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V ARIABILITY in daily surgical case volume subop-
timizes the resources planned for the day of surgery 

because staff scheduling decisions are usually made weeks 
in advance. Typically, managers plan for the maximum 
demand, staffing all their allocated operating rooms (ORs). 
As the day of surgery approaches, managers may try to close 
ORs that have no booked cases, or consolidate ORs that 
have few cases, and thereby developing an opportunity to 
reduce staff labor costs. However, OR managers and anes-
thesia leaders typically can estimate final demand with preci-
sion only 1 or 2 days in advance of the day of surgery. By 
then, it is too late to plan OR closures and flex staff off or 
into other assignments.

1–3

Most work on surgical volume prediction has focused on 
longer-term planning. To maximize longer-term efficiency 
in the OR suite, staffing is rationally planned by evaluat-
ing the tradeoff between underutilization and overutiliza-
tion costs.4,5 In the long run, if the distribution of OR labor 
costs and surgical demand (both in terms of case volume 
and procedure type) replicates the historical distributions 
used to develop the initial staffing parameters, OR efficiency 
will be maximized. Both the monthly aggregated surgical 

volume6 and the individual surgical subspecialty’s 4-week 
volume7 can be fairly accurately predicted using statistical 
methods, and these can be used for planning monthly staff-
ing. However, variability in surgical case volume in the short 
term (weekly and daily time scales) provides an additional 
opportunity to extract further improvements in matching 
OR costs to revenue opportunities.

Although there are no published studies on this topic, sto-
ries of entire surgical services attending meetings or interview 
days, or highly busy surgeons in nonacademic centers going 
on vacations, with consequent unanticipated shortfalls in OR 
volume, are commonplace. Often, there is a rebound upswing 

What We Already Know about This Topic

•	 Precise estimation of operating room demand more than a 
few days in advance would allow flexible staffing decisions

What This Article Tells Us That Is New

•	 In a review of 146 consecutive surgical days at one academic 
medical center, case volume could be predicted with high ac-
curacy 1 to 2 weeks in advance, allowing a closer match of 
staffing to demand
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ABSTRACT

Background: Precise estimates of final operating room demand can only be made 1 or 2 days before the day of surgery, when 
it is harder to adjust staffing to match demand. The authors hypothesized that the accumulating elective schedule contains 
useful information for predicting final case demand sufficiently in advance to readily adjust staffing.
Methods: The accumulated number of cases booked was recorded daily, from which a usable dataset comprising 146 consecu-
tive surgical days (October 10, 2011 to May 7, 2012, after removing weekends and holidays), and each with 30 prior calendar 
days of booking history, was extracted. Case volume prediction was developed by extrapolation from estimates of the fraction 
of total cases booked each of the 30 preceding days, and averaging these with linear regression models, one for each of the 30 
preceding days. Predictions were verified by comparison with actual volume.
Results: The elective surgery schedule accumulated approximately three cases per day, settling at a mean ± SD final daily vol-
ume of 117 ± 12 cases. The model predicted final case counts within 8.27 cases as far in advance as 14 days before the day of 
surgery. In the last 7 days before the day of surgery, the model predicted the case count within seven cases 80% of the time. 
The model was replicated at another smaller hospital, with similar results.
Conclusions: The developing elective schedule predicts final case volume weeks in advance. After implementation, overly 
high- or low-volume days are revealed in advance, allowing nursing, ancillary service, and anesthesia managers to proactively 
fine-tune staffing up or down to match demand. (Anesthesiology 2014; 121:171-83)
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of demand on the days surrounding such absences, straining 
staff resources. Advance notification of the OR manager would 
allow planning for such events, but common experience hints 
that this is vulnerable to the limits of human diligence. Man-
agers of the OR and ancillary services such as the supply chain, 
pathology, and radiology need a tool to predict total surgical 
case volume several days to a few weeks in advance and to give 
daily insight into OR suite volume for the 1 to 2 weeks leading 
up to surgery so that they can make intermediate-term adjust-
ments that match capacity to demand as precisely as possible. 
To be useful, the tool should predict the total scheduled elec-
tive volume (with an allowance for the expected number of 
urgent and emergent add-ons that will appear just before and 
on the day of surgery), and it should make that prediction 
accurately, weeks in advance.

We speculated that the developing elective OR schedule, 
which accumulates over time as multiple surgical clinics add 
cases to fill the available time in their allotted blocks, contains 
information useful for predicting the ultimate aggregated elec-
tive and nonurgent add-on OR volume for each day. In other 
words, if a given OR day’s volume differs from the canoni-
cal (historical daily) volume, that difference would have been 
reflected days to weeks in advance in that day’s elective sched-
ule as it developed. For ORs with some degree of labor flex-
ibility, the ability to predict the aggregated daily surgical case 
volume 1 to 2 weeks in advance would be an important signal 
for adjusting staffing. We therefore undertook a study to deter-
mine, working from the elective schedule as it develops over 
time, whether: (1) surgical case volume can be predicted, and 
if so, (2) with what confidence, (3) how many days in advance, 
and (4) if the predictions could be used to plan OR closures 
and reduce OR staff labor expenses by cancelling shifts or shift-
ing staff to other duties, locations, or assignments. Predicting 
the number of day-of-surgery add-on cases or the hours of 
overtime on the day of surgery was not in the scope of the proj-
ect; rather, we sought to minimize their impact by giving OR 
managers more certainty about the elective workload in the 
weeks and days leading up to the day of surgery itself. We per-
formed this work as an engineering project with observational 
assessment of impacts in the live, working environment of a 55 
OR academic medical center (Vanderbilt University Hospital, 
Nashville, Tennessee—hereafter referred to as the “adult hospi-
tal”), with subsequent extension to the adjacent free-standing 
18 OR pediatric hospital (Monroe Carell Jr. Children’s Hospi-
tal at Vanderbilt, Nashville, Tennessee—hereafter referred to as 
the “children’s hospital”).

Materials and Methods
This study was reviewed by the Vanderbilt University Insti-
tutional Review Board (Nashville, Tennessee) and was deter-
mined to qualify as a nonhuman research study.

Setting and Prior State Description
This work was performed at a level 1 trauma center, with 
a mean ± SD daily adult surgical volume of 117 ± 12 cases 

(95% CI of mean = 2 cases) for the period from which data 
were used to develop the model. The average case count and 
the day-to-day variability in case numbers can be appreciated 
in figure 1. Median case volume was 117 cases, 25th percen-
tile was 108 cases, and the 75th percentile was 126 cases. The 
mean daily case volume was also 117, and the distribution of 
daily volume was not statistically significantly different from 
a normal distribution using the Shapiro–Wilk test of nor-
mality (P = 0.11; the threshold for determination that a dis-
tribution is statistically different from a normal distribution 
using this test is generally considered to be P < 0.05). Total 
daily case volume was highly correlated with total case hours. 
Using 30 months of data from our institution, we found 
the Pearson’s R correlation to be 0.92. Therefore, daily case 
volume is a good proxy of the daily workload. We also exam-
ined the day-to-day variability of daily case volume using 
Run Chart methodologies to determine whether this param-
eter demonstrated common cause or special cause variation.

On average, 6% of total cases are unscheduled day-of-sur-
gery add-ons (added within the last 15 h before the start of the 
day of surgery, after the elective schedule closes). On the day 
of surgery, add-on cases are scheduled into holes in the elec-
tive schedule (which are rare because the OR scheduler works 
to eliminate holes during the week leading up to surgery) 
or into the ends of staffed OR blocks. Overtime utilization 
has been an accepted practice to complete cases for the past 
decade. Similarly, our OR practice is not to maintain an open 
room for add-on cases, and this has been consistent for the 
past decade. Accordingly, all nonurgent, urgent, and emer-
gent cases added on the day of surgery have been handled the 
same way throughout the duration of the project: nonurgent 
cases are performed as time becomes available, urgent cases in 
the first reasonable room, and emergencies are booked into 
the first open room and the displaced cases worked into the 
OR schedule in other rooms on the day of surgery.

In the scheduling office, elective cases are fitted into allo-
cated block time whose “end” is sufficiently elastic to allow 
modest overruns (approximately 1 h) at the discretion of the 
scheduling office manager. Seven calendar days before the day 
of surgery, all unused block time is released. At this point, the 
OR schedulers begin to fit elective add-on cases for surgeons 
who do not have block time on that particular OR day into the 
elective schedule. This scheduling technique has been found to 
be effective in filling unused block times in large ORs.7,8

Before the reported project, we developed monthly vol-
ume forecasts based on historical data combined with expert 
judgment based on business volume projected by each ser-
vice line. These monthly volume projections were used to 
create the budgeted volume, which was then apportioned 
over the number of weekdays in a given month to derive 
the projected daily volume. Developing monthly budgeted 
volume in this manner has some theoretical validity9 and 
satisfactorily estimates the monthly volume. However, these 
budgeted numbers fail to provide timely predictions of the 
daily and weekly variability in case volume.
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Data Collection
To assess expected future volume many days in advance of 
the day of surgery, we captured snapshots of the developing 
daily OR schedule, for each OR work day, as it existed at the 
end of each of the 30 days leading up to that day of surgery. 
To ensure consistency, OR schedule snapshots were taken at 
exactly 4:30 pm each day. This time was chosen because it is 
when the OR scheduling office closes for the day and hence 
captures the set elective schedule for any given day at the 
last time the schedulers work on it until the beginning of 
the next work day. Data were collected for 8 months (Sep-
tember 2011 to May 2012). We excluded OR days at the 
beginning of data collection for which the complete prior 
30 days of case bookings into that surgery date were unavail-
able. After removing weekends and holidays, we ended with 
146 consecutive surgical days; each with 30 prior (calendar) 
days of case-booking history (4,380 observations). For each 
scheduled case, the dataset consisted of surgery date, initial 
booking date, and the major organizational unit of our OR 
suite to which the case had been assigned.

Evaluating Alternative Volume Prediction Models
The objective of this project was to develop a technique to 
predict case volume multiple days to weeks in advance of the 
day of surgery. Two approaches guided the evaluation and 
development of volume prediction models. First, we used 
established time-series techniques, specifically, Autoregres-
sive Integrated Moving Average, to see whether future days’ 
volume could be predicted by just checking one or a few 
immediately past days’ volume. We then explored a second 
approach that was motivated by the opinion held (though 
never scientifically tested) by expert anesthesiologists that 
the accumulating elective surgical case schedule may hold 

signals that if identified could perhaps help predict the final 
volume weeks before the actual day of surgery. Operational-
izing this second general approach, we developed three mod-
els (two linear regression models and a linear extrapolation 
model) and selected two of these for inclusion in the final 
prediction tool.

Time Series of Daily Case Volume
We used time-series analyses to assess whether the final daily 
case volume itself could be used to predict the volume on 
future days. We used Expert Modeler of IBM SPSS v. 21 
(IBM Corp., New York, NY) to explore which, if any, auto-
correlation models could predict OR volume.

Linear Models of the Developing Schedule
We next developed and assessed three model approaches 
designed to take account of the temporal buildup of the OR 
schedule to predict the final case volume. The first approach 
(“Linear Trend Model”) was a regression-based linear trend 
model. In the second modeling approach (“Percentage of 
Final Volume”), predicted surgical volume was a fixed pro-
portion of the number of cases booked for each of the 30 
preceding days. To account for the occasional periods of 
nonlinear trends in case bookings, especially in the final 
few days before the day of surgery, the distribution of the 
percentage of cases booked as of any day (up to 30 days) 
before the day of surgery was calculated and its mean used 
to predict the final case volume using a linear projection. 
The third modeling technique (“Days-Out Models”) was 
also based on simple linear regression, but in this case, we 
developed a separate model for each of the 30 days preceding 
the day of surgery. Both the second and third approaches are 
recursive each prediction day. In other words, each model is 

Fig. 1. Time series of daily surgical volume (adult hospital). Raw time series of the total cases (including day-of-surgery add-ons) 
performed each day in the 146 weekday run of data used to create the case count prediction model. Swings of 30 or more cases 
between nearby weekdays are common. Weekend days and holidays are not shown.
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recalculated on successive days to use the most current infor-
mation about the number of cases booked by the date the 
prediction is generated for a given future surgery date. The 
final prediction was calculated by combining predictions 
from the two individual modeling techniques that proved 
valid. We developed the original modeling approach for our 
adult hospital and then tested for generalizability by reim-
plementing it at our free-standing children’s hospital.

Statistical Analysis
After removing data for weekends and holidays, a sequential 
series of 146 surgery days was obtained. For each of these 
146 days, the accumulated number of cases booked each 
day going back to 30 calendar days from the day of sur-
gery was obtained. All individual models were validated with 
split-sample techniques. For prospective validation, volume 
predictions from the model were compared with actual cor-
responding daily volumes using 3 months of data (Decem-
ber 31, 2012 to March 29, 2013). Data are presented as 
mean ± SD, number (%), or 95% CI. Associations between 
time lags in the autoregressive time series are measured using 
autocorrelation, with their significance measured using the 
Ljung Box Q significant value. Stationary R2 provides the fit 
of the time-series model. In regression analysis, the assump-
tion of normality, of either the response or the explanatory 
variables, is not required; however, we checked for normal-
ity using the Shapiro–Wilk test and found all explanatory 
variables and the response variable to be mildly normal (null 
hypothesis is that data are from a normal distribution; the 
smallest P value was 0.12). Regression model fits were mea-
sured by the R2 (which indicates the proportion of variance 
in the independent variable that is explained by the depen-
dent variable), the standard error of the estimate, and the 
significance of the F value. Durbin–Watson test was used 
to confirm the lack of autocorrelation among the regres-
sion error terms, and Q-Q plots of residuals were examined 
to confirm normality of error terms. Presence of constant 
error variance was confirmed by examining scatter plots of 
the dependent and independent variables. Regression coef-
ficients’ significance was tested using t tests. Comparison of 
model precision between hospitals was performed using the 
Mann–Whitney U test. All analyses were performed using 
Microsoft Excel 2010 for Windows (Microsoft Corp., Red-
mond, WA), IBM SPSS for Windows v.21 (IBM Corp.), 
and JMP Pro 10.0.1 Release:2, 64-bit Edition (SAS Institute 
Inc., Cary, NC).

Results
Time Series of Daily Case Volume
Figure 1 gives the time series of the daily case volume. Total 
weekday case volume is widely variable and does not demon-
strate any obvious patterns visible from inspection of figure 
1. We also confirmed this statistically through Run Chart 
methods (not shown), which indicated a process operat-
ing within control limits, with exceptions around holidays, 

exhibiting variability that can mostly be attributed to com-
mon causes.

Autoregressive models can forecast outputs of those sys-
tems that exhibit persistence or autocorrelation in a time 
series; that is, some subset of past values (in our case, past 
few days’ daily case volume) can be used to predict future 
states (in our case, future daily volume). Given that our 
objective was to predict OR volume as much as two weeks 
in advance, time-series analyses did not seem promising as 
an initial approach. Nevertheless, we evaluated time-series–
based autoregressive models for the daily volume; however, 
this method of predicting a day’s case volume based solely on 
immediately preceding days was inadequate. The autocorre-
lation analysis given in figure 2 shows that lags 1, 2, 5, 6, 7, 
9, and 14 were statistically significant (α = 0.05); however, 
the autocorrelations themselves are very small and too small 
to be operationally meaningful. We tested other autoregres-
sion models (using different lags and moving averages) with 
the actual day-of-surgery volume, but none was a good fit. 
The best-fitting model generated was Autoregressive Inte-
grated Moving Average (1, 0, 14), which had a Ljung Box 
Q significant value of 0.224, a Stationary R2 of 0.117 and 
a mean absolute error of 9.2. In the appendix, we provide a 
brief explanation of the terms used to define Autoregressive 
Integrated Moving Average models.

The lack-of-fit of autoregressive models was expected 
because in OR suites that have capacity allocation based on 
block schedules, the daily volume is unlikely to be strongly 
correlated with any of the immediately preceding days’ case 
volume. To check the effect of weekly block schedules on 
daily volume, we also tested 5-day seasonal Autoregressive 
Integrated Moving Average models. The model fit improved, 
but the models still lacked the ability to identify higher 
(or lower) than average case volume days far in advance  
(appendix). This validated the basic premise for this study 
that dynamic techniques, possibly based on the real-time 
status of current volume booked, might be superior to the 
traditional forecasting models based on static historical 
information.

Linear Trend Model
Visual data examination shows that the accumulation of 
surgical cases into the elective surgery schedule seems to 
follow an almost linear trajectory until 1 or 2 days before 
the day of surgery. As an example of this trend, see figure 3, 
which shows the number of cases booked for each day of the 
week of July 22, 2013, starting from 14 days before the day 
of surgery. In the last 2 days before the day of surgery, the 
number of cases added is best described as random within 
a range (0% to +20% of the final case volume). To evaluate 
this linear trend, we tested a regression-based linear trend 
model. Using time (t) as the single explanatory variable, we 
developed an estimate for the final count (Yt), Yt = a + bt + 
Εt, where a is the intercept, b is the slope, and Εt is an error 
term. We took the mean of the number of cases booked for 
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each of the 30 days before a day of surgery (termed TMi-
nus30 to TMinus1 for convenience) for the 146 days of 

data. As an example, for t Y
ynn= = =∑

1
14630

30
1

146

, , where yn
30 is 

the nth data point (out of 146) corresponding to number of 
cases booked 30 days before the day of surgery (TMinus30). 
The value of Y30 = 31 cases, that is, 30 days before the day of 
surgery (t = 1), the average number of cases booked was 31. 
At TMinus29 (t = 2) Y29 = 33 cases.

The linear fit was good (adjusted R2 = 0.97, standard 
error = 4.1, intercept coefficient = 20.81, regression coef-
ficient = 2.63 with P = 0 at α = 0.05). This implied that the 
rate of new case booking was approximately three new cases 
per day. Although this simple model was useful, this was 
inadequate as it lacks the ability to exploit real-time informa-
tion about the changes in the linear trajectory of case book-
ings as additional cases get booked each day.

This model’s output provided useful insights about the 
almost linear nature in which cases appear on the schedule. 
However, it suffered from the problem of “averages of aver-
ages,” which made its output susceptible to misinterpreta-
tion due to the wide swings in case volume, and therefore 
restricted its ability to be used in a live environment. This 
technique was therefore not included in making the final 
predictions.

Percentage of Final Volume Model
To account for the occasional periods of nonlinear trends in 
case bookings, especially in the final few days before the day 
of surgery, the distribution of the percentage of cases booked 
as of any day (up to 30 days) before the day of surgery was 
calculated, and the mean of this percentage was then used to 
predict the final case volume using a linear projection. For 
example, figure 4 shows that 66% of the time 7 days before 
the day of surgery (TMinus7), between 70 and 85% of the 
final case volume, has already been booked (mean = 73.3%, 
95% CI of the mean = 1%). Therefore, at TMinus7, if 80 
cases have been booked, the predicted final volume can be 
estimated as: 8 733 110 0 0/ . ≅ . Use of the most current infor-
mation in this manner allows either reinforcing the predic-
tion made the previous day(s) or updating our estimates for 
the day-of-surgery volume.

Days-Out Models
A different methodology, based on recursively predicting 
the final case count by using the most updated information 
available, was devised. Prediction models based on simple 
linear regression were developed. A separate prediction 
model referenced to each of the 30 days before the day of 
surgery was created, where the final case volume (dependent 
variable) was regressed on cases booked until each of the 30 
preceding days (independent variable).

Table  1 gives the regression output for each of the 30 
regression models. Figure 5 shows the scatter plot for num-
ber of cases booked 1, 5, 14, and 30 days before the day of 
surgery and the final volume. Each scatter plot has 146 data 
points, a regression line with its 95% CI zone (darker shaded 
area), and the 95% prediction zone (lighter shaded area).

The final prediction model of OR volume is then calcu-
lated by combining predictions from the percentage of final 
cases booked method (Percentage of Final Volume Model) 
with the recursively generated regression predictions (Days-
Out Models) and taking the average of the two. This method 
of combining forecasts increases forecast accuracy by can-
celling forecast errors from different forecasting methods.10 
Weighing the forecasts equally, that is, averaging them, has 
been demonstrated to be as accurate as more complex weigh-
ing schemes.10–12

Table 2 shows the result of prospective model validation 
(December 31, 2012 to March 13, 2013) against actual total 
number of OR cases performed. We found that the mean 
absolute error was between 3.75 cases (for predictions made 
1 day before the day of surgery) and 8.27 cases (for predic-
tions made 14 days before the day of surgery). In the last 7 
days before the day of surgery, our model was able to predict 
the actual final case count within ±7 cases (6% of mean num-
ber of cases) 80% of the time. The model underpredicted the 
final actual total case count by more than seven cases (in the 
final 7 days before the day of surgery) less than 10% of the 
time (see fig. 6 for representative model output). Recursively 
predicting the final volume each day (by using the prediction 

Fig. 2. Correlogram for daily surgical volume time series. Au-
tocorrelation analysis of the 146 weekday run of case count 
data used to create the final case count autoregressive time-
series models. Autocorrelation analysis was performed to 
determine whether each day’s observed volume could be 
predicted from the case counts of prior days. Asterisks indi-
cate prior (lag) days for which the current day volume shows 
a statistically significant autocorrelation.
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model appropriate for that day and taking into account the 
most recent case booking information) allowed OR manag-
ers to see any shifts in the predictions over the 2 weeks lead-
ing up to the day of surgery. This helped build face validity 
for the model’s output with the end users (OR managers, 
pathology managers, and supply chain mangers). During 
the pilot phase (January to March 2013), model output was 
shared twice weekly with OR leaders, who enthusiastically 
began to use it for planning. Consistently low (or high)-
volume days stand out because separate regression models 
for each of the 30 days leading up to the surgery day are 
created. This imparts predictive validity to the model’s out-
put. Despite this quantifiable validity, the easy perceptibility 
of the output imparted by its visual representation gener-
ated the much needed face validity required to get buy-in for 
implementation of the model.

The model’s predictions are sufficiently accurate, espe-
cially 4 to 6 days before the day of surgery, to allow man-
agers to adjust staffing by rescheduling, allowing total staff 
numbers to be adjusted downwards (or upwards). After a 
successful pilot phase, including consultation with OR 
operational managers about the tool’s performance, the peri-
operative leadership made an executive decision to have the 
TMinus5 predictions reported out widely. We made this 
decision because the mean absolute error at Tminus5 dur-
ing the pilot phase of the model’s implementation was 4.92 
(table 2), better than any other estimate of daily volume. The 
model’s 5-day-out predictions (T-5) are now reported in the 
Daily Case Report (fig. 7) right next to the budged case vol-
ume. Predictions for 1 through 14 days in advance are also 
provided in a figure similar to figure 6. Table 3 shows that 
the mean absolute error of the model’s 5-day-out prediction 

(T-5) was 7.17 cases, as opposed to the budgeted numbers’ 
error of 9.47 cases (May 1 to July 25, 2013). This differ-
ence roughly translates to 1 OR-day worth of cases every 
day. For the first 25 days of July 2013, the prediction model 
predicted cases within ±7 cases 78% of the time (at Tmi-
nus5), whereas budget-based predictions were within seven 
cases 50% of the time (table 3).

Using the same methodology, we developed a similar case 
volume prediction model for our free-standing children’s 
hospital. We refined the modeling technique by creating 
separate calculations for each day of the week (e.g., Mondays 
calculated separately from Tuesdays, separately from Wednes-
days, and so on), as opposed to the all-days-combined model 
created for the adult hospital. Preliminary analysis with 1 
month of prospective data suggests that the model’s output is 
at least as good, if not better than the adult hospital’s model. 
For the period July 22 to August 21, 2013, the mean abso-
lute error for TMinus5 is three cases, which is 4.5% of the 
average daily volume. Because the pediatric hospital’s daily 
case volume is substantially smaller (approximately 50% of 
the adult hospital’s volume), an appropriate metric for com-
parison among the models of the two hospitals is the median 
absolute percentage error. For the period July 1 to August 
29, 2013, predictions from the adult hospital’s model had a 
median absolute percentage error of 3.57%, compared with 
2.78% for predictions from children’s hospital’s model. The 
distribution of absolute percentage error was found to be 
nonnormal. Therefore, to test whether there is statistically 
significant difference between the prediction error medians 
from the two models, the nonparametric Mann–Whitney U 
test was used. No significant difference was found: P value 
(asymptotic) = 0.61, so we cannot reject the null hypothesis 

Fig. 3. Scheduled surgery cases booked for each day of the week of July 22, 2013 from 14 days-out. The count of elective cases 
booked for each day by the end of every calendar day for all 14 days (including weekend days) leading up to the actual day of 
surgery (day 0) are shown. The counts of cases at day 0 are the actual cases performed.
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Fig. 4. Nomogram of percentage of cases booked as a function of days before the surgery date, in the baseline data used to 
create the “Percentage of Final Count” model. Thirty days before the day of surgery (TMinus30), 39% of the time 25% of the 
final case volume was found to have been already booked. Similarly, 72% of the time, 30% of the final volume was booked. The 
number 60% under “Dist.” column is the difference between 99 and 39%, implying that 60% of the time, between 25 and 40% 
of the final case volume was booked at TMinus30. Mean = 26.4 ± 0.5% (95% CI of mean = 0.1%). If, for example, at TMinus30, 
30 cases were already scheduled, then just using the “Percentage of Final Count” model, the following prediction would be 
made—“there is an absolute certainty that the final volume will not be less than 75 (=30/0.4) cases, and there is 60% probability 
that the final volume will be between 120 (=30/0.25) cases and 75 (=30/0.4) cases.”

Table 1.  Summary Output of 30 Linear Regressions (Days-Out Models)

Model Summary Unstandardized Coefficients

Model 
Name R2

Std. Error of 
the Est. Durbin–Watson

Constant/ 
Coefficient B Std. Error t Sig.

TMinus01 0.87 4.41 1.92 (Constant) 11.63 3.48 3.34 0.00*
F-Statistic sig. = 0.00* CasesSch 0.95 0.03 30.50 0.00*

TMinus02 0.76 5.85 1.80 (Constant) 30.06 4.07 7.39 0.00*
F-Statistic sig. = 0.00* CasesSch 0.86 0.04 21.57 0.00*

TMinus03 0.68 6.82 1.76 (Constant) 40.90 4.41 9.28 0.00*
F-Statistic sig. = 0.00* CasesSch 0.78 0.05 17.45 0.00*

TMinus04 0.66 7.07 1.65 (Constant) 44.63 4.42 10.09 0.00*
F-Statistic sig. = 0.00* CasesSch 0.76 0.05 16.55 0.00*

TMinus05 0.67 6.97 1.70 (Constant) 47.52 4.16 11.43 0.00*
F-Statistic sig. = 0.00* CasesSch 0.75 0.05 16.91 0.00*

TMinus06 0.66 6.97 1.77 (Constant) 48.92 4.08 11.98 0.00*
F-Statistic sig. = 0.00* CasesSch 0.76 0.05 16.88 0.00*

TMinus07 0.65 7.13 1.71 (Constant) 48.82 4.23 11.55 0.00*
F-Statistic sig. = 0.00* CasesSch 0.79 0.05 16.32 0.00*

(Continued )
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of equality of the two medians. Conclusive opinion about 
superiority of one model over the other can only be made 
after further rigorous empirical tests, which will be con-
ducted after accumulation of more data.

We began to share the model output, via the Daily Case 
Report, on August 13, 2013. Between August 13, 2013 and 
August 30, 2013, predictions of the final volume made 5 
days before the day of surgery (TMinus5) were within ±7 

TMinus08 0.64 7.27 1.70 (Constant) 50.86 4.23 12.02 0.00*
F-Statistic sig. = 0.00* CasesSch 0.81 0.05 15.82 0.00*

TMinus09 0.65 7.18 1.62 (Constant) 52.17 4.07 12.83 0.00*
F-Statistic sig. = 0.00* CasesSch 0.83 0.05 16.16 0.00*

TMinus10 0.57 7.91 1.62 (Constant) 60.57 4.17 14.54 0.00*
F-Statistic sig. = 0.00* CasesSch 0.75 0.06 13.75 0.00*

TMinus11 0.52 8.31 1.64 (Constant) 63.62 4.31 14.75 0.00*
F-Statistic sig. = 0.00* CasesSch 0.74 0.06 12.57 0.00*

TMinus12 0.53 8.24 1.59 (Constant) 64.25 4.19 15.33 0.00*
F-Statistic sig. = 0.00* CasesSch 0.75 0.06 12.79 0.00*

TMinus13 0.51 8.40 1.58 (Constant) 64.98 4.30 15.13 0.00*
F-Statistic sig. = 0.00* CasesSch 0.77 0.06 12.31 0.00*

TMinus14 0.48 8.65 1.63 (Constant) 66.64 4.41 15.11 0.00*
F-Statistic sig. = 0.00* CasesSch 0.78 0.07 11.61 0.00*

TMinus15 0.47 8.74 1.57 (Constant) 68.77 4.32 15.93 0.00*
F-Statistic sig. = 0.00* CasesSch 0.79 0.07 11.37 0.00*

TMinus16 0.43 9.06 1.63 (Constant) 72.96 4.28 17.05 0.00*
F-Statistic sig. = 0.00* CasesSch 0.76 0.07 10.49 0.00*

TMinus17 0.39 9.39 1.55 (Constant) 77.36 4.21 18.36 0.00*
F-Statistic sig. = 0.00* CasesSch 0.71 0.07 9.61 0.00*

TMinus18 0.36 9.65 1.52 (Constant) 80.73 4.14 19.48 0.00*
F-Statistic sig. = 0.00* CasesSch 0.68 0.08 8.96 0.00*

TMinus19 0.37 9.55 1.50 (Constant) 80.86 4.02 20.12 0.00*
F-Statistic sig. = 0.00* CasesSch 0.70 0.08 9.21 0.00*

TMinus20 0.37 9.54 1.55 (Constant) 81.34 3.96 20.56 0.00*
F-Statistic sig. = 0.00* CasesSch 0.72 0.08 9.24 0.00*

TMinus21 0.35 9.68 1.50 (Constant) 82.66 3.97 20.81 0.00*
F-Statistic sig. = 0.00* CasesSch 0.72 0.08 8.86 0.00*

TMinus22 0.35 9.70 1.51 (Constant) 83.83 3.86 21.72 0.00*
F-Statistic sig. = 0.00* CasesSch 0.73 0.08 8.83 0.00*

TMinus23 0.31 10.02 1.46 (Constant) 87.42 3.82 22.91 0.00*
F-Statistic sig. = 0.00* CasesSch 0.69 0.09 7.98 0.00*

TMinus24 0.26 10.36 1.46 (Constant) 91.47 3.72 24.58 0.00*
F-Statistic sig. = 0.00* CasesSch 0.62 0.09 7.09 0.00*

TMinus25 0.22 10.62 1.49 (Constant) 94.51 3.64 25.97 0.00*
F-Statistic sig. = 0.00* CasesSch 0.57 0.09 6.41 0.00*

TMinus26 0.23 10.59 1.47 (Constant) 94.03 3.67 25.60 0.00*
F-Statistic sig. = 0.00* CasesSch 0.60 0.09 6.48 0.00*

TMinus27 0.23 10.57 1.47 (Constant) 93.87 3.67 25.57 0.00*
F-Statistic sig. = 0.00* CasesSch 0.63 0.10 6.53 0.00*

TMinus28 0.22 10.66 1.50 (Constant) 94.11 3.77 24.93 0.00*
F-Statistic sig. = 0.00* CasesSch 0.66 0.10 6.28 0.00*

TMinus29 0.20 10.75 1.50 (Constant) 95.09 3.75 25.35 0.00*
F-Statistic sig. = 0.00* CasesSch 0.67 0.11 6.06 0.00*

TMinus30 0.19 10.84 1.52 (Constant) 96.39 3.69 26.13 0.00*
F-Statistic sig. = 0.00* CasesSch 0.67 0.12 5.80 0.00*

Linear regression output for Days-Out Models. F-Statistic is significant for all models at 95% confidence level; however, predictability of final volume is 
higher for models where the explanatory variable (CasesSch) refers to days that are close to the day of surgery (as shown by lower values of the standard 
error of the estimate). Durbin–Watson values are all approximately 2, implying no autocorrelation among the error terms. The constant term (intercept of the 
regression line) and the regression coefficient (B) are statistically significant at 95% confidence level (P values are negligible for all 30 regression models). 
Predictor Variable: TMinusXX, where XX refers to the number of days before the day of surgery. Dependent variable: final case volume.
* Statistically significant at 95% confidence level.

Table 1.  (Continued )

Model Summary Unstandardized Coefficients

Model Name R2
Std. Error of 

the Est. Durbin–Watson
Constant/ 
Coefficient B Std. Error t Sig.
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cases 92.3% of the time, as compared with 61.54% for the 
budgeted volume predictions, which are calculated based 
on longer-term historical data. During this same period, 
the mean absolute error of the TMinus5 predictions for the 
Children’s Hospital was 4 ± 3.26 cases (Min: 0 case, Max: 
12 cases), as compared with 8 ± 6.14 cases for the budgeted 
predictions (Min: 1 case, Max: 22 cases).

Discussion
We used an engineering approach to develop a prediction 
model of final OR case volume based on accumulation of the 
elective schedule. This model demonstrates that it is possible 
to predict day of surgery case volume 1 to 2 weeks in advance 
with sufficient confidence to make staffing decisions that 
affect organizational finances. This facilitates tuning planned 
capacity to more closely match actual demand.

Our OR suite managers routinely use the output of this 
model to identify both higher than average and lower than 
average-volume days, and make appropriate staffing deci-
sions. For example, quantitative estimates for July 5, 2013 
(a Friday) were known 30 days in advance, allowing confi-
dent staff planning. Historically, July 5 in general, and espe-
cially if it falls on a Friday, has been a low-volume day in 
our OR suite. The anecdotal expectation of our managers 
was that volume on Friday July 5 would be extremely low, 
much lower than the budgeted volume, and similar to what 

is typical after the Thanksgiving Day holiday, which always 
occurs on a Thursday. If we had simply looked at several 
prior years’ OR case volumes for July 5, without using our 
modeling methodology, we would have had no way to pre-
dict how low (or high) the volume would be. Without a basis 
for prediction (provided by the model), we would only been 
able to guess and would have made a significant underesti-
mate of demand. However, our model predicted only a mild 
volume shortfall for this particular July 5. Having developed 
enough confidence in the model’s predictions, the OR man-
agers planned staffing appropriate to a typical Friday, consis-
tent with the model. Actual case volume for July 5 (fig. 7) 
proved to be within 2% of the median for the 5 Fridays in 
the month of July 2013, and our staff matched our needs.

The model has been especially useful in identifying unex-
pected low-volume days, as happened in the second week of 
May 2013, when all the surgeons in one specialty attended 
an out-of-town conference but did not provide advance 
notification to OR managers. A low-volume prediction (12 
days before the day of surgery) triggered an immediate inves-
tigation confirming the cause. An alert was sent to all sur-
gery clinics announcing extra OR capacity available on those 
days. All pending add-on cases were assigned to ORs and 
then excess rooms were closed (three on Monday, May 6, and 
four on Tuesday, May 7). The original study hypothesis was 
that accurate volume predictions weeks in advance would 

Table 2.  Comparing Prediction Model’s Output against Actual Final Volume on the Day of Surgery

Absolute Value of [Prediction Minus Actual] (Count of Cases)—December 31, 2012 to March 29, 2013

T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10 T-11 T-12 T-13 T-14

Mean absolute error 
(count of cases)

3.75 4.00 4.58 4.71 4.92 5.40 5.23 5.73 7.21 7.21 6.75 8.02 8.50 8.27

Mean absolute 
percentage error

3.1% 3.3% 3.8% 3.9% 4.1% 4.5% 4.4% 4.8% 6.0% 6.0% 5.6% 6.6% 7.0% 6.8%

Probability 
prediction 
exceeds actual 
by >7 cases

3.8% 3.8% 5.8% 9.6% 7.7% 15.4% 13.5% 19.2% 28.8% 21.1% 15.4% 19.2% 23.1% 17.3%

Probability 
prediction 
exceeds actual 
by 0 to 7 cases

53.8% 48.1% 51.9% 46.2% 50.0% 36.5% 44.2% 34.6% 32.7% 36.5% 40.4% 26.9% 21.2% 21.2%

Probability 
prediction is less 
than actual by 0 
to 7 cases

36.54 40.4% 34.6% 36.5% 28.8% 36.5% 32.7% 34.6% 23.1% 26.9% 21.2% 28.8% 26.9% 32.7%

Probability 
prediction is less 
than actual by >7 
cases

5.7% 7.7% 7.7% 7.7% 13.5% 11.5% 9.6% 11.5% 15.4% 15.4% 23.1% 25.0% 28.8% 28.8%

Probability 
prediction is 
between ±7 
cases of the 
actual

90.4% 88.5% 86.5% 82.7% 78.8% 73.1% 76.9% 69.2% 55.8% 63.5% 61.5% 55.8% 48.1% 53.8%

Model performance against actual case counts during validation period. Mean absolute error of the model’s output is calculated by taking the mean of the 
absolute value of the forecast errors, where errors are the difference between the predicted volume (for each of the 14 days preceding the day-of-surgery) 
and the final actual volume. Mean absolute percentage error is the mean of the absolute value of the individual errors, which are expressed as percentage 
of the actual final case volume. Prediction probabilities become increasingly accurate closer to the day of surgery.
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enable the cost savings by flexing staff off duty in response. 
However, the potential to replace revenue by temporarily 
reallocating capacity among services and by accommodating 
wait-listed cases with alacrity (and the potential to avoid lost 
revenue that might occur if surgeons defer cases because they 
do not expect to be able to get them on the schedule) is also 
very appealing to the medical center’s leadership.

The utility of the case volume predictions extends 
beyond OR staff planning. Case count predictions are also 
used by our ancillary and downstream units whose work-
load is driven by OR volume. Managers at the case cart 
preparation center, with access to temporary staffing, use 
this information as they plan daily operations. In addi-
tion, advanced warning of higher-volume days prompts 
the case cart preparation center to proactively check for 
instrument conflicts among scheduled cases 5 to 7 days 
in advance, rather than looking for these conflicts on the 
day before surgery. This has helped reduce case cancella-
tions and delays related to equipment availability conflicts. 
Our surgical pathology laboratories use the case volume 
predictions to adjust daily staff assignments in advance 
of surgery. Finally, the Department of Anesthesiology is 
operationalizing a new staffing plan based on the model 
predictions. Prior practice had been to staff for maximum 
demand by scheduling attending anesthesiologist coverage 

of every anesthetizing location to which the department 
has committed coverage. The model now allows long-term 
planning for the maximum demand minus two to four 
locations (out of a total of 78 anesthetizing locations per 
day) depending on model case volume projections, with 
an “invoke-able” buffer (additional staff on call in reserve). 
This plan saves two attending anesthesiologists per day 
(2.8 Full Time Equivalents per year). In practice, we have 
been able to cover the year’s organic growth in case volume 
(approximately 5%) without increasing the size of the anes-
thesia faculty. Avoiding even a single faculty hire at current 
rates saves at least $400,000.13 Such savings are providing 
external validation to this effort comparable with other 
meaningful savings from information technology interven-
tions in OR operations.14

The prediction model reduces the uncertainty about 
near-term procedural workload by providing daily vis-
ibility of expected OR volume. It has encouraged the 
lead scheduling OR nurse manager to more aggressively 
and confidently use the scheduling policies (which are 
described in Materials and Methods section) to accommo-
date cases requested by surgeons who do not have block 
time on the requested day of surgery by assigning their 
cases to rooms several days in advance, to steer add-on 
elective cases away from high-volume days where unused, 

Fig. 5. Scatter plot of booked elective cases (at T-30, T-14, T-5, and T-1) and final case volume. Linear regressions of current 
booked elective case count versus actual final case count for 4 illustrative days before the actual day of surgery. Even as far 
back as TMinus30 days, there is a clear relation between the number of booked elective cases and the final case volume on the 
day of surgery in the operating rooms. 95% CI and prediction interval bands are shown as dark and light areas, respectively.
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open block time would be hard to find, and to inform 
nurse managers of upcoming low-volume days so that 
staff can be flexed off several days in advance. Between 
December 2012 and July 2013, as a result of better labor-
management policies, labor costs per case, as measured 
by our centralized finance department, have decreased by 
approximately 15%. Whether some or all of these reduc-
tions can be attributed to the availability of future volume 
predictions will be quantitatively analyzed once sufficient 
prospective data are available.

One potential limitation of this work is that it may not be 
generalizable to other hospitals. However, we have validated 
the approach in two distinct environments. The applicability 
of the methodology at two hospitals, each of which follows 
its own distinct surgical demand and elective case-booking 
techniques, shows generalizability and potential of the tech-
nique to be replicable at other institutions.

The almost linear nature in which the aggregated vol-
umes of elective cases get booked every day, especially up 
to the last few days before the day of surgery, is interesting. 
Why aggregated elective case bookings follow an almost 
linear trajectory remains an unanswered question and is a 
focus of our further research. Higher than average-volume 
days continue to have cases booked at a higher rate (and 
not the average rate of three cases per day); and this trend 
is visible 2 to 3 weeks in advance. Similarly, for low-volume 
days, the rate of elective case accumulation is lower than 

for average-volume OR days. Our conjecture is that on 
days (and weeks) when the majority of the surgeons are in 
town (and not absent due to vacation, conference travel, or 
medical leave), the volume of surgical cases will be higher 
than average, and vice versa, but that this pattern can be 
detected weeks in advance.

Although more complex response functions might have 
provided a better fit than the simple linear functions we 
used, in the absence of any theoretical basis to force higher-
order polynomial functions on the underlying data, we 
chose simplicity over abstractness and complexity. Several 
empirical published studies on thousands of time series have 
shown simpler forecasting techniques to be more effective 
than complex methods.15,16 These reports document a num-
ber of empirical studies on literally thousands of time-series 
forecasts where complex methods fared no better, and often 
worse, than simple methods.

As a final point, this research answers the call17,18 to do 
more translational research19 in the delivery of health care. 
Conceptual insights from academic research are informative, 
but often are static and therefore nontransferable to wide-
spread practice. There is a need to translate research findings 
into meaningful operational use. Translational healthcare 
delivery research, as distinct from “applied research” (where 
the problem addressed is a real-world issue with a narrow 
focus, and therefore less generalizable), is an iterative way 
of doing research that necessitates close interaction between 

Fig. 6. Predictions for 5 weekdays in July, for the week ending on July 26, 2013, beginning 14 days from July 26. Managers are 
shown individual predictions of case volume for each weekday, beginning at T-minus 14 days from the Day of Surgery. Each 
estimate is recursively calculated each day, updated with new information from the previous day’s bookings (fig. 3) for each 
Day of Surgery. The prediction view is shown as it would appear to managers on the morning of July 22, 2013, with the most 
recent prediction for Monday (7/22) being the T-Minus 1 prediction and T-Minus 5 being the most recent prediction for Friday 
(7/26). The actual final case counts for these days (which are the TMinus0 numbers in fig. 3) were Monday: 141, Tuesday: 131, 
Wednesday: 122, Thursday: 127, and Friday: 99. Managers tracking the predicted case count every day from 14 days out would 
have accurately concluded that Monday, Tuesday, and Thursday would be above average-volume days, with Wednesday right 
at the average, and Friday will be a low-volume day.
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practitioners and researchers. Translational research pro-
gresses iteratively and builds on the successful implemen-
tation of the research findings of previous steps before 
determining the direction for the subsequent steps. The driv-
ing force for the current “engineering solution” research was 
to address the issue (faced by most medium- to large-sized 
ORs) in such a manner that the methodology and solutions 
could be readily adopted and implemented on the fly to 
make an immediate impact on practice. Since the case pre-
diction report demonstrated in figures 6 and 7 was created, 
it has “gone viral” within our institution, and the predictions 
are now provided (by request) to approximately 50 managers 
across the enterprise, from pathology to bed management. 
Although there is considerable anecdotal evidence on the 
usefulness of these predictions for daily operational planning 
and staffing, after further continuous usage of the predic-
tions by various subunits at our institution, it would also be 
possible to quantitatively measure the impact on staffing and 
other operational costs.
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Appendix. Five-day Seasonal ARIMA Model Results

Technique Used in SPSS
Model Type with 5-day  

Seasonality Added Stationary R2 MAPE MAE Normalized BIC

ARIMA model fitting ARIMA (1, 0, 0) (1, 0, 0)5 0.05 8.148 9.29 5.189
Expert Modeler Simple seasonal 0.55 8.257 9.45 4.97

SPSS and Expert Modeler part of the statistical software owned by IBM Corp., New York, NY. ARIMA (p,d,q) (P,D,Q)s: the terms within (p,d,q) refer to the 
nonseasonal component of the series, whereas (P,D,Q) refers to the seasonal components. “p” is the number of time-period lags or the number of autore-
gressive terms, “d” refers to any differencing required to make the series stationary, “q” refers to the number of lagged error terms or the number of moving 
average lags. Seasonality effects are modeled by including (P,D,Q). “P” is the number of seasonal autoregressive terms, “D” is the number of seasonal dif-
ferences, “Q” is the number of seasonal moving average terms. The subscript “s” refers to the time span of repeating seasonal order. The table above com-
pares results of fitting (to the baseline data) the seasonal ARIMA (1, 0, 0) (1, 0, 0)5 model and the SPSS’s inbuilt Expert Modeler that automatically identifies 
and estimates the best-fitting ARIMA model and thus eliminating the need to identify an appropriate model through trial and error. Given the two models, the 
one with lower BIC value will be preferred. Difference in BIC value of <2 between the models being compared indicates that the models are very comparable.
ARIMA (p,d,q) (P,D,Q)s = Autoregressive Integrated Moving Average; BIC = Bayesian information criterion; MAE = mean absolute error; MAPE = mean 
absolute percentage error.

To check the effect of weekly block schedules on daily volume, we also tested 5-day seasonal ARIMA models. However, the limitation in 
using immediately previous days’ final volume (even if by day of the week, which is the case when we include the 5-day seasonality effect) is 
that it fails to catch excessively high- or low-volume days far in advance. In fact, the Maximum Absolute Error in the above ARIMA models 
(including the one reported in the Results section and subsection Time Series of Daily Case Volume) is 29 cases. This error is far higher 
than the errors produced by our models developed based on the “accumulating surgical schedule.” The focus of the research in our study is 
therefore on the development and implementation of the methodology for predicting final case count based on the accumulating surgical 
schedule and not based on using previous days’ case count or previous day-of-the-week case count to predict the future case count.
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