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ABSTRACT

Background: Recent clinical trials indicate that probiotic 
administration in critical illness has potential to reduce nos-
ocomial infections and improve clinical outcome. However, 
the mechanism(s) of probiotic-mediated protection against 
infection and sepsis remain elusive. The authors evaluated 
the effects of Lactobacillus rhamnosus GG (LGG) and Bifido-
bacterium longum (BL) on mortality, bacterial translocation, 
intestinal epithelial homeostasis, and inflammatory response 
in experimental model of septic peritonitis.
Methods: Cecal ligation and puncture (n = 14 per group) 
or sham laparotomy (n = 8 per group) were performed on 
3-week-old FVB/N weanling mice treated concomitantly 
with LGG, BL, or vehicle (orally gavaged). At 24 h, blood 
and colonic tissue were collected. In survival studies, mice 
were given probiotics every 24 h for 7 days (LGG, n = 14; BL, 
n = 10; or vehicle, n = 13; shams, n = 3 per group).
Results: Probiotics significantly improved mortality after sep-
sis (92 vs. 57% mortality for LGG and 92 vs. 50% mortality 
for BL; P = 0.003). Bacteremia was markedly reduced in sep-
tic mice treated with either probiotic compared with vehicle 
treatment (4.39 ± 0.56 vs. 1.07 ± 1.54; P = 0.0001 for LGG; 
vs. 2.70 ± 1.89; P = 0.016 for BL; data are expressed as mean ± 
SD). Sepsis in untreated mice increased colonic apoptosis and 
reduced colonic proliferation. Probiotics significantly reduced 
markers of colonic apoptosis and returned colonic prolifera-
tion to sham levels. Probiotics led to significant reductions in 

systemic and colonic inflammatory cytokine expression versus 
septic animals. Our data suggest that involvement of the pro-
tein kinase B pathway (via AKT) and down-regulation of Toll-
like receptor 2/Toll-like receptor 4 via MyD88 in the colon 
may play mechanistic roles in the observed probiotic benefits.
Conclusions: Our data demonstrate that probiotic admin-
istration at initiation of sepsis can improve survival in pedi-
atric experimental sepsis. The mechanism of this protection 
involves prevention of systemic bacteremia, perhaps via 
improved intestinal epithelial homeostasis, and attenuation 
of the local and systemic inflammatory responses.

S EPSIS is a common cause of death in children and 
adults despite advances in the supportive care for the 

critically ill patients. Centers for Disease Control data shows 
that death rates from sepsis have increased at a rate greater 
than from any other common cause of mortality in the last 
year, and sepsis is now one of the top 10 causes of death 
in the United States.1 Annually, above 1 million deaths 
worldwide are associated with sepsis within the pediatric and 
neonatal population alone.2,3 Even when pediatric and adult 
patients survive, they face substantial long-term adverse 
consequences after sepsis and critical illness.4–6

Critical illness and sepsis are systemic syndromes that lead 
to a hostile environment in the gut, resulting in an imbalance 
of the intestinal microbiota in favor of pathogenic species.7 
The intestine plays a central role in the pathogenesis of sep-
sis and has been referred to as the “motor” of the systemic 
inflammatory response.8,9 Perturbations of intestinal epithelial 
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homeostasis in sepsis result in increased proinflammatory 
cytokine production,10 barrier dysfunction,11–13 and increased 
apoptosis14–17 which may lead to multiple organ failure.

Probiotic therapy represents a promising intervention for 
the treatment of nosocomial infections in the intensive care 
unit, which often lead to sepsis and multiple organ failure.18 
Probiotics are living nonpathogenic bacteria that colonize 
the intestine and provide a benefit to the host.19 Results from 
recent randomized controlled trials in pediatric and adult 
populations suggest a benefit to the use of probiotics in the 
intensive care unit.18,20–22 In an age of increasing antimicro-
bial resistance, the use of probiotics as a potential treatment 
for severe infections and subsequent septic shock may be a 
promising, cost-effective, preventative strategy.

The potential beneficial role(s) of probiotics on survival given 
in early systemic polymicrobial sepsis, and the mechanisms by 
which probiotics may function to protect against experimental 
sepsis, particularly pediatric sepsis, are currently not well under-
stood. Therefore, we sought to delineate the clinical utility and 
potential mechanistic targets of acutely administered probiotic 
therapy at initiation of experimental pediatric sepsis via a wean-
ling mouse peritonitis model. We selected the two commonly 
clinically used probiotic strains, Lactobacillus rhamnosus GG 
(LGG) and Bifidobacterium longum (BL), given at clinically 
relevant doses, to evaluate possible strain-related differences in 
clinical outcome and mechanistic targets in the gut.

Lactobacillus spp. and Bifidobacterium spp., alone or in com-
bination, are the most frequently used probiotic strains in the 
treatment of various gastrointestinal disorders23–25 or as ther-
apy for clinical conditions including antibiotic-associated diar-
rhea,26,27 ventilator-associated pneumonia,18,21,28 sepsis, and 
postoperative infections.29,30 Although probiotics seem to be 
an effective treatment in various clinical conditions, the specific 
mechanisms responsible for their beneficial action are complex 
and not fully understood.31 On the basis of the results from 
several in vivo and in vitro studies, we hypothesized that LGG 
and BL would prevent bacterial translocation,32,33 reduce the 
overgrowth of pathogenic bacteria, decrease apoptosis in intes-
tinal epithelial cells,34–37 and reduce inflammation.38–41

Materials and Methods
Probiotic Treatment and Septic Peritonitis Model
The animal protocol used in these studies was approved by 
the Institutional Animal Care and Use Committee of the 
University of Colorado Anschutz Medical Campus. Briefly, 
3-week-old FVB/N mice were orally gavaged with 200 µl 
of either LGG (1 × 109 colony forming unit [CFU]/ml), BL 
(1 × 107 CFU/ml), or sterile water (vehicle) immediately 
before initiation of the cecal ligation and puncture (CLP) 
procedure.42 Briefly, a small midline abdominal incision was 
made, the cecum was ligated just distal to the ileocecal valve, 
and was then punctured twice with a 23-gauge needle. The 
cecum was squeezed to extrude a small amount of stool, 
replaced in the abdomen, and the peritoneum and skin were 
closed in layers. Sham mice were treated identically, except 

the cecum was neither ligated nor punctured. All mice 
received 1.0 ml normal saline subcutaneously after the sur-
gery to compensate for fluid loss. Animals were euthanized 
at either 24 h (for acute studies) or followed 7 days for sur-
vival (LGG, n = 14; BL, n = 10, or vehicle, n = 13; shams, n 
= 3 per group). For survival studies, mice were treated with 
probiotics daily for 7 days. For acute studies, mice received a 
single dosage of probiotics before tissue collection.

LGG and BL Culture
LGG (ATCC, Manassas, VA) was incubated in de Man, 
Rogosa, and Sharpe broth (Becton Dickinson, Sparks, MD) 
for 24 h at 37°C and 5% CO2. BL (ATCC) was cultured 
in Trypticase soy broth (Becton Dickinson) for 72 h in an 
anaerobic chamber at 37°C. A600 was measured to determine 
the number of CFU per 1 ml. BL and LGG were pelleted 
from the broth (10,000 rpm; 10 min) and resuspended in 
distilled water.

Bacteremia and Bacterial Analysis of the Colon
Blood was collected at 24 h from the inferior vena cava of 
anesthetized mice, serially diluted in sterile 0.9% saline and 
cultured on Trypticase soy agar plates with 5% sheep blood 
(Becton Dickinson) for 24 h at 37°C/5% CO2. CFU were 
then enumerated for each animal (shams, n = 8 per group; 
septic, n = 10; LGG, n = 7; and BL, n = 8).

DNA was extracted from collected frozen colon samples 
obtained from a separate study to ensure sufficient amount of 
tissue (shams, n = 4 per group; septic, n = 12; LGG, n = 10; 
and BL, n = 9; luminal and intestinal wall contents; 24-h time 
point) using UltraClean Fecal DNA kit (MO BIO Laboratories, 
Inc., Carlsbad, CA). The concentration, integrity, and purity 
of DNA were determined using a NanoDrop (Thermo Fisher 
Scientific, Wilmington, DE). Quantification was performed 
by quantitative polymerase chain reaction (PCR) using 
standard curves derived from cloned 16S ribosomal RNA 
genes43 using the following primers: Lactobacillus44: LactoF 
(5′ TGGAAACAGRTGCTAATACCC) and LactoR (5′ 
GYCCATTGTGGAAGATTCCC). Bifidobacterium45: Bif1F 
(5′ TCG CGT CYG GTG TGA AAG) and Bif1R (5′ CCA 
CAT CCA GCR TCC AC). The following cycling protocol 
was used: denaturation at 95°C (10 min) and 40 cycles of 95°C 
(15 s), 60°C (30 s), and 65°C (1 min). Reporter dye emission 
(SYBR green, Applied Biosystems, Foster City, CA) was 
detected by an automated sequence detector combined with 
ABI Prism 7300 Real Time PCR System (Applied Biosystems).

Gram staining was performed on tissue sections and 
evaluated by microscopy for presence of Gram-positive or 
Gram-negative bacteria.

Immunohistology
Colon was collected from each animal at 24 h and fixed over-
night in 10% formalin, paraffin-embedded, and sectioned at 
4–6 µm. Serial sections were stained (shams, n = 5 per group; 
septic, n = 5; LGG, n = 4; and BL, n = 4). After deparaf-
finization and rehydration, sections were blocked with 1.5% 
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rabbit or goat serum (Vector Laboratories, Burlingame, CA) 
in phosphate-buffered saline for 30 min, then incubated with 
either rabbit polyclonal cleaved caspase-3 (1:100; Cell Signal-
ing, Danvers, MA) or mouse monoclonal proliferating cell 
nuclear antigen (1:100; Invitrogen, Camarillo, CA) antibody 
for 1 h, washed with phosphate-buffered saline, and incubated 
with either goat anti-rabbit or anti-mouse biotinylated second-
ary antibody (Vector Laboratories) for 30 min. Vectastain Elite 
ABC reagent (Vector Laboratories) was then applied, followed 
by diaminobenzidine as substrate. Sections were counter-
stained with hematoxylin, dehydrated, and cover-slipped.

To determine apoptosis in the colonic epithelium, apop-
totic epithelial cells were quantified in 100 consecutive 
crypts by using two complimentary methods: morphologi-
cal analysis of hematoxylin and eosin–stained sections where 
apoptotic cells were identified by characteristic morphology 
of nuclear fragmentation (karyorrhexis) and cell shrinkage 
with condensed nuclei (pyknosis)46 and second by enumera-
tion of cleaved caspase-3–positive cells. Colonic epithelial 
proliferation was determined by quantifying proliferating 
cell nuclear antigen-positive cells in 100 consecutive crypts. 
All counting was performed by a blinded evaluator.

RNA Preparation, Reverse Transcription, and Real-time PCR
Total RNA was isolated from colonic tissue (snap frozen in 
liquid nitrogen and collected at 24 h) using the RNeasy Plus 
Mini Kit (Qiagen, Santa Clarita, CA) as described in the 
manufacturer’s protocol. RNA concentrations were quanti-
fied at 260 nM, and the purity and integrity were determined 
using a NanoDrop. Reverse transcription and real-time PCR 
assays were performed to quantify steady-state messenger 
ribonucleic acid (mRNA) levels of interleukin (IL)-6, tumor 
necrosis factor-α (TNF-α), IL-1β, IL-10, MyD88, Toll-like 
receptor (TLR)-4, and TLR-2 (shams, n = 4 per group; sep-
tic, n = 7; LGG, n = 6; and BL, n = 4). Complementary DNA 
was synthesized from 0.2 μg of total RNA. Predeveloped 

TaqMan primers and probes (Applied Biosystems) were 
used for detection. Reporter dye emission was detected by 
an automated sequence detector combined with ABI Prism 
7300 Real Time PCR System (Applied Biosystems). Real-
time PCR quantification was performed with TaqMan glyc-
eraldehyde-3-phosphate dehydrogenase controls.

Western Blot Analysis
Individual frozen colon samples (shams, n = 3 per group; 
septic, n = 8; LGG, n = 4; and BL, n = 4; 24-h time point) 
were homogenized with a hand-held homogenizer in a 5x 
volume of ice-cold homogenization buffer (Tris HCl, 50 
mM; pH, 7.4; NaCl, 100 mM; EDTA, 10 mM; Triton X-100, 
0.5%) with added protease inhibitors (Roche Diagnostics, 
Mannheim, Germany). The homogenates were centrifuged 
at 10,000 rpm for 5 min at 4°C and the supernatant was 
collected. Total protein concentration was quantified using 
the Bradford protein assay.47 For protein analysis, 40 μg of 
protein was added to an equal volume of 2x Laemmli sam-
ple buffer and boiled for 5 min. The samples were run on 
4–15% polyacrylamide gels (Bio-Rad Laboratories, Hercu-
les, CA) at 200 V for 30 min. Protein was transferred to 
Immuno-Blot PVDF membranes (Bio-Rad Laboratories) 
at 65 V for 4 h. Membranes were blocked with 5% nonfat 
milk in Tris-buffered saline with 0.1% Tween 20 (Sigma-
Aldrich, St. Louis, MO) for 1 h at room temperature and 
then incubated overnight at 4°C with one of the following 
rabbit polyclonal antibodies: Bax (1:1,000; Cell Signaling), 
Bcl-w (1:1,000; Cell Signaling), anti-Akt, (1:1,000; Cell 
Signaling), and anti-P-Akt (1:1,000; Cell Signaling). After 
extensive washing, the membranes were incubated for 1 h at 
room temperature with horseradish peroxidase–conjugated 
anti-rabbit immunoglobulin G (Santa Cruz Biotechnology, 
Dallas, TX). Proteins were visualized with a chemilumines-
cent system (Pierce, Rockford, IL) by using Epi Chemi II 
Darkroom (UVP BioImaging System, Upland, CA).

Fig. 1. Effect of Lactobacillus rhamnosus GG and Bifidobacterium longum on mortality in sepsis. Three-week-old FVB/N mice 
were subjected to 2 × 23-gauge cecal ligation and puncture. Control animals underwent sham laparotomy. All mice were followed 
for survival for 7 days. Septic mice treated with L. rhamnosus GG (LGG) or B. longum (BL) had significantly decreased mortality 
compared with untreated septic mice (57 vs. 92% mortality and 50 vs. 92% mortality, respectively; P = 0.003). Shams, n = 3 per 
group; septic, n = 13; LGG, n = 14; BL, n = 10. All sham mice survived.
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Serum IL-6 and TNF-α Analysis
Enzyme-linked immunosorbent assay (R&D Systems, Min-
neapolis, MN) was used to determine the concentrations of 
TNF-α and IL-6 in serum (shams, n = 5 per group; septic,  
n = 7; LGG, n = 5; and BL, n = 6; 24-h time point) accord-
ing to the manufacturer’s instructions. Serum was collected 
after centrifuging blood for 10 min at 5,000 rpm and stored 
at −80°C until the assay was performed.

Statistics
Continuous data sets were tested for Gaussian distribution 
by using a Shapiro–Wilk Test for normality, and the Levene 
F-Test for equality of variances. Although results of these 
tests showed some departures from normality and equality of 
variances, it is well documented that the one-way ANOVA is 

robust with respect to violations of these assumptions. Thus, 
multiple group comparisons were performed with one-way 
ANOVA followed by the Newman–Keuls post hoc test. Survival 
studies were analyzed via the log-rank test. No measurements 
or animals were lost for observation or missing in the analysis. 
Data were analyzed using Prism 4.0 (GraphPad Software, San 
Diego, CA) and reported as means ± SD. A P value less than 
0.05 was considered to be statistically significant.

Results
LGG and BL Improve Mortality and Prevent Bacteremia in 
Septic Peritonitis
To determine whether treatment with LGG or BL have an 
effect on mortality in peritonitis-induced sepsis, a separate 
cohort of mice (shams, n = 3 per group; septic, n = 13; LGG, 

Fig. 2. Effect of Lactobacillus rhamnosus GG and Bifidobacterium longum treatment on bacteremia in sepsis. Bacterial growth 
on representative Trypticase soy agar plates with sheep blood (5%) are shown for each experimental group (A, B). Septic mice 
had increased bacteremia (C) compared with shams (4.39 ± 0.56 vs. 0.40 ± 0.81; P = 0.0001), whereas septic mice treated with 
L. rhamnosus GG (LGG) or B. longum (BL) had reduced bacterial load in the blood (1.07 ± 1.54, P = 0.0001 and 2.70 ± 1.89,  
P = 0.016, respectively). Shams, n = 8 per group; septic, n = 10; LGG, n = 7; and BL, n = 8. Data are expressed as the mean 
± SD. CFU = colony forming unit.
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Table 1. Lactobacillus and Bifidobacterium spp. in the Colon of Septic Mice

Sham 
(n = 4)

Sham + LGG 
(n = 4)

Sham + BL 
(n = 4)

Septic 
(n = 12)

Septic + LGG 
(n = 10)

Septic + BL 
(n = 9)

Lactobacillus spp. 6.6 × 103 ± 2.5 × 103 1.1 × 104 ± 1.3 × 104 — 6.2 × 103 ± 6.6 × 103 3.5 × 104 ± 4.1 × 104* —
Bifidobacterium spp. 4.2 × 105 ± 1.1 × 105 — 1.7 × 106 ± 2.4 × 106 2.0 × 106 ± 1.5 × 106 — 2.4 × 107 ± 2.9 × 107*

PCR quantification data are expressed as the mean of cells ± SD.
* P < 0.05 vs. septic.
BL = Bifidobacterium longum; LGG = Lactobacillus rhamnosus GG; PCR = polymerase chain reaction.

n = 14; and BL, n = 10) were subjected to CLP and followed 
7 days for survival (fig. 1). Mice treated with either LGG or 
BL had significantly improved 7-day survival compared with 
untreated septic mice. All sham animals survived.

To examine whether the probiotics LGG or BL could 
prevent bacteremia in sepsis, whole blood was cultured and 
bacteria were counted. The data are expressed as the Log of 
CFU per 1 ml (fig. 2, A–C). Septic animals had significantly 
increased bacteremia compared with shams. Although both 
probiotic strains reduced bacteremia, septic mice treated with 
LGG exhibited normalization to sham mouse blood bacte-
rial counts whereas septic mice treated with BL exhibited 
significantly decreased bacteremia compared with untreated 
septic mice, but still had an increased bacterial load in the 
blood compared with shams.

After Oral Administration, LGG and BL Persist in the 
Intestine for at Least 24 h
DNA isolated from the colon, including luminal and intestinal 
wall content, was analyzed by PCR to quantify the presence 
of Lactobacillus spp. and Bifidobacterium spp. There was a sig-
nificant increase in Lactobacilli in septic animals treated with 
LGG compared with untreated septic mice. Similarly, there 
was an increase in Bifidobacteria in septic mice treated with 
BL compared with untreated septic mice (table 1). These data 
demonstrate that LGG and BL are indeed able to survive and 
propagate in the gastrointestinal tract for at least 24 h after oral 
administration. Therefore, LGG and BL may help to prevent 
the overgrowth of pathogenic bacteria. This hypothesis was con-
firmed by Gram staining of intestinal wall specimens, which 
demonstrated an increased number of both Gram-positive and 
Gram-negative bacteria in the colon of septic mice compared 
with shams, and most importantly, less bacteria is seen in the 
colons of mice treated with either LGG or BL (fig. 3).

Cell Proliferation and Apoptosis in Colon Are Normalized 
in Septic Mice Treated with Probiotics
As measured by quantifying proliferating cell nuclear antigen-
positive cells in 100 consecutive crypts, septic mice exhibited 
a significant decrease in proliferation of the colonic epithe-
lium compared with sham mice. In contrast, the proliferative 
response in septic animals treated with either probiotic strain 
was normalized to levels observed in sham mice (fig. 4).

Colonic epithelial apoptosis was increased in untreated 
septic mice compared with shams, both when assayed by 
cleaved caspase-3 staining and also by morphological 

criteria in hematoxylin and eosin–stained sections. In con-
trast, septic mice treated with either LGG or BL exhibited 
decreased colonic apoptosis, with levels similar to those 
seen in the colons of sham mice (fig. 5, A–D). The ratio of 
proapoptotic to antiapoptotic molecules is often used as 
an indicator of sensitivity to apoptosis.48 Untreated septic 
mice exhibited significantly increased ratio of Bax/Bcl-w 
protein expression compared with shams, suggesting a 
shift toward increased programmed cell death. In con-
trast, septic mice treated with either LGG or BL exhib-
ited a decrease in the ratio of Bax/Bcl-w compared with 
untreated septic mice, suggesting a shift toward increased 
cell survival (fig. 5E).

Increased p-Akt/Akt Ratio in Probiotic-treated Animals 
Suggests Involvement of Protein Kinase B Pathway
Previously published data by Yan et al.37 showed that 
LGG promotes survival of intestinal epithelial cells 
through regulation of the antiapoptotic Akt/protein 
kinase B signal transduction pathway. Likewise, our 
results show a significant increase in antiapoptotic Akt 
in the colonic tissue of both probiotic groups, LGG and 
BL, compared with the untreated septic group (fig. 6, 
A–B). This indicates a possible involvement of the path-
way in the protective mechanism of both tested probiotic 
strains against sepsis.

LGG and BL Attenuate the Systemic and Local 
Inflammatory Response in the Colon during Sepsis
Reduction of inflammation as well as improvement 
of innate immunity are hypothesized to be protective 
mechanisms after probiotic administration.38–41 To 
determine the effect of probiotics on these parameters, 
levels of the proinflammatory cytokines such as IL-6 and 
TNF-α in serum and colonic tissue were measured by 
enzyme-linked immunosorbent assay. In parallel, gene 
expression of IL-6, TNF-α, IL-1β, and IL-10 in the colon 
was quantified using real-time PCR. All cytokine levels 
were measured 24 h after CLP.

Systemic levels of IL-6 significantly increased in untreated 
septic mice compared with shams (fig. 7), whereas treatment 
with LGG or BL in septic mice led to significantly reduced 
systemic IL-6 levels compared with septic mice not treated 
with probiotics. Interestingly, systemic levels of TNF-α 
remained unchanged among all studied groups.
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Local, colonic gene expression of TNF-α, IL-1β, and 
IL-10 (fig. 8, A–C) was significantly increased in the colon 
of untreated septic animals, whereas levels of both were 
markedly decreased in colons of septic mice treated with 
LGG or BL. Colonic gene expression of IL-6 was increased 
in untreated septic mice and decreased in both probiotic-
treated groups although the differences did not reach statisti-
cal significance (data not shown).

Probiotics Activate TLR Pathways in the Colon
TLRs signal through the MyD88 pathway, which includes 
NFκB transcriptional factors, activating various cytokines 

involved in the innate immunity response. MyD88 has an 
important role in early recruitment of inflammatory cells 
and in the control of bacterial infection.49 Expression of 
the TLR-2, TLR-4, and MyD88 genes were markedly 
increased in the colon of untreated septic mice compared 
with shams, while LGG or BL treatment significantly 
reduced these levels (fig. 9, A–C).

Discussion
This study demonstrates for the first time that two differ-
ent probiotic strains, LGG and BL, confer a significant sur-
vival benefit in weanling mice subjected to septic peritonitis. 
To our knowledge, this is the first description of improved 
survival after live probiotic therapy in a pediatric or adult 
polymicrobial sepsis model. This advantage of survival was 
associated with decreased bacteremia, decreased colonic 
apoptosis and increased colonic proliferation, decreased sys-
temic and local expression of inflammatory cytokines, and 
reduced colonic expression of TLR-2/TLR-4 and MyD88.

Critical illness and its treatments (vasopressors, antibi-
otics, opiates, etc.) create a hostile environment in the gut 
by altering the microbiota, and thereby favor the growth of 
pathogens.50 This is partially due to the loss of the beneficial 
lactic acid bacteria,51 which can inhibit the overgrowth of 
pathogens by producing bacteriocins, hydrogen peroxide, 
organic acids, ammonia and by increasing the competi-
tion for adhesion sites on intestinal epithelia.52,53 In criti-
cal illness, enhanced virulence gene expression in bacteria, 
called quorum sensing, leads to aggressive bacterial behav-
ior, toxin expression, and ultimately translocation into the 
gut wall and/or gut barrier dysfunctions. This impairment 
of the gut barrier can lead to gut-derived sepsis, progression 
to organ failure, and ultimately mortality in the critically ill 
patients.50 Interestingly, the administration of beneficial pro-
biotic organisms has been shown to enhance gut epithelial 

Fig. 3. Gram staining of colonic tissue. Increased numbers of Gram-positive and Gram-negative bacteria in the colon of septic 
mice compared with shams and mice treated with either Lactobacillus rhamnosus GG (LGG) or Bifidobacterium longum (BL).

Fig. 4. Effect of Lactobacillus rhamnosus GG and Bifidobac-
terium longum treatment on colonic proliferation in sepsis. 
Colonic epithelial proliferation was determined by quantify-
ing proliferating cell nuclear antigen (PCNA)-positive cells in 
100 consecutive crypts. Septic mice had a significantly de-
creased number of proliferating cells compared with shams 
(1,456 ± 174 vs. 2,010 ± 347; P = 0.0128), whereas septic 
mice treated with L. rhamnosus GG (LGG) or B. longum 
(BL) showed normalization to sham levels (LGG: 2387 ± 137,  
P = 0.0001; BL: 2,326 ± 224 vs. septic 1,456 ± 174, P = 0.0003). 
Shams, n = 5 per group; septic, n = 5; LGG, n = 4; and BL,  
n = 4. Data are expressed as the mean ± SD.
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resistance to injury in in vitro models.50 Consistent with 
these previous findings, our data demonstrate statistically 
significant reduction of bacteremia, improvement of colonic 
epithelial homeostasis, and enhancement of survival in ani-
mals treated with either probiotic strain compared with the 
untreated septic animals.

Existing clinical trials indicate that currently used probi-
otic strains may not be administered early enough to optimize 
benefits on prevention and therapeutic efficacy against severe 
infections and sepsis.54–57 In our mouse model of sepsis, pro-
biotics were administered early, at the onset of infection, to 
better imitate the clinical setting of early treatment to pre-
vent progressive infection and sepsis (i.e., before or at onset of 
nosocomial pneumonia or postoperative abdominal sepsis).

The observed overgrowth of potentially pathogenic bac-
teria has been shown to cause intestinal cell apoptosis and 

disruption of epithelial tight junction permeability.58 As pre-
viously shown, intestinal proliferation and intestinal epithe-
lial apoptosis are altered in the CLP sepsis model.14 Our data 
are consistent with previous reports of reduced apoptosis 
with probiotics in intestinal injury.34,36

TLRs play a central role in the initiation of innate 
immune responses and in the development of subsequent 
adaptive immune responses to microbial pathogens.59 In 
existing data from murine CLP models, TLR-2 and TLR-4 
expressions are significantly up-regulated in multiple 
organs60,61 including the intestine62 when compared with 
sham mice. Our data are consistent with the hypothesis that 
down-regulation of TLR-2/TLR-4 via MyD88 in the colon 
of LGG- or BL-treated mice may play a protective role in 
attenuating the local and systemic inflammatory response 
and ultimately the pathophysiology of polymicrobial sepsis.

Fig. 5. Effect of Lactobacillus rhamnosus GG and Bifidobacterium longum treatment on colonic epithelial apoptosis. To determine 
apoptosis in the colonic epithelium, apoptotic epithelial cells were quantified in 100 consecutive crypts by using two complimentary 
methods: morphological analysis of hematoxylin and eosin (H&E) stained sections (A, B) and enumeration of cleaved caspase-
3–positive cells (C, D). Both methods showed significantly increased colonic apoptosis in untreated septic mice compared with 
controls (CC3: 24.30 ± 10.74 vs. shams 3.67 ± 1.32, P = 0.0001; H&E: 27.30 ± 8.86 vs. shams 4.78 ± 2.17, P = 0.0001). L. rhamnosus 
GG (LGG) or B. longum (BL) treatment normalized apoptosis to levels seen in sham mice (for CC3, LGG: 8.20 ± 1.79 vs. septic, 
24.30 ± 10.74, P = 0.006; BL: 4.25 ± 2.63 vs. septic, 24.30 ± 10.74, P = 0.0036 and for H&E, LGG: 7.11 ± 2.93 vs. septic, 27.30 ± 8.86, 
P = 0.0001; BL: 8.25 ± 2.63 vs. septic, 27.30 ± 8.86, P = 0.0014). Shams, n = 5 per group; septic, n = 5; LGG, n = 4; and BL, n = 4. 
(E) The ratio between proapoptotic Bax and antiapoptotic Bcl-w protein expression analyzed by Western blot showed shift toward 
cell death in untreated septic mice (septic, 7.73 ± 6.84 vs. shams, 1.00 ± 0.52, P = 0.036), whereas septic mice treated with LLG or 
BL exhibited a shift toward cell survival (LGG: 0.147 ± 0.049 vs. septic, 7.73 ± 6.84, P = 0.048; BL: 0.602 ± 0.24 vs. septic, 7.73 ± 6.84, 
P = 0.050). Shams, n = 3 per group; septic, n = 8; LGG, n = 4; BL, n = 4. Data are expressed as the mean ± SD.
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Limitations of this research include that we did not 
administer antibiotics as part of this initial evaluation of 
early probiotics to prevent progression of infection and 
sepsis. This was to ensure the adequate colonization of our 
probiotic therapy, and we plan to do future studies admin-
istering antibiotics after treatment with probiotics. Further-
more, time-point studies are being planned currently to 
examine the effects of both probiotic strains more closely 
and to explore other possible pathways involved in their pro-
tective mechanisms in sepsis. It is important to note that 
previous clinical trials that have administered antibiotics 
with probiotic therapy have still noted significant reduc-
tion of nosocomial infections (such as ventilator pneumo-
nia) despite antibiotic therapy concomitant with probiotic 
therapy.21 Furthermore, killed probiotic organisms have 
been shown to be as clinically effective in some studies as live 
probiotic therapy.63 Finally, in our statistical analysis, we did 
not adjust our analysis for multiplicity (i.e., multiple com-
parisons). Given our small sample sizes, and that these are 
the first experiments of this type reported, such adjustments 
would decrease the statistical power of our tests. This would 
lead to an increase in the probability of making a type II 
error, i.e., the failure to reject a false null hypothesis. In any 
experimental setting, there is always a balance in type I and 

type II errors. Presently, for this line of research, we are more 
concerned with missing a potentially valuable finding that 
we hope will lead to further investigation.

In conclusion, our data show that early therapy with 
either LGG or BL can reduce mortality and systemic bacterial 
translocation in experimental sepsis in weanling mice. These 
results indicate that potential mechanistic explanations for 
this clinical benefit may include reduced intestinal epithelial 
apoptosis and restoration of colonic epithelial cell prolifera-
tion, which may be mediated by Akt/protein kinase B signal 
transduction pathway. Another potential mechanism may be 
probiotic-mediated attenuation of local and systemic inflam-
matory response, mediated by down-regulation of TLR-2/
TLR-4 signaling pathway via MyD88 in the colon.

We believe our data adds to existing clinical trial data 
supporting the potential efficacy of probiotics in critical 

Fig. 6. Effect of Lactobacillus rhamnosus GG and Bifidobacte-
rium longum treatment on expression of P-Akt/Akt. Represen-
tative Western blot for expression of p-AKT and Akt in the colon 
of all studied groups (A). P-Akt/Akt ratio for septic and probi-
otics-treated septic mice normalized to shams (L. rhamnosus 
GG [LGG], 0.922 ± 0.24 vs. septic, 0.3159 ± 0.17, P = 0.0004 
and B. longum [BL], 1.521 ± 0.80 vs. septic, 0.3159 ± 0.17,  
P = 0.0017 (B). Shams, n = 3 per group; septic, n = 8; LGG,  
n = 4; BL, n = 4. Data are expressed as the mean ± SD.

Fig. 7. Effect of Lactobacillus rhamnosus GG and Bifido-
bacterium longum treatment on the systemic inflammatory 
response. Enzyme-linked immunosorbent assay was used 
to determine the concentrations of tumor necrosis factor-
α (TNF-α) and interleukin (IL)-6 in serum. (A) IL-6 was sig-
nificantly increased in the serum of septic mice compared 
with shams (septic, 383.5 ± 93.1 vs. shams, 19.8 ± 21.4, P = 
0.0001), whereas treatment with L. rhamnosus GG (LGG) or 
B. longum (BL) in septic mice led to significantly reduced sys-
temic IL-6 levels (LGG, 206.1 ± 55.2 vs. septic, 383.5 ± 93.1, 
P = 0.0075 and BL, 189.4 ± 95.2 vs. septic, 383.5 ± 93.1, P = 
0.0069) compared with septic mice not treated with probiot-
ics. (B) There were no differences among groups for TNF-α in 
the serum. Shams, n = 5 per group; septic, n = 7; LGG, n = 5; 
and BL, n = 6. Data are expressed as the mean ± SD.
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Fig. 8. Effect of Lactobacillus rhamnosus GG and Bifidobac-
terium longum treatment on the inflammatory response in the 
colon. Reverse transcription and real-time polymerase chain 
reaction assays were performed to quantify steady-state mes-
senger ribonucleic acid (mRNA) levels of tumor necrosis factor-α 
(TNF-α), interleukin (IL)-1β, and IL-10. Gene expression of TNF-α 
(A), IL-1β (B), and IL-10 (C) was significantly increased in the co-
lon of untreated septic animals (TNF-α: septic, 47.02 ± 25.02 vs. 
shams, 1.31 ± 1.11, P = 0.019; IL-1β: septic, 125.82 ± 43.10 vs. 
shams, 1.10 ± 0.57, P = 0.003; IL-10: septic, 9,303.45 ± 5,926.29 
vs. shams, 1.31 ± 1.18, P = 0.024), whereas levels of both were 
markedly decreased in colons of septic mice treated with L. rham-
nosus GG (LGG; TNF-α, 26.09 ± 10.68 vs. septic, 47.02 ± 25.02, 
P = 0.049; IL-1β, 62.53 ± 41.46 vs. septic, 125.82 ± 43.10, P = 
0.050; IL-10: 2,766.34 ± 1,038.60 vs. septic, 9,303.45 ± 5,926.29, 
P = 0.024), or B. longum (BL; TNF-α: 20.50 ± 11.72 vs. sep-
tic, 47.02 ± 25.02, P = 0.027; IL-1β, 49.67 ± 30.91 vs. septic, 
125.82 ± 43.10, P = 0.018; IL-10: 1,689.26 ± 2,200.26 vs. septic, 
9,303.45 ± 5,926.29, P = 0.008) when compared with untreated 
septic mice. Shams, n = 4 per group; septic, n = 7; LGG, n = 6; 
BL, n = 4. Data are expressed as the mean ± SD.

Fig. 9. Effect of Lactobacillus rhamnosus GG and Bifidobacte-
rium longum treatment on Toll-like receptors (TLRs) and MyD88 
gene expression in the colon. Reverse transcription and real-
time polymerase chain reaction assays were performed to 
quantify steady-state messenger ribonucleic acid (mRNA) lev-
els of TLR-2 (A), TLR-4 (B), and MyD88 (C). Levels of TLR-2 
(A), TLR-4 (B), and MyD88 (C) were markedly increased in the 
colon of untreated septic mice compared with shams (TLR-
2: 8.94 ± 7.11 vs. 1.04 ± 0.36, P = 0.041; TLR-4: 6.78 ± 2.85 
vs. 1.02 ± 0.24, P = 0.015; MyD88: 7.85 ± 4.09 vs. 1.00 ± 0.07,  
P = 0.012), whereas L. rhamnosus GG (LGG; TLR-2: 4.37 ± 2.47 
vs. 8.94 ± 7.11, P = 0.039; TLR-4: 3.69 ± 1.17 vs. 6.78 ± 2.85,  
P = 0.047; MyD88: 4.97 ± 1.57 vs. 7.85 ± 4.09, P = 0.046) or  
B. longum (BL; TLR-2: 2.75 ± 1.11 vs. 8.94 ± 7.11, P = 0.023; 
TLR-4: 3.20 ± 0.94 vs. 6.78 ± 2.85, P = 0.029; MyD88: 3.50 ± 1.00 
vs. 7.85 ± 4.09, P = 0.016) treatment significantly reduced these 
levels. Shams, n = 4 per group; septic, n = 7; LGG, n = 6; and 
BL, n = 4. Data are expressed as the mean ± SD.
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illness. To this point, the design of larger scale clinical trials 
and/or more routine clinical administration of live probiotics 
to children and adults have recently been limited by concerns 
regarding safety and potential increased risk of infection 
from the administered probiotics. Although we did not 
specifically evaluate for bacteremia from our administered 
probiotic strains, we did observe a statistically significant 
reduction in overall bacteremia and mortality in our pediatric 
mice treated with live probiotic bacteria. Furthermore, the 
results of the recent American Health Care Research and 
Quality report on the safety of probiotic therapy in over 
600 published clinical trials and case reports are reassuring 
with regard to the safety of probiotic administration,64 
although isolated adverse effects of probiotic administration 
have been reported.65 One recent clinical trial studying 
probiotics in severe pancreatitis (the PROPATRIA trial) 
found an unexpected increase in mortality in probiotic-
treated patients.66 This trial was unique as it administered 
multiple strains of probiotic bacteria and prebiotic-like fiber 
via a postpyloric feeding tube (placed in the small bowel). 
This postpyloric method of administration was associated 
with an increase in small bowel necrosis, which was 
subsequently associated with death in a number of patients 
receiving the prebiotic fiber/probiotic mixture. It is possible 
that the postpyloric administration of this fiber/multiple 
probiotic strain mixture in pancreatitis patients may carry 
significant risk and should likely be avoided.67 In addition, 
methodological and safety concerns regarding the conduct 
of this trial have been raised.67 In any case, careful and 
appropriate safety monitoring in all future probiotic clinical 
trials should be conducted. Perhaps the time has come 
to proceed with carefully designed, carefully monitored, 
multicenter randomized clinical trials of probiotic therapy to 
attempt to reduce the risk of infection, sepsis, and mortality 
in critically ill children and adults.
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De	Jarnette’s	Optic	Chromatic	System	of	Anesthesia

Conceived (1926), marketed (1928), withdrawn (1931), and remarketed (1939), the “Optic 
Chromatic System of Anesthesia” was invented by Major Bertrand De Jarnette (1899–1992). 
An engineer, osteopathic physician, and chiropractor, he wrote that “each thalami” [sic] of 
the brain has large masses of sensory fibers [that] pass through.” De Jarnette assumed that 
a “slow movement is never associated with red, while a fast stimuli [sic] is never associ-
ated with blue.” By “the addition of red” color to “blue and deep violet” lenses, De Jarnette 
produced goggles (right) that he “designed for BLOODLESS SURGERY and not orthopedic 
work.” For advertising purposes, the shipping box (left) depicts goggles with one lens blue, 
the other one red. By illuminating goggled patients with a 75 W white light that he first 
switched on-and-off at a 2:1 ratio and then followed with continuous white light, De Jarnette 
aimed to lessen pain from chiropractic manipulations involving the “abdomen and pelvis” 
but not the extremities. As for others’ doubts, he noted that “science is never without scoff-
ers.” In 1940 De Jarnette filed a U.S. Patent application for his anesthetic goggles. It was 
declined. (Copyright © the American Society of Anesthesiologists, Inc.)
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