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gene-related peptide, substance P, and bradykinin recep-
tors.6 TRPA1 is activated by the pungent ingredients in 
mustard and garlic extracts, allyl isothiocyanate 7 and alli-
cin.8 Sensory neurons from TRPA1-deficient mice show 
greatly diminished responses to each of these compounds, 
demonstrating that the TRPA1 channel is the primary 
molecular site by which they activate the irritant and pain 
pathway,9,10 as well as initiate the asthmatic airway inflam-
mation.11 TRPA1 receptors are activated by desflurane and 
isoflurane,3,7,12 similar to the effects of several air pollutants 
and chemicals that cause airway constriction, such as αβ-
unsaturated aldehydes and acrolein that activate the axon 
reflex release of tachykinins.8,13

It has been recently reported that the TRPA1 receptor 
is also activated by the sesquiterpenoids present in the pol-
len from common ragweed (Ambrosia artemisiifolia), and 
activation of this receptor may contribute to the various 
respiratory symptoms caused by inhalation of this pollen.14 
The sensitivity of a patient to ragweed suggests enhanced 
response of the TRPA1-activated tachykinin pathway. This 
sensitivity may have implications for anesthetic choice in 
patients with allergy to ragweed and possibly other pollens. 
Activation of TRPA1 by desflurane and isoflurane may be 
more likely in this setting of heightened sensitivity, lead-
ing to increased airway resistance and decreased lung com-
pliance15 as well as causing bronchospasm and cough.16,17 
These effects may in part be counteracted by volatile anes-
thetics’ ability to directly relax airway smooth muscle18 and 
by desensitization of the TRPA1 receptor during sustained 
exposure.19 Nevertheless, the activation of TRPA1 receptors 
in the upper airway has been suggested to be in part respon-
sible for the clinical observation of cough and laryngospasm 
due to desflurane.3,4,13

The role of TRPA1 receptor in irritant-induced cough 
and increased airway resistance and their stimulation by des-
flurane and isoflurane could account for some of the clinical 
side effects of these drugs. Clinicians may want to take these 
findings into consideration when choosing an anesthetic 
for their patients. The lack of stimulation of TRPA1 recep-
tors by sevoflurane3,12 may explain its relative lack of irrita-
tion16,17 and make it a less irritating choice in patients who 
have demonstrated heightened airway sensitivity to ragweed 
pollen or other chemical irritants.
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Desflurane, Isoflurane, and...Ragweed

To the Editor:
Recent discoveries in the mechanism of action of ragweed 
sensitivity may have a bearing on the choice of anesthetic 
agent. We review some pathways that affect bronchial motor 
tone and how they may influence the choice of anesthetic 
agent. Bronchial motor tone is regulated by the parasym-
pathetic nervous system, which exerts a contractile action 
through activation of M3 receptors, and by the nonadren-
ergic noncholinergic pathways having both inhibitory and 
excitatory effects. The bronchial response to stimulation is 
in part due to C-fibers in the bronchial wall that are respon-
sible for a local axon reflex, with irritant stimulation of nerve 
endings leading to the release of bronchoconstricting tachy-
kinins such as substance P, neurokinin A, and calcitonin 
gene-related peptide.1,2 While sevoflurane does not induce 
increased airway resistance, desflurane-elicited airway con-
striction appears to be mediated by the release of these 
tachykinins.3

The transient receptor potential (TRP) family of cation 
channels is highly expressed by a subset of C-fiber nocicep-
tors, including those in the lung.4,5 TRPA1 is expressed in 
sensory neurons, and colocalizes with TRPV1, calcitonin 
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