are the predictors that 
do not change over time, such as group and intervention.

The first step to building the model is to plot and study the data 
using a line plot with the time variable on the x-axis and the depen-
dent variable on the y-axis for each subject and superimposing a 
regression line. Investigate whether the growth is linear, quadratic, 
or cubic and determine the best fit. Many times the linear, quadratic, 
and cubic models will be tested by the likelihood ratio test (chi-square 
difference test) or by comparing the Bayesian Information Criterion 
of the models to determine whether one is a better fit than another.19

For the following model build, the equation structure follows 
that of Raudenbush and Bryk.20 Yti is the observed measurement at 
time t for subject i, i = 1,…,n subjects, where ati is time t for person 
i and πpi is the growth trajectory parameter p for subject i associated 
with the polynomial of degree P. Therefore, π0i is the intercept, 
π1i is the coefficient for linear slope (i’s true rate of linear change 
per unit of time) and π2i is the coefficient for quadratic slope (i’s 
true rate of quadratic change per unit of time which can also be 
understood as acceleration or deceleration). The portion of subject 
i’s outcome that is unexplained by the specified growth parameters 
on occasion t is eti. The parameters for level 2 are set forth in table 1. 
The level 2 residuals, which are deviations of individual change tra-
jectories around the predicted averages, are denoted r0i, r1i, and r2i.
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The next step is to run two unconditional models which aid in 
examination of variance. The first is an unconditional means model 
with no predictors at either level. This model partitions the outcome 
variation into within-subjects (variation within subjects over time) 
and between-subject (variation between subjects with no time effect).

Level 1     : Y eti i ti= +π0

Level 2    : π0 00 0i ir= +β
From this model, we determine whether the outcome is worth 

exploring further by examining where the systematic variation lies.
The second is an unconditional growth model with time as the 

level 1 predictor and no predictors at level 2. This model allows 
evaluation of baseline change.

Level  1   : Y a eti i i ti ti= + +π0 1π

Level 2    : π0 00 0i ir= +β

π1 10 1i i= +β r

This random slopes and intercepts model shows how much total 
variation there is within and between-subjects. This information 
aids in the decision of whether to add level 2 predictors.

If there is significant variation in initial status and rate of change, 
exploration of time-invariate predictors to account for variation 
in growth parameters across individuals is warranted. In a growth 
curve model where the effect of group and interventio n are of 
interest, group and intervention and their interaction can be cho-
sen as predictors. Finally, the quadratic model with these level 2 
predictors is:

Level 1    : Y a a eti i i ti i ti ti= + + +π π π0 1 2
2

Level 2      group intervention
group i

:
(

π0 00 01 02

03

i = + +
+ ×

β β β
β nntervention)+ r i0

π1 10 11 12

13

i

r
= + +
+ × +

β β β
β

group intervention
group intervention( ) 11i

π2 20 21 22

23

i

r
= + +
+ × +

β β β
β

group intervention
group intervention( ) 22i

When substituting level 2 effects into level 1, a composite growth 
model is formed:

Yti = + + +
× +

β β β β
β

00 01 02 03

10

group intervention group
intervention aa a

a a
ti ti

ti ti

+
+ + ×

β
β β

11

12 13

group
intervention group interventioon

group intervention

group 

+ + +

+

β β β
β

20
2

21
2

22
2

23
2

a a a

a
ti ti ti

ti ×× + + + +intervention e r r rti i i i0 1 2 .

This formula shows how the outcome depends concurrently on 
the level 1 and level 2 predictors and the cross-level interactions 
with time. The final step is to ensure that the error structure is 

independent and normally distributed with a mean of 0 and con-
stant variance, σ2 and that the growth parameters vary across sub-
jects. Nonnormality of the level 1 error, eti, will bias the standard 
errors at both levels one and two. An examination of each residual 
separately (eti, r0i, r1i, r2i) with normal probability plots is a method 
commonly used to check the error structure. If the residuals are 
not independently and normally distributed, a data transformation 
procedure can be used. These procedures are set forth in detail in 
the study by Judd and McClelland.21 The estimation method for 
the covariance parameters is restricted maximum likelihood, which 
is a form of maximum likelihood estimation which does not base 
estimates on the fit of all of the data, but instead uses a likelihood 
function calculated from a transformed set of data, so that nuisance 
parameters have no effect. The maximum likelihood method selects 
values of the parameters that maximize the agreement between the 
model and the observed data. In the residual maximum likelihood 
method, the likelihood function is partitioned into components 
representing information about the parameters of interest and 
other nuisance parameters and then completes the estimation.

A quadratic model has differing rates of change at each time 
point. These rates of change are estimated by the slopes of the 
tangent lines to the growth curve at each point. These are called 
simple-slopes and they change across the span of the growth 
curve.19 The rates of change are the first derivatives with respect 
to time of the level 1 equation evaluated at each particular time 
point. In the composite specification above, the rate of change is 
represented by π1i + 2π2iati, where π1i is the instantaneous rate of 
growth at initial status.

Data Form and Assumptions
Growth curve modeling allows for incomplete or missing data if the 
data are missing at random. But, the models do require one time 
point more than the number of growth parameters in the level 1 
model. A quadratic model with three growth parameters in the level 
1 equation, π0i, π1i, π2i, requires at least four time points. The more 
time points that are obtained, the more precise the model.19 Before 
analysis, data must be organized in long form where there are mul-
tiple rows per subject, one for each time point at which the subject 

Table 1. Level 2 Parameter Definitions

β00  = population average initial status

β10  = population average linear rate of change

β20  = population average quadratic rate of change

β01  = group effect on initial status

β11  = group effect on linear rate of change

β21  = group effect on quadratic rate of change

β02  = intervention effect on initial status

β12  = intervention effect on linear rate of change

β22  = intervention effect on quadratic rate of change

β03  = group × intervention effect on initial status

β13  = group × intervention effect on linear rate of change

β23  = group × intervention effect on quadratic rate of change

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/121/5/1056/484687/20141100_0-00026.pdf by guest on 18 April 2024



Anesthesiology 2014; 121:1056-67 1065 Aschenbrenner et al.

PAIN MEDICINE

has a measurement. The number of rows equals the number of mea-
surements taken. The variables may include subject ID, group, time, 
intervention, and outcome. The time variable will need to be created 
and represents the passing of time for which measurements were 
taken. The first row for each subject should be coded as the initial 
status with Time = 0. Therefore, the duration that is subtracted from 
the first time point to start the new variable “Time” at 0 should 
be subtracted from each time point thereafter. For example, if the 
first measurement was taken on day 3, the Time variable for the 
first measurement is 3 – 3 = 0. The Time variable for day 4 is 4 – 3 
= 1, etc. This process of coding is called “centering” and allows for 
easier interpretation of the estimated parameters. If working with a 
quadratic model, a variable for time squared should also be created. 
These data conditioning procedures will be set forth in more detail 
in the data obtained in the current study.

Application of Growth Curve Modeling to Withdrawal 
Thresholds in This Small Sample Laboratory Animal Study 
Following the steps set forth for the building of a generic growth curve 
model outlined above, plots for each subject with the Time variable 
on the x-axis and withdrawal threshold on the y-axis, superimposed 

with regression lines, were studied to determine the model form. 
The quadratic model appeared by visual inspection to be a good fit. 
This fit was confirmed by comparing the Bayesian Information Cri-
terion of the linear and quadratic models. To examine the variance, 
an unconditional means model with no predictors at either level was 
run. In addition, the results of an unconditional growth model with 
time as a level 1 predictor and no predictors at level 2 were used to 
evaluate baseline change. Because the effect of group and interven-
tion and the group × intervention interactions were of interest, those 
predictors were added in level 2. The final quadratic model to predict 
behavioral recovery, that is, withdrawal threshold over time, is:

Yti = + +
+ × +
β β β

β
00 01 02

03

  
 

group intervention
group intervention ββ

β β
β

10

11 12

13

a
a a

a

ti

ti ti

ti

+ +

+ ×

  

 

group intervention

group interrvention

group intervention  

+

+ +

+

β
β β
β

20
2

21
2

22
2

23

a

a a

a

ti

ti ti

tii ti i i ie r r r2
0 1 2 group intervention× + + + + ,

Table 2. Growth Curve Model Prediction of Trajectory

Predictor Parameter Estimate
(Lower Bound, 
Upper Bound) P Value

Entire population Intercept 3.576 (1.274, 5.878) 0.003
Entire population Slope 0.054 (−0.400, 0.508) 0.816
Entire population Quadratic −0.002 (−0.022, 0.018) 0.839
Group Intercept

Males
pp w/ pups
Virgin females
pp w/o pups

−1.393
−0.044
6.249
REF

(−4.207, 1.420)
(−3.184, 3.096)
(3.335, 9.163)

—

0.322
0.978

<0.001
—

Group Slope
Males
pp w/ pups
Virgin females
pp w/o pups

−0.036
0.493

−1.563
REF

(−0.587, 0.515)
(−0.127, 1.112)

(−2.147, −0.980)
—

0.897
0.119

<0.001
—

Group Quadratic
Males
pp w/ pups
Virgin females
pp w/o pups

0.008
−0.008
0.062
REF

(−0.017, 0.034)
(−0.036, 0.020)
(0.036, 0.089)

—

0.509
0.561

<0.001
—

Intervention* Intercept −2.323 (−8.366, 3.721) 0.441
Intervention* Slope 0.086 (−0.442, 0.614) 0.748
Intervention* Quadratic 0.001 (−0.019, 0.022) 0.921
Group × Intervention* Intercept

Males
pp w/ pups
Virgin females
pp w/o pups

−0.030
−0.368
−15.407

REF

(−10.347, 10.287)
(−8.665, 7.929)

(−26.438, −4.376)
—

0.995
0.929
0.008

—
Group × Intervention* Slope

Males
pp w/ pups
Virgin females
pp w/o pups

0.034
−0.256
1.915
REF

(−0.673, 0.741)
(−0.979, 0.466)
(1.164, 2.666)

—

0.925
0.486

<0.001
—

Group × Intervention* Quadratic
Males
pp w/ pups
Virgin females
pp w/o pups

−0.008
0.005

−0.065
REF

(−0.034, 0.018)
(−0.023, 0.033)

(−0.093, −0.038)
—

0.547
0.700

<0.001
—

* Before weaning is intervention reference group. Estimates are for after weaning intervention group.
pp w/ pups = postpartum with pups; pp w/o pups = postpartum without pups; REF = reference group.
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The terms and parameters are as described in the generic qua-
dratic model above and in table 1. The model coefficients predict-
ing withdrawal threshold in our small animal study are reported 
in table 2.

Yti is the predicted withdrawal threshold measurement for animal 
i at time t, ati is time t for person i. Intervention is a dummy variable 
(0/1), 0 for up to and including day 21 and 1 for after day 21. Group 
is postpartum-with-pups, postpartum-separated-from-pups, males 
or virgins. An examination of each residual separately e r r rti i i i, , ,0 1 2( ) 
with normal probability plots was done to ensure the error struc-
ture was independent and normally distributed with a mean of 0 
and constant variance, σ2 and that the growth parameters vary across 
subjects.

Data Conditioning
 To condition data, we set the intervention dummy variable “Int” 
to either 0 or 1. If day is less than or equal to 21, Int = 0. If day is 
greater than 21, Int = 1. As we are modeling recovery, we removed 
the presurgery baseline measurement and let Time = Time − 1 so 
that the initial status is Time = 0 [Postoperative day = 1]. Create 
a new variable “Time squared” which is computed Time × Time 
(table 3). In addition, data were allowed to be unbalanced.

Software
 Statistical analysis for this study was performed with SAS ver-
sion 9.2. Full code is available upon request. PROC MIXED uses 
restricted maximum likelihood estimation as discussed above to 
analyze multilevel models and can incorporate both random and 
fixed effects. To fit an individual subject growth model, inter-
cepts and time (slopes) are allowed to be random as denoted in 
the random statement, with the remaining terms on the model 
statement being fixed. Because of the small sample size, the qua-
dratic term, Time squared was not allowed to be a random effect. 
The subject = subject option of the random statement specifies 
that the random terms should vary across subjects. Because sub-
ject intercepts and slopes do not have the same variance due to 
the introduction of heteroscedasticity from allowing the slopes 
to vary by subject, an unstructured variance/covariance matrix 

has been specified in the random statement, but other covariance 
structures should be considered.4
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S.	S.	Crawford W. Long—From	“Liberty”	to	Death

After quoting Patrick Henry’s “Give me liberty or give me death,” U.S. President Franklin Roosevelt promised that 
waves of newly built civilian “emergency cargo” ships would bring liberty to Europe. From 1941 to 1945, 18 American 
shipyards built a total of 2,710 of these, nicknamed “Liberty ships,” each able to move over 10,000 tons of cargo and/or 
passengers. At Savannah’s largest industry ever, the Southeastern Shipbuilding Corporation, the ninth of 88 “Libertys” 
built was the S.S. Crawford W. Long (lower right), named for Georgian ether pioneer Crawford Williamson Long, M.D. 
(left). The S.S. Crawford W. Long was delivered for wartime Merchant Marine service on May 22, 1943, just 142 days 
after its keel had been laid and less than a year before the fall of Berlin. Just 26 years after it was built for the Merchant 
Marine, the S.S. Crawford W. Long was scrapped in 1969. From “Liberty” to death: 1943–1969. (Copyright © the 
American Society of Anesthesiologists, Inc.)
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