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OPIOIDS are currently the most versatile analgesics, 
making them the drugs of choice for moderate to severe 

pain associated with invasive procedures, cancer, and various 
other chronic disease states. However, there is a large inter-
individual response to the analgesic effect of opioids and a 
relatively narrow therapeutic index.1 Genetic factors contrib-
ute to the differential response to opioids by regulating their 
pharmacokinetics (metabolizing enzymes and transporters) 
and pharmacodynamics (receptors and signal transduction).2

The μ-opioid receptor (OPRM1) A118G single nucleotide 
polymorphism has been a major focus of research into the 
pharmacogenetics of opioid response. Emerging knowledge 
regarding the molecular mechanisms regulating pain in ani-
mal models has increased the hopes of identifying personal-
ized pain therapies.3 In vitro experiments show that variant 

receptors are associated with higher binding affinity to and 
potency of the endogenous ligand, β-endorphin, but lower 

What We Already Know about This Topic

•	 Interpatient	variability	in	responses	to	opioids	is	governed	by	
genetic	and	environmental	factors

•	 The	A118G	 single	 nucleotide	 polymorphism	of	 the	μ-opioid	
receptor	has	been	implicated	in	these	differences

What This Article Tells Us That Is New

•	 In	a	meta-analysis	involving	18	studies	and	more	than	4,600	
patients,	carriers	of	the	G-allele	were	observed	to	exhibit	high-
er	opioid	analgesic	requirements

•	 These	 genetic	 effects	 were	 strongest	 in	 Asian	 patients,	
	morphine	users,	and	those	receiving	surgery	to	a	viscus
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ABSTRACT

Background: Although a number of studies have investigated the association of the OPRM1 A118G polymorphism with pain 
response, a consensus has not yet been reached.
Methods: The authors searched PubMed, EMBASE, and the Cochrane Library to identify gene-association studies that 
explored the impact of the OPRM1 A118G polymorphism on postoperative opioid requirements through July 2013. Two 
evaluators independently reviewed and selected articles on the basis of prespecified selection criteria. The authors primarily 
investigated the standardized mean difference (SMD) of required amounts of opioids between AA homozygotes and G-allele 
carriers. The authors also performed subgroup analyses for race, opioid use, and type of surgery. Potential bias was assessed 
using the Egger’s test with a trim and fill procedure.
Results: Three hundred forty-six articles were retrieved from databases, and 18 studies involving 4,607 participants were 
included in the final analyses. In a random-effect meta-analysis, G-allele carriers required a higher mean opioid dose than AA 
homozygotes (SMD, −0.18; P = 0.003). Although there was no evidence of publication bias, heterogeneity was present among 
studies (I2 = 66.8%). In the subgroup meta-analyses, significance remained robust in Asian patients (SMD, −0.21; P = 0.001), 
morphine users (SMD, −0.29; P <0.001), and patients who received surgery for a viscus (SMD, −0.20; P = 0.008).
Conclusions: The OPRM1 A118G polymorphism was associated with interindividual variability in postoperative response 
to opioids. In a subpopulation, identifying OPRM1 A118G polymorphism may provide valuable information regarding the 
individual analgesic doses that are required to achieve satisfactory pain control. ( Anesthesiology 2014; 121:825-34)
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potency of the exogenous opioid ligands, such as morphine.4–6 
Studies in mouse models with analogous substitution of 
human OPRM1 A118G showed reduced analgesic response 
to morphine in some regions of the mouse brain with the GG 
genotype when compared with the AA genotype.7,8 A previ-
ous research also showed that OPRM1 118A messenger RNA 
was 1.5- to 2.5-fold more abundant than the 118G messen-
ger RNA in heterozygous brain autopsy tissues. In addition, 
118G caused a 10-fold reduction in the protein level of the 
μ-opioid receptor.9 These findings suggest that the 118G allele 
may result in an altered function, although clinical studies 
have not consistently reported an altered pain phenotype.10

In contrast to animal studies of standardized pain tests, 
analgesia in humans is usually evaluated in patients with 
actual pain, particularly in the settings of cancer and surgery. 
Patients with acute postoperative pain after standardized 
procedures may be more optimal candidates for investigating 
relationships between genes and drug effects.11 In contrast, it 
is difficult to study gene–drug effect associations in cancer-
related pain, because the mechanism, severity, and nature of 
pain are highly variable from patient to patient. Like other 
types of pain, postoperative pain is poorly controlled in the 
vast majority of patients, which affects outcomes and results 
in increased medical expenses.12,13 Opioids are commonly 
administered for postoperative pain control. Genetic evalu-
ation may be one of the promising tools for clinicians who 
wish to personalize postoperative management.14

We investigated the impact of the OPRM1 A118G poly-
morphism on the requirement of opioids in postoperative 
settings by performing a comprehensive meta-analysis of 
various factors, such as ethnicity (Caucasians and Asians, the 
two major groups that have been studied), administered opi-
oids, and type of surgery.

Materials and Methods

Information Sources and Search Strategy
Following guidance from the Human Genome Epidemiol-
ogy Network (HGEnet) on gene–disease association studies 
and the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA),15 we searched PubMed, 
EMBASE, and the Cochrane Library from their inception to 
July 17, 2013 without language restrictions. The search terms 
were “OPRM1 or A118G” and “pain.” A manual review of 
references from primary and review articles was performed to 
locate any additional relevant studies.

Study Selection and Eligibility Criteria
We included original observational studies published in full 
text and those for which we had full access to all original data 
and protocols. We primarily excluded reviews, case reports, 

and author replies. The polymorphism of OPRM1 needed to 
be designated by its single nucleotide polymorphism data-
base identifier (rs1799971) of National Center for Biotech-
nology Information, messenger RNA nucleotide exchange 
(118A>G), or Human Genome Variation Society name 
(c.304A>G) to avoid ambiguity.* Articles were excluded for 
the following reasons: (1) the report focused exclusively on 
other topics, such as addiction or sensitivity; (2) a nonop-
erative setting (i.e., cancer or labor pain) or opioid-tolerant 
patients (any chronic pain) were included; (3) no human 
data were included; (4) no intravenous opioid administra-
tion (i.e., intrathecal or epidural) or different outcome mea-
sures (i.e., duration of opioid efficacy or numerical rating 
score) were included; and (5) the human 118A>G variant 
was not included, or no data were reported for this variant.

Data Collection Process and Extracted Items
All of the potentially relevant articles were independently 
reviewed by two investigators (I.C.H. and J.-Y.P.). Dis-
agreements between evaluators were resolved by consensus 
or consultation with a third author (S.-K.M.). The authors 
of articles in which data were reported in a format that did 
not allow inclusion in the meta-analysis were contacted 
and asked to release data. If only the median and range 
(min−max) were available, we estimated the mean and SD as 
proposed by Hozo et al.16 If only the interquartile range was 
available, we estimated the SD as proposed by the Cochrane 
handbook with the formula: SD = interquartile range/1.35.17

The following data were extracted for each study: first 
author, year of publication, surgery name, race, used opi-
oid, whether genotype frequencies agreed with the Hardy–
Weinberg equilibrium (HWE),18 mean ± SD amounts of 
opioids, and sample size with three or two genotype groups. 
If a study presented various types of outcomes, we selected 
only the opioid amounts. Intravenous oxycodone has a simi-
lar potency as intravenous morphine (1:1) in patients receiv-
ing superficial surgeries, such as thyroid surgery.19 Therefore, 
although the exact dose may not be reflected due to the vary-
ing properties of different analgesics, we converted the dose 
of each agent into the equivalent dose of opioids to standard-
ize units. In the case of intravenous fentanyl, we followed 
the current guidelines based on the results of a compara-
tive study of response to intravenous bolus doses (1:100).20 
In addition, to unify the actual scales for opioid doses, we 
requested data from authors regarding the total amounts of 
opioids in their studies.21–23

Because there is not sufficient information about the 
clinical effects associated with different genetic models, we 
analyzed the data using the dominant, recessive, and addi-
tive model, respectively.24 This required recalculation of the 
mean and SD,10 since some of the studies had reported for 
the three genotype groups. Among points to be considered 
in genetic association reports,25 we checked for departure 
from HWE with Michael H. Court’s online calculator to 
explore the quality of studies.† The distributions of the 

* National Center for Biotechnology Information. Available at: http://
www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?type=rs&rs=rs1799971. 
Accessed June 10, 2013.

† Available at: http://www.tufts.edu/~mcourt01/Documents/Court 
lab - HW calculator.xls. Accessed June 10, 2013.
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genotypes were not in HWE in some of the studies.26,27 A 
deviation from HWE in an association study may be due to 
many factors, such as genotyping errors, population stratifi-
cation, enrollment bias, and other artifacts.28

Main and Subgroup Analyses
We primarily investigated the required amounts of opioids 
in AA homozygotes and G-allele carriers (per the dominant 
genetic model) during postoperative periods. We also per-
formed subgroup analyses by race (Asian vs. Caucasian), 
administration of opioids (morphine vs. fentanyl), type of 
surgery (visceral vs. nonvisceral), and HWE.

Statistical Analysis
We utilized Higgins I2 to test heterogeneity by measuring the 
percentage of total variation across trials. I2 ranged from 0 to 
100% (I2 >50% showed significant heterogeneity and I2 <25% 
indicated insignificant heterogeneity).29 If substantial hetero-
geneity was observed, we calculated the difference in means 
with the DerSimonian and Laird random-effects model, which 
is the generally preferred approach in these types of cases.

Individual study-effect sizes were calculated with Cohen’s 
d, which quantified the standardized difference in param-
eters and was calculated as d = Mean1 − Mean2/SDcombined. 
The accepted interpretation is that a value of d = 0.2 indi-
cates a small effect, 0.5 indicates a medium effect, and 0.8 
indicates a large effect.30 Effect sizes were pooled with inverse 
variance methods to generate a summary of effect size and 
a 95% CI. We calculated and compared the standardized 
mean differences (SMDs) between homozygotes for the 
wild-type A-allele and G-allele carriers.24

We performed the Egger’s test to construct plots display-
ing the standardized effect and the corresponding standard 
errors (precision) to assess potential bias from the effects of a 
small study.31 We also performed a trim and fill procedure as 
sensitivity analysis.32 All statistical analyses were performed 
with the Stata SE version 10.0 software package (StataCorp., 
College Station, TX).

Results

Study Selection and Characteristics
Figure 1 shows a flow diagram indicating how relevant stud-
ies were identified. Three hundred forty-six articles were 
identified from three databases, that is, PubMed, EMBASE, 
and the Cochrane library. After excluding 129 duplicated 
articles, two authors independently reviewed and excluded 
an additional 73 nonoriginal articles. We reviewed the full 
texts of the remaining 144 articles and excluded 126 articles 
for the following reasons. They addressed an unrelated topic 
(n = 63). The studies were performed in a nonpostoperative 
setting (n = 33). They were not human studies (n = 15). 
They were performed with a different measurement system 
(n = 9), or they provided insufficient data (n = 3). Eighteen 
studies were included in the final analysis.

Table 1 shows the general characteristics of the 18 stud-
ies included in the final analysis. There were 4,607 partici-
pants represented in the 18 studies, including 2,121 with 
the AA genotype and 2,486 with the AG/GG genotype. The 
number of participants per study ranged from 68 to 994. 
The countries in which the studies were conducted were 
China (n = 4),23,33–35 Singapore (n = 3),36–38 United States 
(n = 2),39,40 Taiwan (n = 2),26,27 Japan (n = 2),21,22 France 
(n = 1),41 Estonia (n = 1),42 Denmark (n = 1),43 Italy (n = 
1),44 and Korea (n = 1).45 Twelve studies were performed in 
Asian patients. Sixteen studies were consistent with HWE, 
and nine studies used morphine. The types of surgery varied. 
We classified surgeries into two types for our analysis: viscus 
surgery and nonviscus surgery (i.e., arthroplasty, orofacial 
surgery, osteotomy, thyroidectomy, and orthopedic surgery).

Primary Analyses
The relative SMD of the requirement for postoperative opi-
oids in each study is presented in a forest plot, along with the 
overall results of the meta-analysis. Compared with homo-
zygotes for the wild-type A-allele, G-allele carriers required a 
higher dose of opioid (SMD, −0.18; 95% CI, −0.30 to −0.06;  
P = 0.003) with significant heterogeneity (I2 = 66.8%; P < 0.001)  
(fig. 2). This relationship remained robust regardless of consis-
tent HWE (table 2). The SMD in the dominant genetic model 
was lower than that in the recessive genetic model for most of 
the analyses. The results derived from the recessive and additive 
genetic model are presented in table 3. The current analysis 
showed a “dose-dependent” effect for the G-allele, with each 
additional copy increasing the need for opioids (table 4).

Subgroup Analyses
In the subgroup meta-analysis for ethnicity, we found that 
the effect in the Asian population was the major contributor 
to the overall effect of the OPRM1 A118G polymorphism 

Fig. 1. Flow diagram for identification of relevant articles.
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in the primary analyses. An association between the A118G 
allele and the requirement for postoperative opioids was 
observed in Asians, but not in Caucasians (table 2). The 
G-allele was responsible for the higher amounts of opioids in 
Asians during the postoperative period (SMD, −0.21; 95% 
CI, −0.34 to −0.08; I2 = 68.6%; random-effects model). In 
addition, the subanalysis for opioid administration and type 
of surgery revealed significant effects of this polymorphism 
in morphine users (SMD, −0.29; 95% CI, −0.42 to −0.15; 
I2, 58.2%; random-effects model) and subjects receiving 
viscus surgery (SMD, −0.20; 95% CI, −0.35 to −0.05; I2, 
73.5%; random-effects model) (table 2).

Publication Bias
The bias plot of the 18 studies included in the main analy-
sis is presented in figure 3. The Egger’s test indicated an 

absence of heterogeneity among studies and selection biases 
(bias = 1.04, P = 0.247). The trim and filled analysis sug-
gested that three studies were missing. The weighted SMD 
of 21 studies per the random-effects summary was −0.25 
(95% CI, −0.38 to −0.13), obtained after symmetrically 
filling the funnel plot. A significant difference between 
before and after filling potentially missing studies was not 
noted (P = 0.052) (fig. 4).

Discussion
There are few data regarding the pharmacogenetic contri-
bution to pain response to opioids. A recent meta-analysis 
investigating the influence of OPRM1 A118G on pain 
response suggested that it was premature to integrate phar-
macogenetics into the clinic with respect to pain control.10 
That study included a variety of clinical settings, such as 

Table 1. Characteristics of the Included Studies for the Effects of the OPRM1 118A>G Polymorphism on the Opioids Requirement 
for Postoperative Pain

Source Location Population HWE N

Genotype Frequencies (%)

Opioid Surgery

Additional 
Data from 
AuthorsAA AG GG

Chou  
et al.,27 2006

Taiwan Asian NE 120 61.7 27.5 10.8 MOR Total knee  
arthroplasty

Janicki  
et al.,39 2006

Pennsylvania Caucasian E 101 69.3 29.7 1.0 MOR Laparoscopy

Coulbault  
et al.,41 2006

France Caucasian E 74 77.0 20.3 2.7 MOR Colorectal  
surgery

Chou  
et al.,26 2006

Taiwan Asian NE 80 53.8 23.8 22.5 MOR Hysterectomy

Sia  
et al.,36 2008

Singapore Asian E 585 46.3 40.0 13.7 MOR Cesarean  
section

Fukuda  
et al.,21 2009

Japan Asian E 280 30.7 51.1 18.2 FEN Orofacial  
surgery

Yes*†

Tan  
et al.,37 2009

Singapore Asian E 994 39.1 43.8 17.1 MOR Cesarean  
section

Fukuda  
et al.,22 2010

Japan Asian E 108 28.7 50.0 21.3 FEN Mandibular  
osteotomy

Yes*†

Zhang  
et al.,33 2010

China Asian E 174 49.4 38.5 12.1 FEN Gynecologic 
surgery

Zhang  
et al.,34 2011

China Asian E 164 48.8 37.8 13.4 FEN Gynecologic 
surgery

Kolesnikov  
et al.,42 2011

Estonia Caucasian E 102 80.4 19.6 MOR Lower abdominal 
surgery

Zwisler  
et al.,43 2012

Denmark Caucasian E 266 82.3 16.2 1.5 OXC Primarily  
thyroidectomy

Yes*

Kim  
et al.,45 2013

Korea Asian E 196 36.7 49.0 14.3 FEN Hysterectomy

De Gregori  
et al.,44 2013

Italy Caucasian E 98 68.4 26.5 5.1 MOR Abdominal/ 
urological 
surgery

Zhang  
et al.,33 2013

China Asian E 128 42.2 41.4 16.4 FEN Radical  
gastrectomy

Yes†‡

Sia  
et al.,38 2013

Singapore Asian E 973 36.4 48.7 14.9 MOR Hysterectomy

Zhang  
et al.,35 2013

China Asian E 96 36.5 46.9 16.7 FEN Cesarean  
section

Henker  
et al.,40 2013

Pittsburg Caucasian E 68 75.0 22.1 2.9 Mixed orthopedic  
trauma surgery

Yes*

* Only one genetic model was applicable. † Data of total amounts independent of participants’ weights. ‡ No access to full text.
E = equilibrium; FEN = fentanyl; HDC = hydrocodone; HWE = Hardy−Weinberg equilibrium; MOR = morphine; NE = nonequilibrium; OXC = oxycodone.
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cancer, postoperative, labor, and chronic pain. Recently, 
it, however, has been suggested that not all clinical pain 
syndromes will be equally affected by a specific pharma-
cogenetic marker, just as not all pain models are equally 
responsive to opioids.46 Therefore, we limited our inclusion 
criteria to the postoperative setting. The effects of OPRM1 

A118G on requirements for analgesics for postoperative pain 
remain controversial.34,42,43 We performed a meta-analysis of 
18 association studies on the response of clinical pain to opi-
oids to gain a clearer picture of the genetic factors. We found 
that the OPRM1 genetic variant had overall effects on the 
requirement for postoperative opioids.

Overall  (I2 = 66.8%)

Study

2013 Zhang et al. (35)

2006 Coubault et al. (41)
2006 Chou et al. (27)

2013 Zhang et al. (23)

2006 Janicki et al. (39)

2011 Zhang et al. (34)
2012 Zwisler et al. (43)

2013 Sia et al. (38)

2010 Zhang et al. (33)
2010 Fukuda et al. (22)

2013 De Gregori et al. (44)
2013 Henker et al. (40)

2008 Sia et al. (36)
2009 Fukuda et al. (21)

2006 Chou et al. (26)

2013 Kim et al. (45)

2009 Tan et al. (37)

2011 Kolesnikov et al. (42)

-0.18 (-0.30, -0.06)
-0.74 (-1.16, -0.31)

-0.17 (-0.71, 0.37)
-0.28 (-0.65, 0.09)

0.16 (-0.19, 0.52)

-0.78 (-1.22, -0.35)

0.23 (-0.08, 0.54)
0.09 (-0.22, 0.41)

-0.19 (-0.32, -0.06)

-0.26 (-0.56, 0.04)
-0.31 (-0.73, 0.11)

0.11 (-0.31, 0.54)
0.04 (-0.51, 0.59)

-0.29 (-0.46, -0.13)
-0.17 (-0.42, 0.09)

-0.44 (-0.88, 0.01)

0.07 (-0.22, 0.36)

-0.44 (-0.57, -0.31)

0.12 (-0.37, 0.61)

100.00
4.39

3.29
5.12

5.37

4.30

6.02
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Weight (%)
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Fig. 2. Effect of the OPRM1 118A>G polymorphism on the requirement for postoperative opioids in the dominant genetic model. 
SMD = standardized mean difference.

Table 2. Effect of OPRM1 118A>G Polymorphism on Requirement for Postoperative Opioids in Subgroup Meta-analyses by Various 
Factors

AA Homozygotes vs. G-carriers

No. of Studies No. of AA No. of AG + GG SMD (95% CI) Heterogeneity, I2

All 18 2,121 2,486 −0.18 (−0.30 to −0.06) 66.8%
HWE
  Equilibrium 16 2,004 2,403 −0.16 (−0.30 to −0.03) 70.1%
  No equilibrium 2 117 83 −0.35 (−0.63 to −0.06) 0%*
Ethnicity
  Caucasian 6 546 163 −0.09 (−0.39 to 0.59) 61.0%
  Asian 12 1,575 2,323 −0.21 (−0.34 to −0.08) 68.6%
Opioids
  Morphine 9 1,407 1,720 −0.29 (−0.42 to −0.15) 58.2%
  Fentanyl 7 444 702 −0.12 (−0.34 to 0.09) 67.7%
Type of surgery
  Viscus 13 1,660 2,105 −0.20 (−0.35 to −0.05) 73.5%
  Nonviscus 5 461 381 −0.13 (−0.28 to 0.03) 0%*

* Fixed-effects model.
HWE = Hardy−Weinberg equilibrium; SMD = standardized mean difference.
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We observed in this study that the OPRM1 A118G poly-
morphism was associated with the requirement for postop-
erative opioids in Asians, but not in Caucasians. Ethnicity is 
the major factor explaining variations in pain response.37,47,48 
Despite solid evidence of enormous differences in pain sen-
sitivity and/or analgesia across ethnic groups,49–51 previous 
studies for OPRM1 included little ethnic diversity. The exact 
mechanisms for this ethnic difference remain unclear but it 
is possible to postulate as follows: first, the G-allele carri-
ers showed increased pain responses among Asians, leading 
to a higher dose requirement for analgesics, and similarly 
these findings were also documented in the postoperative 
setting.22,33,34,37,50,52 Second, relatively low frequencies of the 
118G minor allele in Caucasians may limit the identifica-
tion of the association that observed in Asian populations. 
Third, other putative variants that are in linkage disequi-
librium with A118G polymorphism could affect μ-opioid 
receptor function. Assumed that the extent of the linkage 
disequilibriums could be varied by ethnic populations,51,53 
the ethnic difference in responses could be speculated. In 
addition, polymorphisms in other genes concerning the 
pharmacokinetics (i.e., ABCB1, CYPs, or UGTs) could influ-
ence the response of opioids in a population-specific manner 

through the changes of blood levels.54–56 Finally, different 
environments, which can be ethnically divergent (e.g., rates 
of smoking or local dietary habits), may also contribute.57,58

On the basis of the diverse functional selectivity of 
OPRM1,59 we further investigated the effects of different 
types of opioids. Opioids exhibit different affinities for bind-
ing sites, which may determine analgesic capacity. Subgroup 
analysis suggested that the A118G affected the requirement 
for postoperative morphine but not fentanyl. Our finding 
was supported by a recent experimental study. In a human-
ized mouse model, sensory neurons expressing the 118GG 
gene displayed reduced morphine (but not fentanyl) potency 
and efficacy compared with 118AA.60 This suggests that 
pharmacogenetic response to opioid agonists may be ligand 
dependent. However, it should be noted that various opioids 
including fentanyl exhibit broadly different clinical responses 
in association with different pharmacokinetic properties.61,62

Subanalysis for the type of surgery showed a significant 
effect of the OPRM1 A118G polymorphism on viscus sur-
gery. These findings have substantial implications for post-
operative pain control, because insufficient analgesia and/or 
excessive adverse effects often limit the use of opioids, par-
ticularly in the viscera. There is solid evidence that visceral 

Table 3.  Association between OPRM1 118A>G Polymorphism and Requirement for Postoperative Opioids in the Recessive and 
Additive Genetic Model

No. of  
Studies

Recessive Model Additive Model

No.  
of A−

No.  
of GG SMD (95% CI) I2

No.  
of A−

No.  
of −G SMD (95% CI) I2

All 16 3,783 621 −0.35 (−0.61 to −0.08) 86.0% 3,783 2,435 −0.12 (−0.20 to −0.03) 50.8%
Caucasian 4 493 13 −0.21 (−0.77 to 0.34) 16.7% 493 112 0.03 (−0.17 to 0.24) 0%*
Asian 12 3,290 608 −0.37 (−0.67 to −0.08) 89.3% 3,290 2,323 −0.14 (−0.23 to −0.04) 59.7%
Morphine 7 2,491 433 −0.35 (−0.46 to −0.25) 15.7% 2,491 1,669 −0.17 (−0.24 to −0.11) 0%*
Fentanyl 7 964 182 −0.34 (−1.00 to 0.31) 93.6% 964 702 −0.09 (−0.27 to 0.10) 69.7%
Viscus 11 3,034 528 −0.40 (−0.73 to −0.06) 89.6% 3,034 2,054 −0.13 (−0.24 to −0.02) 62.3%
Nonviscus 5 749 93 −0.24 (−0.67 to 0.19) 60.9% 749 381 −0.07 (−0.20 to 0.06) 0%*

* Fixed-effects model.
SMD = standardized mean difference.

Table 4. The OPRM1 118A>G Polymorphism and the Requirement for Postoperative Opioids in Each Genotype

No. of Studies

AA vs. AG AG vs. GG AA vs. GG

SMD P Value SMD P Value SMD P Value

Overall 16 −0.189 <0.001 −0.217 0.035 −0.396 0.004
Ethnicity
  Caucasian 4 +0.081 0.474 −0.298 0.325 −0.169 0.552
  Asian 12 −0.216 <0.001 −0.273 0.047 −0.439 0.004
Opioids
  Morphine 7 −0.195 0.015 −0.216 <0.001 −0.507 <0.001
  Fentanyl 7 −0.008 0.182 −0.279 0.359 −0.397 0.228
Type of surgery
  Viscus 11 −0.143 0.034 −0.314 0.050 −0.445 0.011
  Nonviscus 5 −0.087 0.300 −0.183 0.395 −0.308 0.016

Appropriate models (fixed-effect or random-effect) were applied in each analysis based on the value of Higgin’s I2.
SMD = standardized mean difference.
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pain, in contrast to somatic pain, is difficult to treat with 
traditional μ-opioid agonists.63,64 Compared with somatic 
origin, visceral nociceptive mechanisms are more complex65 
and characterized by the lack of a separate sensory pathway 
in the central nervous system with few afferent fibers.66 
Clinical observations showed that visceral pain is differen-
tially induced according to the type of stimuli.67 The effect 
of OPRM1 A118G variants on postoperative pain response 
was prominent only in recipients of viscus surgery. We do 
not have a clear explanation for this finding, but it is possible 
that there were many confounding factors.

Several points need to be considered for postoperative 
opioid doses. The first is the time period during which the 
opioid was used. Total “perioperative” opioid consumption 
that is not limited to the postoperative period is likely to 
be appropriate, although the intraoperative dose was not 

significantly influenced by genotype in some studies. The 
second point to be considered for estimating amounts of 
opioids is the subject’s body weight. “Weight-adjusted dose” 
is a more appropriate index than total amount according to 
several studies.21,22,37,38 Finally, many studies used total opi-
oid dose delivered by patient-controlled analgesia as the pri-
mary outcome and surrogate for pain and analgesic response. 
However, a fundamental question is whether one can con-
clude that an increase in postoperative opioid consumption 
administered by patient-controlled analgesia necessarily 
indicates increased postoperative pain and/or reduced opi-
oid efficacy.68 This surrogate marker does not take into 
account other opioid-induced effects, such as euphoria or 
anxiolysis. Subjects might use more opioids because they feel 
better regardless of pain levels. This may be reflected in the 
observed increase in morphine use in one group compared 
with the other, rather than an increased requirement for 
analgesia. However, comparisons of opioid requirements for 
patients with similar pain scores may also be an ethical issue.

There were several limitations in this study. First, the 
sample size of subgroups not reaching significance was small, 
and type II error could not be dismissed. This limitation is a 
crucial determinant of the power to detect a causal variant in 
genetic association studies.69 In addition, the lack of enough 
studies in Caucasian prevented further subanalysis in separate 
ethnic cohorts. Second, data related to mean dose were not 
adjusted for other genes (i.e., COMT)42,44 that affect responses 
to opioids. In addition, data were not adjusted for nongenetic 
confounders,41,70–73 such as sex, age, underlying disease, and 
concomitant multimodal analgesia including nonsteroidal 
antiinflammatory drugs or paracetamol as an adjuvant regi-
men. The consequences of genetic polymorphisms may be 
partly explained by genetic−epigenetic interactions and not by 
genetics alone. The A118G polymorphism alters transcription 
of OPRM1 via methylation of adjacent sites where a cytosine 
nucleotide occurs next to a guanine nucleotide, decreasing 
opioid potency.74 Further large, high-quality randomized con-
trolled trials are required to investigate whether this polymor-
phism has a true association with postoperative pain response. 
Third, although the analyses of publication bias did not show 
a statistical significance, a potential small study bias (including 
publication bias) could have occurred in our review.

Our meta-analysis provided an evidence that the OPRM1 
A118G polymorphism in OPRM1 was associated with post-
operative pain response in patients who were Asian, used 
morphine, or received viscus surgery. In this special subpop-
ulation, identifying genotypes and haplotypes of OPRM1 
A118G polymorphism may provide valuable information 
regarding the individual analgesic doses that are required to 
achieve satisfactory pain control.
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Burnette’s	Folding	Trade	Card	with	Laughing	“Gas”	Surcharge

According to this rare folding trade card issued by Dr. T. C. Burnette, he provided dental extractions with an option for 
nitrous oxide anesthesia “ALL HOURS” (upper left) in Oakland, California. For literacy-challenged patients, this trade 
card unfolds to reveal an etching (right) by “K. Oliver” of the exterior of Burnette’s office building. The back of the folded 
trade card (lower left) notes that extracting teeth with “Gas” cost 50 cents or about 5% beyond the $10 cost extracted 
from patients for dentures fitted after gas-free dental extractions. This trade card is part of the Wood Library-Museum’s 
Ben Z. Swanson Collection. (Copyright © the American Society of Anesthesiologists, Inc.)
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