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ABSTRACT

Background: The general anesthetics, isoflurane and sevoflu-
rane, cause developmental abnormalities in neonatal animal 
models via incompletely understood mechanisms. Despite 
many common molecular targets, isoflurane and sevoflurane 
exhibit substantial differences in their actions. The authors 
sought to determine whether these differences can also be 
detected at the level of neurodevelopmental effects.
Methods: Postnatal rats, 4–6 days old, were exposed to 
1.2% isoflurane or 2.1% sevoflurane for 1–6 h and studied 
for immediate and delayed effects.
Results: Isoflurane exposure was associated with weaker 
seizure-like electroencephalogram patterns than sevoflurane 
exposure. Confronted with a new environment at a juvenile 
age, the sevoflurane-exposed rats spent significantly more 
time in an “immobile” state than unexposed rats. Electroen-
cephalographic (mean ± SE, 55.5 ± 12.80 s vs. 14.86 ± 7.03 s; 
P = 0.014; n = 6–7) and spontaneous behavior (F(2,39) = 4.43; 
P = 0.018) effects of sevoflurane were significantly dimin-
ished by pretreatment with the Na+–K+–2Cl– cotransporter 
inhibitor bumetanide, whereas those of isoflurane were not. 
Pretreatment with bumetanide, however, diminished isoflu-
rane-induced activation of caspase-3 in the cerebral cortex 
(F(2,8) = 22.869; P = 0.002) and prevented impairment in 
sensorimotor gating function (F(2,36) = 5.978; P = 0.006).

Conclusions: These findings in combination with results 
previously reported by the authors suggest that isoflurane 
and sevoflurane produce developmental effects acting via 
similar mechanisms that involve an anesthetic-induced 
increase in neuronal activity. At the same time, differences in 
their effects suggest differences in the mediating mechanisms 
and in their relative safety profile for neonatal anesthesia.

O PERATIVE procedures for millions of preterm and sick 
babies with different pathophysiological conditions 

require general anesthesia and repeated exposures are often 
needed. Considering the immense brain plasticity during this 
period of life, and the profound effects of general anesthetics 
on almost all aspects of central nervous system function, it 
is not surprising that there is a high level of concern among 
professionals and knowledgeable parents that exposure of 
newborns to general anesthesia may alter the course of brain 
development.1–3 Animal studies across various species, from 
rodents to nonhuman primates, demonstrate that volatile 
anesthetics, including isoflurane and sevoflurane, may cause 
profound neuronal death, if applied during early stages of 
postnatal brain development.4–15 Many of these studies 
reported long-term neurocognitive abnormalities detected 
using different experimental paradigms,4,7–9,13–15 though 
the link between neuronal death and delayed functional 
abnormalities remains unclear.16 The results of human 
retrospective epidemiological studies are less conclusive. Four 
of nine such studies did not detect long-term developmental 
abnormalities in children who had general anesthesia at 
a young age.17–24 It is obvious that, in addition to other 

What We Already Know about This Topic

•	 Whether early postnatal exposure to volatile anesthetics pro-
duces long-term neurodevelopmental abnormalities in chil-
dren remains a matter of debate.

•	 Sevoflurane and isoflurane, despite acting via common cellular 
mechanisms, exhibit substantial differences in their actions.

What This Article Tells Us That Is New

•	 At subanesthetic concentrations isoflurane and sevoflurane 
produce developmental effects in neonatal rats acting via 
similar mechanisms that may involve an increase in neuro-
nal activity. At the same time, substantial differences in the 	
effects of the two drugs suggest differences in the mecha-
nisms mediating their actions and in their safety profile for 
neonatal anesthesia.
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factors, the design of human studies lacks focus because the 
mechanisms that mediate the adverse developmental effects 
of general anesthetics are incompletely understood even in 
animal models. It is plausible that some anesthetics are more 
harmful than others, just as some neonates may be more 
susceptible to neurodevelopmental problems, for example, 
if their diseases share mechanisms with the side effects of 
anesthetics. New studies will be needed to address these 
possibilities.

We have recently found that sevoflurane, administered to 
neonatal rats, not only causes brain function-related devel-
opmental effects, such as seizure-like electroencephalogram 
patterns, an increase in levels of activated caspase-3 in the 
cerebral cortex, and an impairment in sensorimotor gating 
function, measured as a decrease of the prepulse inhibition 
(PPI) of the acoustic startle response 3 weeks after exposure 
to anesthesia, but also a prominent increase in serum levels 
of aldosterone.10,15 Aldosterone is a key component of the 
hypothalamic–pituitary–adrenal axis and the surgical stress 
response. Exogenous administration of aldosterone further 
aggravated developmental outcomes of neonatal anesthesia 
with sevoflurane.15

Sevoflurane and isoflurane, despite acting via com-
mon cellular mechanisms, such as an enhancement of 
γ-aminobutyric acid type A (GABAA) receptor activity, and 
activation of two-pore domain potassium leak channels, 
exhibit substantial differences in their actions.25 Among oth-
ers, isoflurane inhibits a major component of the excitatory 
glutamatergic synaptic transmission, namely postsynaptic 
N-methyl-d-aspartate receptors,26–28 whereas sevoflurane 
may not produce this effect.29 The differences in the side 
effects of these two otherwise very similar anesthetics, with 
relatively well-studied mechanisms of action if detected, 
would provide further insight into the relative safety profile 
of the two anesthetics, and the mechanisms mediating the 
side effects of general anesthesia in neonates. Therefore, we 
compared acute and delayed effects of equipotent exposures 
with isoflurane and sevoflurane in a neonatal rat model.

Materials and Methods

Animals
All experimental procedures were approved by the Univer-
sity of Florida Institutional Animal Care and Use Commit-
tee (Gainesville, FL). Sprague–Dawley rats were studied. To 
control for litter variability, we used several pups from each 
litter for different treatment conditions. At the beginning of 
each experiment, the pups were determined as well nour-
ished, judged by their stomachs being full of milk (detect-
able through the transparent abdominal wall). Different sets 
of animals were used in each given experiment.

Anesthesia and Electroencephalogram Recording
In order to study the effects of isoflurane and sevoflurane, 
anesthesia was induced in a temperature-controlled small 
chamber with 3.4% isoflurane (6% sevoflurane) and 1.5 l/

min oxygen over 3 min, and maintained with 1.2% isoflu-
rane (2.1% sevoflurane) and 1.5 l/min oxygen over 60 min. 
Anesthesia gas monitoring was performed using a calibrated 
Datex side stream analyzer (Datex-Ohmeda, Helsinki, 
Finland), which sampled from the interior of the animal 
chamber. According to Orliaguet et al.,30 1.2% isoflurane 
and 2.1% sevoflurane lie near 0.6 minimum alveolar con-
centration for P4–P7 rats. At the doses of 2.1 % sevoflurane 
and 1.2% isoflurane, rat pups appeared to be fully anesthe-
tized in the absence of surgical procedures. Blood glucose 
levels after 6 h of anesthesia with 1.2% isoflurane and 2.1% 
sevoflurane were 120.3 ± 3.7 (n = 6) and 125.3 ± 3.8 (n = 
3), respectively. To study the effects of isoflurane and sevo-
flurane on cortical activity, rat pups ranging from postnatal 
days 4–6 (P4–P6) were instrumented for electroencepha-
logram recording, as described previously.10,15 In brief, 
during a 12–15-min long minor surgical procedure, which 
was performed under isoflurane anesthesia (1.6–2.0%), 
four electrodes of the headmounts of the electroencepha-
logram /electromyogram system (Pinnacle Technology, 
Lawrence, KS) were implanted. No obvious differences in 
electroencephalographic activity were detected when elec-
troencephalogram electrode implantation was done either 
immediately before, or 1 or 2 days before start of electro-
encephalogram recording. Electroencephalogram patterns, 
characterized by an amplitude at least three times higher 
than the baseline and rhythmic (>2 Hz) activity, which 
lasted for at least 3 s and abruptly reverted to baseline, were 
defined as seizure-like electroencephalogram patterns.31 In 
most cases, these patterns started as high-frequency, low-
amplitude activity, developed to increased amplitude and 
decreased frequency, and then abruptly reverted to base-
line activity. The seizure-like electroencephalogram pat-
terns were detected visually by at least three independent 
reviewers, and a consensus was reached for summary data. 
Animals that exhibited episode(s) of seizure-like electroen-
cephalogram patterns before the start of anesthesia were 
not included in the data analysis.

Determination of Activated Cleaved Caspase-3 Using 
Western Blot
The levels of activated caspase-3 in the cerebral cortex were 
determined as described previously.10,15 Western blot analy-
sis for tissue samples from each animal was done in triplicate 
and reported as an average.

Measurements of Acoustic Startle Response and PPI of 
Startle
The PPI of startle tests were performed, using the SR-Lab 
startle apparatus (San Diego Instruments, San Diego, CA) 
as previously described by our laboratory.15 The %PPI for 
each prepulse intensity was calculated using the following 
formula: %PPI = 100 × ([pulse alone] – [prepulse + pulse])/
pulse alone.32 Data were collected as average amplitude of 
the 1,000 ms-long recording window.
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Immobility Behavior Testing
Increased immobility in rodents is used as behavioral test for 
anxiety and depression.33 The rats were video-recorded in a 
homemade clear plexiglas chamber (28 cm diameter/30.5 cm 
height). Each rat was placed in the chamber alone during the 
video recording. A camera was focused on the rat, providing 
a close-up view of the rat’s body. The behavior of each rat was 
analyzed during a period of 10 min. Immobility was defined 
as a sudden pause of all locomotion lasting at least 10 s. 
Termination of immobility was defined as the consecutive 
movement of the two front paws in a walking manner. The 
data are presented as total time spent in an immobile state.

Drugs
Isoflurane and sevoflurane were manufactured by Minrad 
Inc. (Bethlehem, PA) and Fushimi-machi (Osaka, Japan), 
respectively. Bumetanide (Ben Venue Laboratories, Inc.) 
was purchased from Bedford LaboratoriesTM (Bedford, 
OH). Cleaved caspase-3 antibodies were acquired from 
(Cell Signalling, Danvers, MA), and horseradish peroxidase-
conjugated goat antirabbit and anti- γ-tubulin antibodies 
were purchased from Santa Cruz Biotechnology, Inc. (Santa  
Cruz, CA).

Statistical Analysis
Values are reported as mean ± SEM. SigmaStat 3.11 software 
(Systat Software Inc., Point Richmond, CA) was used for 
statistical analyses. Single comparisons were tested using the 
unpaired t test, whereas multiple comparisons among groups 
were analyzed using one-way ANOVA, followed by Holm–
Sidak tests. Changes in PPI of startle for three prepulse 
intensities in multiple groups were analyzed using two-way 
repeated-measures ANOVA, followed by Holm–Sidak tests. 
All comparisons were run as two-tailed tests. A P value less 
than 0.05 was considered significant.

Results
Anesthesia with isoflurane, in contrast to anesthesia with sevo-
flurane, is associated with few seizure-like electroencephalogram 
patterns, which were not further diminished by pretreatment with 
bumetanide. Electroencephalographic activity in postnatal 
days 4–6 (P4–P6) rats was recorded during two 1-h periods: 
1 h baseline before, and then 1 h during anesthesia, with iso-
flurane or sevoflurane (fig. 1A). Fifteen min before initiating 
the anesthetic, half of the rats were treated with bumetanide 
(5 µmol/kg, intraperitoneal) and the other half received an 
equal volume of saline. During the 3-min induction period 
with 3.4% isoflurane, one of eight rats pretreated with saline 
had a 20 s-long episode of electroencephalographic activity, 
which met our criteria for a seizure-like electroencephalo-
gram pattern. During the 57-min maintenance period with 
1.2% isoflurane, seizure-like electroencephalogram patterns 
in this treatment group were detected in five of seven rats (fig. 
1, B–D). This electroencephalogram-detectable seizure-like 

activity consisted of 1.9 ± 0.8 episodes, with single episodes 
lasting 9.2 ± 2.1 s and total durations of 21.9 ± 9.3 s. All 
analyzed parameters of seizure-like electroencephalogram 
patterns, e.g., total duration, number of episodes, and sin-
gle episode duration, tended to decrease in rats pretreated 
with bumetanide; however, these effects of bumetanide were 
not sufficient to achieve statistical significance (fig. 1B). We 
compared the effects of bumetanide on sevoflurane-caused 
electroencephalogram-detectable hyperexcitation events in 
an experiment of the same design, i.e., equipotent concen-
tration of sevoflurane administered to the P4–P6 rats for the 
same duration of time. The seizure-like activity caused by 
sevoflurane was more pronounced (fig. 1E); rats pretreated 
with bumetanide had significantly shorter total durations of 

Fig. 1. Seizure-like electroencephalogram (EEG) patterns in 
neonatal rats anesthetized with isoflurane or sevoflurane. 
A, Illustration of the experimental protocol. B, An example of 
electroencephalogram recording of seizure-like electroen-
cephalogram pattern in a P6 rat during 1.2% isoflurane an-
esthesia. C, Histograms showing properties of seizure-like 
electroencephalogram (SL EEG) patterns in neonatal rats anes-
thetized with 1.2% isoflurane that were pretreated with either 
bumetanide (5 µmol/kg, intraperitoneally, n = 8), or equal vol-
ume of saline (n = 8). D, An example of electroencephalogram 
recording of seizure-like electroencephalogram pattern in a P6 
rat during 2.1% sevoflurane anesthesia. E, Histograms show-
ing properties of seizure-like electroencephalogram patterns 
in neonatal rats anesthetized with 2.1% sevoflurane that were 
pretreated with either bumetanide (5 µmol/kg, intraperitoneally, 
n = 7), or equal volume of saline (n = 6). * P < 0.05 versus total 
duration of seizure-like electroencephalogram patterns in the 
saline-pretreated rats.
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seizure-like electroencephalogram patterns during the 1-h 
exposure to sevoflurane, compared with rats that received 
saline before exposure to sevoflurane.

Isoflurane increases levels of activated caspase-3 in the cere-
bral cortex, an effect partially diminished by pretreatment with 
bumetanide.

As in our recent published study with sevoflurane,15 in 
this study too, Western blot analysis revealed increased lev-
els of activated caspase-3 in the cerebral cortex of P5 rats 
exposed to 6 h of anesthesia with isoflurane 1 day earlier. The 
rats that were pretreated with bumetanide (5 µmol/kg, ip) 
before exposure to isoflurane had lower levels of activated 
caspase-3 in comparison with those pretreated with saline 
and anesthetized with isoflurane (F(2,8) = 22.869; P = 0.002 
vs. control and bumetanide groups; fig. 2, A and B). Pre-
treatment with bumetanide before anesthesia with isoflurane 
did not completely prevent the increase in levels of activated 
caspase-3 caused by isoflurane (P = 0.025 vs. control).

Anesthesia of neonatal rats with sevoflurane (but not 
isoflurane) results in bumetanide-sensitive delayed “immobile 
state” behavior. The effects of neonatal anesthesia, with 
isoflurane and sevoflurane at P4 and P5, on the subsequent 
spontaneous behavior in rats was tested when the animals 
achieved 21–26 days of age. Most of the rats were 24 
days of age at the time of testing. When exposed to a new 
environment, rats previously anesthetized with sevoflurane 
spent a significantly longer time in an immobile state 
compared with nonanesthetized controls (F(2,39) = 4.43; P 
= 0.018 vs. control and bumetanide groups; fig. 3, A and 
B). No significant differences were observed between the 

control rats not exposed to anesthesia and those pretreated 
with bumetanide before exposure to sevoflurane at P4 and 
P5 (P = 0. c). Rats anesthetized with isoflurane at an early 
postnatal age also tended to spend more time in an immobile 
state, when compared with rats that were never exposed 
to anesthesia, or with those pretreated with bumetanide 
before exposure to isoflurane. However, the effects of 
neither isoflurane nor bumetanide were sufficient to achieve 
statistical significance (F(2,40) = 2.397; P = 0.104; fig. 3, A 
and C).

Isoflurane causes a long-term decrease of PPI of startle in 
control but not in bumetanide-pretreated rat pups. Startle stim-
uli by themselves caused similar responses in all three treat-
ment groups. Startle response amplitudes were 15.8 ± 1.2, 
15.2 ± 1.2, and 16.9 ± 1.4 in nonanesthetized, anesthetized, 
and bumetanide-pretreated anesthetized animals, respec-
tively (fig. 4A; F(2,36) = 0.506; P = 0.607; one-way ANOVA). 
Startle stimuli, presented in combination with preceding 
prepulse stimuli, inhibited startle responses, but PPI of 
startle was less in animals exposed to isoflurane early after 
birth. Two-way repeated measures ANOVA analysis of PPI 
of startle found significant effects of prepulse intensities 
(main effect, F(2,4) = 118.287; P < 0.001), and treatment 
with isoflurane (main effect, F(2,36) = 5.978; P = 0.006; fig. 
4B). The rats that were exposed to isoflurane at P4 exhibited 
reduced PPI of startle at all prepulse intensities when com-
pared with nonanesthetized animals, although a significant 

Fig. 2. Increased levels of activated caspase-3 in the cerebral 
cortex of neonatal rats that were anesthetized with isoflurane. 
A, Illustration of the experimental protocol. B, Representa-
tive Western blot images of cleaved caspase-3 and γ-tubulin 
blots and histogram showing results of the densitometric 
analysis of cleaved caspase-3 in the cortex tissue from three 
experimental groups. Rats in the two treatment groups were 
exposed to isoflurane anesthesia after they were pretreated 
with either bumetanide (5 µmol/kg, intraperitoneally, n = 3), 
or equal volume of saline (n = 3). Rats in the control group  
(n = 3) did not undergo anesthesia on postnatal day 4. Densi-
ties of γ-tubulin blots from the same tissue sample were taken 
as 100%. * P = 0.002 versus control and bumetanide, # P = 
0.025 versus control.

Fig. 3. Rats that were anesthetized with sevoflurane (but not iso-
flurane) on postnatal days 4 and 5 (P4 and P5), spent significantly 
increased time in immobile state; an effect that was alleviated by 
pretreatment with bumetanide. A, Illustration of the experimental 
protocols. B, The effect of sevoflurane. Histogram showing time 
spent in immobile state by three treatment groups: (1) control  
(n = 19), saline + sevoflurane (n = 13), and bumetanide + sevo-
flurane (n = 10). * P < 0.05 versus control. C, The effect of isoflu-
rane. Histogram showing time spent in immobile state in three  
experimental groups: Rats in the two treatment groups were ex-
posed to isoflurane anesthesia after they were pretreated with 
either bumetanide (5 µmol/kg, intraperitoneally, n = 12 per), or 
equal volume of saline (n = 12). Rats in the control group (n = 
19) did not undergo anesthesia at P4. All nonanesthetized rats 
tested in spontaneous behavior experiments were combined in 
the control groups.
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reduction was detected at prepulse intensities of 5 dB and 15 
dB, but not of 10 dB. The effect of treatment did not depend 
on the prepulse intensities (P = 0.980). There was no sig-
nificant reduction in PPI of startle in animals that received 
bumetanide (5 µmol/kg, intraperitoneal) before isoflurane 
anesthesia (P = 0.571 vs. nonanesthetized and P = 0.011 vs. 
isoflurane). We have previously demonstrated that a single 
dose of bumetanide alone without anesthesia did not result 
in any obvious changes in the acoustic startle response.15

Discussion
We have found that in neonatal rats isoflurane, similar to 
previously reported effects of sevoflurane,15 caused a number 
of both acute and delayed adverse effects: seizure-like 
electroencephalogram patterns, neuroapoptosis in the cerebral 
cortex (measured as increased levels of activated caspase-3), 
and impairment of sensorimotor gating function. The latter 
could be detected weeks after exposure to the anesthetic. 
Our results also indicate that the effects of isoflurane 
and sevoflurane show important differences. Isoflurane-
caused less pronounced seizure-like electroencephalogram 
patterns and nonsignificant increases in “immobility” 
behavior. Furthermore, bumetanide, the  Na+–K+–2Cl– 
co-transporter inhibitor, did not alter the effects of isoflurane 
on electroencephalographic activity in rats. Pretreatment 
with bumetanide, however, decreased the isoflurane-caused 
impairment of PPI of the startle response, as previously 
seen in the sevoflurane-anesthetized animals.15 Bumetanide 
partially diminished an increase in the levels of activated 
caspase-3 in the cerebral cortex, caused by isoflurane.

Seizure-like electroencephalogram patterns detected 
during anesthesia of neonatal rats with sevoflurane and 

isoflurane indicate that the anesthetics may increase 
neuronal cortical activity at this age. These findings, taken 
together with the effects of bumetanide in the isoflurane- 
and sevoflurane-anesthetized neonatal rats, suggest that 
the anesthetic-caused apoptotic cell death and long-term 
functional abnormalities (impairment of sensorimotor 
gating function and increase in immobility patterns in rats 
previously anesthetized with sevoflurane) result, at least in 
part, from the anesthetic-caused increase of neuronal activity. 
Importantly, our findings do not link the anesthetic-caused 
seizure-like electroencephalogram patterns as prerequisites 
to neuronal death and functional effects, as well as neuronal 
death to delayed functional abnormalities. Although current 
understanding of the developmental neurophysiology, 
mechanisms of action of volatile anesthetics, and neuronal 
effects of bumetanide makes GABAA receptor-mediated 
signaling the most plausible candidate for mediating the 
anesthetic-induced neuronal stimulation in the developing 
brain, the results of our experiments with bumetanide do 
not exclude other potential mechanism(s) contributing 
to the anesthetic-caused increase of neuronal activity in 
the developing brain. Our pilot studies suggest that the 
anesthetic-activated hypothalamic–pituitary–adrenal axis 
may represent one of such mechanisms. It is plausible that 
the anesthetic-increased neuronal activity to certain level, 
independent of the mediating mechanisms, is sufficient for 
the observed side effects to occur. Bumetanide, by decreasing 
GABAA receptor-mediated excitation or promoting GABAA 
receptor-mediated inhibition, decreases total neuronal 
activity in the developing brain and alleviates the anesthetic-
caused side effects. In line with this, less pronounced seizure-
like electroencephalogram patterns caused by isoflurane 
may be the result of less neuronal stimulation by isoflurane 
due to inhibitory actions of the anesthetic via additional 
pathways that are not engaged by sevoflurane. For example, 
sevoflurane may be less potent than isoflurane at inhibition 
of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptor subtype of postsynaptic 
glutamate receptors26–28 or may even not have any effect on 
functioning of these receptors.29 The inhibitory profile of 
isoflurane is further supported by its depression of presynaptic 
glutamate release.30 Still, the alleviating effects of bumetanide 
on isoflurane-caused increases in levels of activated caspase-3 
and impairment in sensorimotor gating function, suggest 
a role of the anesthetic-caused neuronal stimulation in its 
developmental effects. Previously, Sanders et al.34 observed 
cell death in mouse organotypic hippocampal slice cultures 
exposed to a combination of 0.75% isoflurane and 50 µm 
GABAA receptor antagonist SR95531 (gabazine), calling 
into question the involvement of GABAA receptor mediated-
signaling in the neurotoxic effects of isoflurane. Given that 
slice cultures with substantially altered or eliminated extrinsic 
inputs or outputs and hormonal or neurotransmitter controls 
represent a simplified model of the in vivo environment, it 
is difficult to directly compare our in vivo measurements 

Fig. 4. Isoflurane anesthesia on postnatal days 4 and 5 (P4 
and P5) causes abnormalities in prepulse inhibition (PPI) of 
the acoustic startle response evaluated at P23 and P24. Bu-
metanide (5 µmol/kg, intraperitoneally), administered before 
anesthesia, alleviated the effect of isoflurane on PPI of acous-
tic startle. A, Illustration of the experimental protocol. Rats in 
the control groups did not undergo anesthesia on P4 and P5. 
B, Histogram showing %PPI of startle in different treatment 
groups: control (n = 11), saline + isoflurane (n = 14), and bu-
metanide + isoflurane (n = 15). * P < 0.05 versus control. PP5–
PP15, prepulse intensities in dB above background.
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with bumetanide and the measurements with gabazine in 
slice cultures.34 Nonetheless, the results with gabazine may 
support our hypothesis on the role of increased neuronal 
activity in the adverse effects of isoflurane and sevoflurane 
in the developing brain, because treatment of P10 and P11 
hippocampal slices with gabazine in the presence of isoflurane 
is likely to increase neuronal activity, though gabazine alone 
in the absence of the anesthetic did not cause any effect.

A possibility that isoflurane may cause alterations in the 
sensorimotor gating function in neonatal rats by acting at 
GABAA receptors is indirectly supported by the findings 
reported by other laboratories that phenobarbital and allo-
pregnanolone, both positive GABAA receptor modulators, 
caused long-term impairment of PPI of startle after single 
administration to neonatal rats.35,36 A recent study found 
that reduction of PPI of startle in juvenile subjects may be 
a predictor of predisposition to schizophrenia before other 
symptoms of the illness can be detected.37 Sensorimotor gat-
ing deficits are characteristic of a number of other human 
neuropsychiatric diseases,38,39 raising the possibility that sub-
jects predisposed to these disorders may be more susceptible 
to the developmental effects of isoflurane and sevoflurane.

In summary, these findings, in combination with our 
previous reports,10,15 suggest that isoflurane and sevoflu-
rane may produce developmental effects acting via similar 
mechanisms involving an increase in neuronal activity. At 
the same time, substantial differences in the effects of isoflu-
rane and sevoflurane in neonatal rats suggest differences in 
the mechanisms mediating their actions, and more impor-
tantly, also potentially on the relative safety profile of the two 
anesthetics for neonatal anesthesia. If these findings translate 
to humans then by extension isoflurane may be preferred 
over sevoflurane as an anesthetic for very young pediatric 
patients, especially to those predisposed to epileptic seizures.
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