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T HE “genomic storm” that occurs during sepsis or 
trauma is the result of an excessive and overamplified 

host response to aggression.1 Among the potential candi-
dates acting as amplifiers of the innate immune response, 
the triggering receptor expressed on myeloid cells (TREM)-1 
appears to play a central role.2 TREM-1 is expressed by neu-
trophils, macrophages, and mature monocytes (CD14high), 
as well as by hypoxic dendritic cells.2–4 The engagement of 
TREM-1 with agonist monoclonal antibodies has been 
shown to stimulate the production of proinflammatory cyto-
kines and chemokines such as interleukin (IL)-8, monocyte 
chimoattractant protein (MCP)-1, MCP-3, and macrophage 
inflammatory protein (MIP)-1α, along with rapid neutrophil 
degranulation and oxidative burst. The activation of TREM-1 
in presence of toll-like receptor-2, -4, or nod-like receptors 
ligands amplifies the production of proinflammatory cyto-
kines (tumor necrosis factor-α, IL-1β, granulocyte-macro-
phage colony–stimulating factor), as well as the inhibition of 
IL-10 release.5–7 Of note, the TREM-1 pathway was among 
the most up-regulated ones in the Xiao et al.’s study.1 The 
TREM-1 blockade by the use of a fusion protein or LP17, a 
short inhibitory peptide that mimics a portion of the extra-
cellular domain of TREM-1, was associated with a survival 
improvement in animal models of experimental sepsis.8–10 
These protective effects are also evident in other models of 
acute or chronic inflammatory disorders.11–17

In addition to TREM-1, the TREM gene cluster includes 
TREM-like transcript-1 (TLT-1). TLT-1 is abundant and 
specific to the platelet and megakaryocyte lineage. Upon 
platelet activation with thrombin or lipopolysaccharide, 
TLT-1 is translocated to the platelet surface and may act as 
a coactivating receptor.18,19 We have shown that a soluble 
fragment of TLT-1 is present in human plasma, the level 
of which is highly correlated to disseminated intravascular 
coagulation scores during sepsis.20 Soluble TLT-1 binds to 
fibrinogen and augments platelet aggregation in vitro. Inter-
estingly, crystallographic studies reveal structural similarities 
between TLT-1 and TREM-1, which suggest the existence of 
interactions between TLT-1 and TREM-1.21

What We Already Know about This Topic

•	 The	triggering	receptor	expressed	on	myeloid	cells-1	is	an	im-
munoreceptor	that	amplifies	the	inflammatory	response	medi-
ated	by	toll-like	receptors	engagement

What This Article Tells Us That Is New

•	 The	 triggering	 receptor	 expressed	on	myeloid	 cells-1	 inhibi-
tor	LR12	mitigated	endotoxin-associated	clinical	and	biologi-
cal	 alterations,	with	 no	 obvious	 side	 effects	 in	 experimental	
primates
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ABSTRACT

Background: The triggering receptor expressed on myeloid cells-1 is an immunoreceptor that amplifies the inflammatory 
response mediated by toll-like receptors engagement. Triggering receptor expressed on myeloid cells-1 inhibitory peptides such 
LR12 have been shown to prevent hyperresponsiveness and death in several experimental models of septic shock.
Methods: Twelve adult male Cynomolgus (Macaca fascicularis) monkeys exposed to an intravenous bolus of endotoxin 
(10 μg/kg) were randomized to receive LR12 or placebo (n = 6 per group) as an initial intravenous bolus followed by an 8-h 
continuous intravenous infusion. An additional group of four only received vehicle infusion. Vital signs were monitored for 
8 h. Blood was sampled at H0, 1, 2, 4, and 8 for analysis of clinical chemistries, leukocyte count, coagulation parameters, and 
cytokine plasma concentration.
Results: LR12 showed no effect on heart rate and body temperature. By contrast to the placebo group, which experienced a 25 
to 40% blood pressure decrease after endotoxin administration, LR12-treated monkeys remained normotensive. Endotoxin 
induced leukopenia at 2 h (mean leukocyte count, 7.62 g/l vs. 21.1 at H0), which was attenuated by LR12. LR12 also attenu-
ated cytokine production.
Conclusions: The triggering receptor expressed on myeloid cells-1 inhibitor LR12 is able to mitigate endotoxin-associated 
clinical and biological alterations, with no obvious side effects. This study paves the way for future phases Ia and Ib trials 
in humans. (Anesthesiology 2014; 120:935-42)
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Indeed, we recently showed that TLT-1 and a 12–amino 
acid TLT-1 derived peptide (LR12) exhibit antiinflamma-
tory properties by dampening TREM-1 signalling and thus 
behave like a naturally occurring TREM-1 inhibitor. The 
mechanism by which LR12 inhibits TREM-1 signalling 
derives from its ability to bind to the TREM-1 ligand.22 We 
further demonstrated that this same peptide also modulates 
in vivo the inflammatory cascade triggered by infection, thus 
inhibiting hyperresponsiveness, organ damage, and death 
during sepsis in mice and minipigs.22,23

As mouse models of septic shock are far from recapitulat-
ing the human physiology,24 we prospectively investigated the 
effects of LR12 during endotoxemia in the nonhuman pri-
mate. Here we show that LR12 infusion was able to attenuate 
endotoxin-induced inflammatory and clinical responses.

Materials and Methods
Animals
Male cynomolgus monkeys (Macaca fascicularis) (2.8 to 
3.5 kg, 24 months old; Le Tamarinier, La Route Royale, 
Tamarin, Mauritius) were used. Animals were fasted the day 
before lipopolysaccharide challenge but had full access to 
water. CIToxLAB France Ethical Committee (CEC, Evreux, 
France) reviewed and approved the study plans (Nr CEC: 
02221). This study, including care of the animals involved, 
was conducted according to the official edict presented by 
the French Ministry of Agriculture (Paris, France) and the 
recommendations of the Helsinki Declaration. Thus, these 
experiments were conducted in an authorized laboratory and 
under the supervision of an authorized researcher.

Endotoxin Preparation
Purified endotoxin (lipopolysaccharide 0127:B8; Sigma-
Aldrich, Saint-Quentin Fallavier, France; source strain 
ATCC12740, 500,000 endotoxin unit per milligram [100 
mg] per vial) was diluted in sterile water and administered as a 
10 min intravenous bolus at a dose of 10 µg/kg of body weight.

Reconstitution of LR12 and Placebo
Placebo and LR12 were labelled identically and appeared 
identical in a lyophilized form. Active drug was reconstituted 
with sterile water and diluted in 0.9% saline to a 7.5 mg/ml 
concentration. Corresponding placebo infusions were pre-
pared in an identical manner.

LR12 is a 12-amino acid peptide derived from TLT-1 
(LQEEDAGEYGCM), and placebo is the corresponding 
scrambled peptide (YQMGELCAGEED). These peptides 
have been described elsewhere.23 The scrambled peptide has 
no biological nor clinical effect per se and thus constituted 
the control of choice.

Drug Administration and In Vivo Lipopolysaccharide 
Challenge
Vital signs and weight were recorded the day before the 
lipopolysaccharide challenge. The next morning, baseline 

clinical laboratory samples were collected, and vital signs 
were recorded. The drug was administered into the cephalic 
or saphenous vein via a teflon catheter. Contralateral vein 
was used for lipopolysaccharide administration.

Monkeys were randomized to receive LR12 or placebo (n 
= 6 per group). An additional group of four was constituted 
to only receive vehicle (NaCl, 0.9%) infusion and served as 
the control group.

At time point 0, a 15 min intravenous infusion of LR12 
or placebo solution was begun, at the rate of 12 ml/h (5 mg/
kg, 10 min, 2 ml), delivered by a calibrated syringe pump 
(Harvard Apparatus, Les Ullis, France). A continuous infu-
sion was then administered for further 8 h at the rate of 
2 ml/h (1 mg kg−1 h−1, 8 h, 16 ml). Just before treatment 
infusion, an intravenous bolus of lipopolysaccharide (10 µg/
kg) was administered over the course of a 10-min period 
into the contralateral catheter. Animals remained awake in 
an upright position in restraint chairs and continued to fast 
without food for the whole study duration.

Monitoring of Vital Signs and Blood Sampling
Oral temperature, pulse rate, and blood pressure were moni-
tored every 15 min for 1 h, then every 30 min for 7 h. Blood 
was sampled into 5 ml lithium-heparinized tubes at H0, 1, 
2, 4, and 8 for analysis of clinical chemistries, leukocytes 
count, coagulation parameters, LR12 plasma concentration, 
and cytokine plasma concentration.

Biological Measurements
Clinical chemistries were analyzed on a Siemens (Châtillon, 
France) ADVIA 1650 chemistry analyzer, leukocyte counts 
on a Siemens ADVIA 120 hematology system, and coagula-
tion parameters on an ACL ELITE PRO (Beckman Coulter, 
Villepinte, France).

Plasma concentrations of cytokines were determined 
using a multiplex method (Luminex, Oosterhout, The Neth-
erlands) for IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, interferon-γ, 
MCP-1, MIP-1α, MIP-1β, and tumor necrosis factor-α.

Statistics
After testing for their normal distribution (Kolmogorov–
Smirnov test) data were presented as means (SD). Between-
group differences were tested by two-way ANOVA with 
Bonferroni correction. Analyses were performed using 
Graphpad Prism Software (La Jolla, CA).

Results
Pharmacokinetics
LR12 was administered as a 5 mg/kg bolus over 15 min 
followed by a continuous 1 mg kg−1 h−1 infusion. A peak 
concentration at 159.3 ± 22.8 ng/ml was achieved after the 
bolus, then the LR12 concentration decreased to a steady 
state at 91.4 ± 5.1 ng/ml and the interindividual variability 
was very small (fig. 1). LR12 half-life was 2.25 min in vivo.
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Vital Signs
Heart rate transiently increased after lipopolysaccharide 
injection, with no effects of LR12 infusion (fig. 2A). Lipo-
polysaccharide challenge induced a slight increase of body 
temperature, especially between H1 and H2, although LR12 
contained the body temperature increase it was mild and the 
difference between placebo (LR12scr) and LR12-treated ani-
mals was not significant (fig. 2B).

Although the doses of endotoxin used were small, tran-
sient hypotension developed in the placebo-treated group: 
systolic arterial pressure decreased up to 25% at 180 min and 
diastolic arterial pressure up to 40% (P < 0.001 vs. LR12 or 
control groups). By sharp contrast, LR12-treated monkeys 
never experienced a hypotensive state and their arterial pres-
sure did not differ from that of control animals (fig. 3).

Leukocyte Counts
Animals that received placebo (LR12scr) developed a leuko-
penia (mean leukocyte count, 7.62 g/l vs. 21.1 at H0) at 2 h 
after challenge (P < 0.001 vs. control and LR12 groups). This 
leukopenia was the result of neutropenia, lymphopenia, and 
monocytopenia (fig. 4). Although LR12 had no effect on lym-
phocyte counts, its administration totally blunted neutropenia 
during most of the observation period. Nevertheless, a marked 
leukocytosis (interesting mainly neutrophils) occurred at the 
end of the 8-h study period: leukocyte count was three times 

higher at H8 than at H0 (P < 0.001). Of note, platelet count 
remained unchanged between groups (not shown).

Blood Chemistry
Endotoxin challenge had almost no effect on clinical chem-
istries except on liver function. Indeed, total bilirubin and 
aspartate aminotransferase progressively increased and were 
higher at H8 than at baseline. LR12 completely abrogated 
this phenomenon. Of note, a brief hypoglycemia occurring 
at H2 was present in placebo animals whereas it was absent 
in the LR12 group (table 1). There was no effect of lipopoly-
saccharide or treatment on prothrombin, activated partial 
thromboplastin times or fibrinogen concentration.

Plasma Cytokine Concentrations
Endotoxin induced increase of IL-6, IL-8, interferon-γ, 
MCP-1, MIP-1α, MIP-1β, and tumor necrosis factor-α, 
which reached a maximum concentration between H1 and 
H2. LR12 attenuated the rise of IL-6, IL-8, MCP-1, MIP-
1α, MIP-1β, and tumor necrosis factor-α plasma concentra-
tions by 20 to 50% (fig. 5).

Side Effects
The animals were regularly examined up to 1 month after 
lipopolysaccharide/LR12 administration. There were no 
treatment side effects: in particular, no infection, electrocar-
diographic modification, or visual impairment.

Discussion
The use of mouse models still constitutes the cornerstone 
of medical research to evaluate new therapeutic approaches 
to various conditions, sepsis being one of the most stud-
ied. Unfortunately, Seok et al.24 recently demonstrated that 
this approach carries many limitations. Indeed, genomic 
responses in mouse correlate very poorly with the human 
conditions: among genes that were significantly regulated 
in humans, the murine orthologs are close to random. This 
seminal article even generated a commentary in the New 
York Times, urging for a change of our experimental models 

Fig. 1. Pharmacokinetics of LR12. After an initial bolus fol-
lowed by a continuous infusion, steady LR12 plasma con-
centration was reached and maintained throughout the 8-h 
study period.

Fig. 2. Effects of LR12 on endotoxin-induced heart rate and body temperature changes. LR12 has no effect on endotoxin-
induced heart rate (A) and body temperature (B) increases. LPS = lipopolysaccharide.
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in sepsis.25 To attempt to overcome such pitfalls, we have 
chosen to focus on nonhuman primates in order to test the 
hypothesis that the modulation of TREM-1 by the inhibi-
tory peptide LR12 protects from endotoxin-induced inflam-
matory and clinical responses.

Xiao et al.1 recently characterized the circulating leukocyte 
transcriptome after severe trauma, burns, or during endotox-
emia in healthy volunteers. They observed that as early as 4 h 
after injury, more than 80% of gene pathways were altered. This 
phenomenon, coined genomic storm, consisted of an increased 
expression of genes involved in innate immunity, systemic 
inflammatory and antiinflammatory responses, concomitant 

with a decreased expression of genes regulating adaptive immu-
nity. They also observed that complications such as nosocomial 
infections arose independently of the existence of a second hit 
injury but were under the dependence of the magnitude and 
the duration of the initial leukocytes reprogramming. This new 
paradigm thus clearly suggests that a targeted therapy aimed at 
limiting this initial leukocyte genomic storm may be a valuable 
approach to improve patients’ outcome.

Several proteins are known to amplify the initial inflam-
matory response, acting as amplification loops. Among them, 
TREM-1 seems to have an important role as its modulation 
demonstrated encouraging results in experimental models 

Fig. 3. LR12 protects from endotoxin-induced hypotension. (A–C) Endotoxin induced a transient drop in blood pressure (mean, 
systolic, and diastolic) that was completely prevented by LR12 (group effect: P < 0.001 placebo vs. LR12 or control groups). 
LPS = lipopolysaccharide.

Fig. 4. (A–D) Effects of LR12 on blood leukocyte count. Animals that received placebo demonstrated a leukopenia (mean leuko-
cytes count, 7.6 g/l vs. 21.1 g/l at H0) at 2 h after challenge (group effect: P < 0.001 vs. control and LR12 groups) resulting from 
neutropenia, lymphopenia, and monocytopenia. LR12 administration totally blunted neutropenia. A marked leukocytosis, mainly 
interesting neutrophils, occurred at the end of the 8-h study period (P < 0.001). Ctrl = control group; LPS = lipopolysaccharide.
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of sepsis, ischemia–reperfusion, pancreatitis, inflammatory 
bowel diseases, or chronic arthritis.26

Although the natural TREM-1 ligand remains unknown, 
we recently observed that another member of the TREM-1 
family, TLT-1, was able to bind this ligand, therefore damp-
ening TREM-1 engagement.22 TLT-1 is one of the most 
abundant proteins released by activated platelets27 whose role 
is to promote platelet aggregation through binding to fibrin-
ogen. Large amounts of a soluble form of TLT-1 (sTLT-1) 

are released during sepsis20 and we proposed that TLT-1 
might prevent sustained and prolonged inflammation.22

In order to identify which portion of sTLT-1 was 
involved in this protective effect, we designed several 
TLT-1 peptides representative of various potential ligand-
binding regions.22 Among these, a 12-amino acid sequence 
representative of residues 94 to 105, named LR12, was 
shown to be responsible for the antiinflammatory effect 
of sTLT-1. LR12 administration was associated with 

Table 1. Blood Chemistry and Coagulation Parameters

H0 H1 H2 H4 H8

Sodium (mm)
  Placebo 151.8 ± 0.9 151.5 ± 0.8 151.8 ± 1.4 150.5 ± 2.9 153.3 ± 2.1
  LR12 149.0 ± 0.7 149.8 ± 0.7 150.8 ± 0.5 148.7 ± 1.2 152.0 ± 0.8
Potassium (mm)
  Placebo 4.2 ± 0.2* 4.2 ± 0.3 4.2 ± 0.4* 4.3 ± 0.1* 4.6 ± 0.3
  LR12 3.6 ± 0.1 3.9 ± 0.2 3.5 ± 0.1 3.6 ± 0.1 4.4 ± 0.1
Chloride (mm)
  Placebo 108.2 ± 2.2 110.5 ± 3.0 110.2 ± 2.9 107.7 ± 3.9 109.3 ± 1.6
  LR12 107.8 ± 1.7 108.2 ± 1.6 110.5 ± 1.5 108.5 ± 1.4 110.8 ± 2.3
Calcium (mm)
  Placebo 2.40 ± 0.03 2.39 ± 0.05 2.30 ± 0.03 2.29 ± 0.02 2.15 ± 0.07
  LR12 2.49 ± 0.05 2.48 ± 0.07 2.37 ± 0.08 2.35 ± 0.06 2.26 ± 0.04
Glucose (mm)
  Placebo 4.1 ± 0.2 3.3 ± 0.5 2.6 ± 0.5*† 3.6 ± 1.0 3.8 ± 1.2
  LR12 3.6 ± 0.3 3.4 ± 0.3 3.7 ± 0.3 4.1 ± 0.4 4.0 ± 0.4
Urea (mm)
  Placebo 5.9 ± 0.6 6.4 ± 0.6 6.4 ± 0.6 6.7 ± 0.9 7.3 ± 1.0
  LR12 5.6 ± 0.5 5.4 ± 0.5 5.7 ± 0.2 6.1 ± 0.9 5.8 ± 1.0
Creatinine (μm)
  Placebo 82.6 ± 3.1 83.7 ± 5.2 81.2 ± 3.2 79.5 ± 1.7 80.5 ± 1.2
  LR12 86.0 ± 5.7 82.8 ± 4.1 83.1 ± 5.5 83.3 ± 0.3 80.0 ± 0.9
Total bilirubin (μm)
  Placebo 3.0 ± 0.6 4.2 ± 0.7 5.0 ± 1.0* 4.5 ± 0.5 6.7 ± 1.2*†
  LR12 2.7 ± 0.9 3.3 ± 1.2 3.0 ± 0.5 3.5 ± 0.8 5.0 ± 0.8
Alkaline phosphatase (U/l)
  Placebo 1,645 ± 443 1,641 ± 334 1,657 ± 366 1,648 ± 331 1,661 ± 314
  LR12 1,791 ± 358 1,780 ± 362 1,735 ± 332 1,640 ± 303 1,709 ± 351
Aspartate amino transferase (U/l)
  Placebo 82 ± 114 156 ± 110 151 ± 105 172 ± 115 192 ± 82*†
  LR12 42 ± 4 46 ± 8 48 ± 11 63 ± 25 60 ± 12
Total protein (g/l)
  Placebo 75 ± 1 74 ± 1 68 ± 1 66 ± 1 70 ± 3
  LR12 81 ± 2 79 ± 3 73 ± 2 69 ± 1 76 ± 1
Albumin (g/l)
  Placebo 43 ± 2 42 ± 2 39 ± 2 38 ± 1 40 ± 2
  LR12 46 ± 1 43 ± 2 40 ± 1 40 ± 1 43 ± 2
Fibrinogen (g/l)
  Placebo 3.94 ± 0.4 3.42 ± 0.4 3.53 ± 0.2 3.69 ± 0.3 3.58 ± 0.2
  LR12 3.64 ± 0.3 3.31 ± 0.4 3.17 ± 0.3 3.15 ± 0.3 3.40 ± 0.3
Prothrombin time (s)
  Placebo 12.3 ± 0.5 12.3 ± 0.8 13.3 ± 0.4 13.4 ± 0.9 13.2 ± 0.6
  LR12 11.9 ± 0.3 12.7 ± 0.3 13.3 ± 0.2 13.3 ± 0.2 13.5 ± 0.5
Activated partial thromboplastin time (s)
  Placebo 18.8 ± 1.0 19.7 ± 1.1 19.5 ± 0.8 19.8 ± 1.0 19.4 ± 1.0
  LR12 17.7 ± 0.8 19.1 ± 1.2 17.7 ± 0.8 18.3 ± 1.0 17.7 ± 0.7

* P < 0.05 placebo vs. LR12-treated animals. † P < 0.05 vs. baseline.
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protective effects during sepsis both in murine and minip-
igs sepsis models.23

We designed the current study in primates in order to 
mimic a future phase Ib study in healthy volunteers and 
to accumulate robust information on LR12 safety and 
pharmacology.

We observed that LR12 administration was able to reduce 
endotoxin-induced systolic as well as diastolic hypotension, 
even though the blood pressure decrease subsequent to lipo-
polysaccharide administration was transient. This hemo-
dynamic improvement is an effect we previously observed 
during experimental peritonitis in minipigs.23 Indeed, recent 
unpublished data from our group (March 2013) suggest that 
LR12 protects from sepsis or endotoxin-induced endothelial 
dysfunction (and thus from vascular hyporeactivity), as well 
as from cardiac failure.

As expected, endotoxin administration induced a rapid 
and brief leukopenia involving neutrophils, monocytes, and 
lymphocytes. LR12 prevented this leukopenia essentially by 
blunting neutropenia. The effect on monocytes was mod-
est and even null on lymphocytes. Interestingly, on LR12 
treatment, both neutrophilia and monocytosis occurred. 
Although not completely elucidated, this observation sug-
gests that TREM-1 engagement plays an important role in 
cellular recruitment and mobilization.28

We have repeatedly showed that TREM-1 pathway mod-
ulation was associated with a decrease of cytokine plasma 
concentrations: the same findings were observed here with a 
20 to 50% reduction of most studied cytokines.

Regarding clinical chemistry or coagulation parameters, 
we only noticed a slight liver dysfunction upon endotoxin 
administration: this disorder was prevented by LR12. 
There were no deleterious effects of LR12 on any studied 
parameters.

The model of endotoxin administration, even in non-
human primates, is a helpful but definitely not an absolute 
predictor to assess the complex physiopathology of human 
sepsis: whether LR12 will prove beneficial in humans remains 
to be proved, especially when considering the numerous and 
recent failures to translate promising experimental data to 
the clinical setting.29,30

Nevertheless, this work adds important data to those 
previously accumulated in polymicrobial models of sepsis in 
rodents and minipigs and therefore suggests that LR12 is 
able to mitigate endotoxin-associated clinical and biological 
alterations, with no obvious deleterious side effects in the 
nonhuman primate.

Although endotoxin does not mimic the complex phys-
iopathology of sepsis, this study in nonhuman primates con-
stitutes an important stepping-stone to help designing and 
conducting future phase Ia and Ib trials in humans.
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Fig. 5. LR12 administration reduced cytokine plasma concentrations. (A–G) Lipopolysaccharide (LPS) induced an increase of in-
terleukin (IL)-6, IL-8, interferon (IFN)-γ, monocyte chimoattractant protein (mCP)-1, macrophage inflammatory protein (mIP)-1α, 
mIP-1β, and tumor necrosis factor (TNF)-α peaking between H1 and H2. LR12 decreased IL-6, IL-8, mCP-1, mIP-1α, mIP-1β, 
and TNF-α plasma concentrations by 20 to 50%. Indicated P values are for LR12 versus control group effect.
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