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ABSTRACT

Background: Physiologic instability is a common clinical
problem in the critically ill. Many natural feedback systems
are nonlinear, and seemingly random fluctuations may result
from the amplification of external perturbations or even arise
de novo as a consequence of their underlying dynamics. Char-
acterization of the underlying nonlinear state may be of clin-
ical importance, providing a technique to monitor complex
physiology in real-time, guiding patient care and improving
outcomes.
Methods: We employ the wavelet modulus maxima tech-
nique to characterize the multifractal properties of heart rate
and mean arterial pressure physiology retrospectively for four
patients during open abdominal aortic aneurysm repair. We
calculated point-estimates for the dominant Hölder expo-
nent (hm

HR, hm
MAP) and multifractal spectrum width-at-half-

height for both heart rate and mean arterial pressure signals.
We investigated how these parameters changed with the ad-
ministration of an intravenous vasoconstrictor and examined
how this varied with atropine pretreatment.
Results: Hypotensive patients showed lower values of hm

MAP,
consistent with a more highly fluctuating and complex be-
havior. Treatment with a vasoconstrictor led to a transient

increase in hm
MAP, revealing the appearance of longer-range

correlations, but did not impact hm
HR. On the other hand,

prior treatment with atropine had no effect on hm
MAP behav-

ior but did tend to increase hm
HR.

Conclusions: Hypotension leads to a reduction in dominant
Hölder exponents for mean arterial pressure, demonstrating
an increasing signal complexity consistent with the activation
of important homeokinetic processes. Conversely, pharma-
cological interventions may also alter the underlying dynam-
ics. Pharmacological restoration of homeostasis leads to sys-
tem decomplexification, suggesting that homeokinetic
mechanisms are derecruited as homeostasis is restored.

P HYSIOLOGIC instability is a common clinical prob-
lem both in the critically ill and in patients subjected to

operative insult. It may result in abrupt and apparently random
fluctuations in hemodynamic parameters with time. In health,
homeostasis is traditionally thought of in terms of linear nega-
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What We Already Know about This Topic

• Fractal analysis is a nonlinear analytical method that can char-
acterize fluctuating physiological processes

What This Article Tells Us That Is New

• Multifractal methods characterized intraoperative heart rate
and blood pressure fluctuations in four patients undergoing
aortic aneurysm repair and the effect of pharmacological in-
tervention on underlying dynamics

• Increased signal complexity during physiological instability
suggests recruitment of homeokinetic mechanisms to main-
tain normal physiology, with more complex fluctuations

• Pharmacological interventions that restore homeostasis or
prevent the dynamic response to perturbation reduce fluctua-
tion complexity because there are fewer active restorative ho-
meokinetic processes
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tive feedback loops serving to restore the system to stability.
Within this paradigm, the violent and unpredictable swings
seen in critical illness are usually considered to arise from a
pathologic breakdown of homeostatic mechanisms, resulting in
oscillation or sensitivity to external perturbation.

In the past decade there has been increasing interest in
nonlinear systems as more realistic ways of describing natural
processes. Such systems, where inputs and outputs are not
directly proportional, are characterized by a very rich range of
behavior that resembles the complexity observed in nature.
Depending on the precise nature of the nonlinearity, nonlin-
ear systems may be observed to be highly stable (sometimes
with several possible behaviors), exhibit limit-cycle behavior,
or be unstable. Instability may arise from extreme and per-
sistent sensitivity to perturbation (popularly known as the
“butterfly effect”) and may under certain circumstances lead
to complex and apparently unpredictable de novo behavior; a
phenomenon which has come to be known as “chaos.” Such
stereotypes provide a unified description that closely parallels
what is observed under incipient and established physiologic
instability. However, in this model, seemingly random
fluctuations may emerge as a direct consequence of the
underlying dynamics, rather than as a pathologic break-
down of homeostasis leading to the unwanted transmission
of exogenous influences. In a nonlinear model, physiologic
equilibrium is in fact achieved through an ensemble of dy-
namical fluctuating processes, a situation known as homeo-
kinesis. It follows that these fluctuations may contain impor-
tant information regarding the dynamical state of the system
that is otherwise not apparent from traditional observations.
Unfortunately, such systems are inherently difficult to study,
and recent interest has been fuelled in no small part by ad-
vances in mathematical tools and the availability of afford-
able computing power. Nevertheless, the application of so-
phisticated analysis techniques has unmasked previously
“hidden information” in time-series data of a wide variety of
natural processes.1–7 The observed fluctuations exhibit char-
acteristics of the nonlinear processes that generate them, thus
the underlying physical state of the system can be inferred.

Characterization of the underlying homeokinetic state
from the fluctuation of physiologic signals may be of clinical
importance.8 It has been demonstrated that changes in the
underlying dynamical state may be detectable before they
propagate as instability,9 suggesting that bedside black-box
nonlinear analysis may be a possibility for tracking changes
and providing an early warning of impending physiologic
collapse. Furthermore, bedside detection and categorization
of different “unstable states” has the potential to guide pa-
tient care and gauge response to therapy.

Fractal-based methods have been successfully applied to
the study of a wide-range of nonlinear systems, including the
prediction of stock markets trends,3 weather patterns,7 neu-
ronal response in functional magnetic resonance imaging,4

geophysics,5 behavior of broadband internet traffic,6 and
highway congestion.9 A fractal is a geometric structure con-

structed from an infinite set of increasingly small subunits.
Each subunit is a scaled-down replica of the whole, produc-
ing a self-similar property across length scales, i.e., across
many levels of magnification.10 Fractal theory is concerned
with structural self-similarity over scales of space or time and
techniques have been developed to quantify the statistical
self-similarity of a structure, recognizing subunits that share
such statistical properties across orders of scale.2,10 The statistical
notion of self-similarity is equally applicable in the time domain,
permitting analysis of processes that are self-similar over many
time scales.2,10 Fractals provide a natural nonlinear metric for
the characterization of fluctuating processes.

Early work in the field by Ivanov et al.1 demonstrated that
the human heart rate, in health, has a fractal temporal structure,
and that the fractal properties change in congestive heart failure.
Subsequent work by the same and other authors have studied
fractality for a number of physiologic processes, including heart
rate in age and disease,2 stride length in health and chronic
neurologic disease,2,11 and middle cerebral artery blood flow in
subarachnoid hemorrhage.12 Importantly they have shown that
fractal properties persist throughout episodes of rest and sleep
and are not a result of superimposed complex physical or mental
activity but instead reflect an emergent property of the underly-
ing dynamical system.

The simplest fractal systems possess a self-similarity de-
scribed by a single scaling parameter: the Hurst exponent.10

Such systems are described as monofractal and several tech-
niques for estimating the Hurst exponent have been devel-
oped, including detrended fluctuation analysis and rescaled-
range analysis.10,13,14

More recently,1 it has been established that complex dy-
namical systems may instead result from a spectrum of pro-
cesses with a range of different scaling parameters. Such sys-
tems with multiple scaling behaviors are called multifractal.
These arise through several interacting processes, each with
different self-similar behaviors acting in concert to produce
the overall structure, or a single process whose self-similar
statistical properties change within the timeframe under
analysis. Parameterization of fractal properties, which can be
thought of as a continuum from mono- to multifractal, pro-
vides an insight into the behavior and mechanisms of the
underlying control systems.2,15

Physiologic processes typically exhibit multifractal behav-
ior. Rather than having a single scaling parameter, multifrac-
tal systems are described by a singularity spectrum. This de-
fines the distribution of scaling parameters termed Hölder
exponents (a generalization of the Hurst exponent). The
Hölder exponent (h) can be interpreted in terms of the sta-
tistical properties of the time-series, viz.

1. 0 � h � 0.5: Antipersistent behavior. An increase at one
time interval is more likely to be followed by a decrease
and vice versa.

2. h � 0.5: Uncorrelated random walk. Increases and de-
creases are equally likely.
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3. h � 0.5: Persistent behavior. An increase in one time
period is more likely to be followed by a further increase
in the next period.

A typical singularity spectrum is shown for illustration
(fig. 1A). The spread of Hölder exponents depicted in the
spectrum represent the multiple, different self-similar scaling
behaviors in the underlying multifractal system. The y-axis
charts the Hausdorff dimension, D(h). The precise mathemat-
ical definition of Hausdorff dimension is rather involved; in
essence it reveals the relative frequencies of the Hölder expo-
nents, akin to a probability distribution. The Hölder exponent,
hm, with the greatest Hausdorff dimension is the most frequent
and hence most dominant scaling behavior. In a manner com-
mon to other statistical distributions, the singularity spectrum is
parameterized using measures of central-tendency and spread,
conventionally hm and width-at-half-height (WHH), the width
of the curve at half the maximal Hausdorff dimension (fig. 1A).
Such parameterization permits the recording and comparison of
multifractal properties within or across datasets. Multifractal
techniques can also quantify monofractal scaling behavior, thus
providing a very general approach. Relatively monofractal sys-
tems are characterized by narrow singularity spectra. In contrast,
strongly multifractal systems display a wider distribution of
Hölder exponents (fig. 1).

This paper examines the fractal dynamics of heart rate
(HR) and mean arterial blood pressure (MAP) in a small
cohort of patients undergoing open aortic aneurysm repair.
Patients undergoing open abdominal aortic aneurysm repair
are subjected to a complex array of surgical and anesthetic
perturbations that may overlap temporally and that are com-
plicated to disentangle. Fractal behavior was characterized
using a multifractal analysis technique. The application of
these techniques to the acutely unstable patient has not pre-
viously been undertaken, neither has it been applied to the
study of blood pressure physiology.

This study focused on the effect of intraoperative vasocon-
strictor boluses on multifractal dynamics. Within this model,
the periods before vasoconstrictor administration represent ep-
isodes of clinically significant intraoperative hypotension where
homeokinetic systems should be maximally active and fluctua-
tion behavior should be particularly complex. Comparison with
the behavior immediately after vasoconstriction allows the effect
of pharmacological normalization of blood pressure on system
dynamical behavior to be studied.

Materials and Methods

Patients and Data Collection
Hemodynamic observational data from four nondiabetic pa-
tients undergoing elective open infrarenal aortic aneurysm re-
pair and recruited under a previous study were retrospectively
analyzed. The previous aneurysm study recruited a total of seven
patients; three patients were excluded because it was impossible
to extract blocks of hemodynamic data of sufficient length for
analysis. Appropriate ethical review board approval for further
analysis of the original, fully anonymous data were obtained
(05/Q0108/470; Cambridge Central Research Ethics Commit-
tee, Cambridge, United Kingdom). Patients enrolled in the
original study underwent written informed consent; further
consent was not required for the study extension. A summary of
patient demographics is presented in table 1.

Patients were prepared for surgery following usual local
practice. Standard anesthetic monitoring was established.
Peripheral intravenous access was obtained and the radial
artery was cannulated with a 20-gauge catheter for invasive
arterial pressure recording. Anesthesia was induced with fen-
tanyl (1–1.5 �g/kg) and propofol (2–3 mg/kg). Following
muscle relaxation with atracurium (0.6 mg/kg) the trachea
was intubated and the lungs ventilated to normocapnia with
a mixture of desflurane, oxygen, and air. A triple-lumen cen-
tral venous catheter was sited in the right internal jugular

Fig. 1. Fractal structures lie on a spectrum from monofractal to multifractal; these changes are represented as the width of the
singularity spectrum. A multifractal system leads to a wide singularity spectrum (A). As the system becomes less multifractal
(more monofractal) the width narrows (B). Because of numerical errors, very narrow distributions may give rise only to short line
segments (C). The spectral parameters hm (maximal Hölder exponent) and WHH (width-at-half-height) are indicated for the most
multifractal case (A).
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vein and used, inter alia, for the intraoperative administra-
tion of cardiovascular drugs. Intraoperative analgesia was
provided with remifentanil (0.1–0.2 �g�1 � kg�1 � min�1).
Epidural anesthesia was not employed intraoperatively.

In the original study, beat-to-beat cardiac output mea-
surements were made using a LiDCO monitor (LiDCO
Ltd., Cambridge, United Kingdom) slaved to the invasive
arterial blood pressure recording system throughout the op-
erative period from preintubation to discharge from theater
recovery. In this study we only analyze the beat-to-beat re-
cords of HR and MAP from the LiDCO device. Surgical and
anesthetic events (including the administration of vasoactive
drugs) were recorded with a timestamp and a corresponding
unique event marker on the LiDCO monitor.

Intraoperative data from each patient record were selected
for further analysis. Data points from the connection of the
LiDCO monitor up to and including tracheal intubation
and subsequent transfer to the operating table were excluded
because of the number of exogenous factors affecting arterial
line transduction. Data points from aortic cross-clamp on-
ward were also excluded because of the potential for aortic
clamping to cause a profound change in cardiovascular phys-
iology. The remaining data points, which were continuous
and correspond to the middle of the intraoperative period,
were analyzed in full.

Only minor preprocessing of the data were required be-
fore multifractal analysis and this was undertaken using cus-
tom-written software that provided visualization and data
manipulation capabilities. The LiDCO monitor determines
for each heartbeat whether the recorded values are “good” or
“bad.” “Bad” data typically arises at times the system cannot
elicit meaningful values from the arterial transducer, usually
when the patient is being moved or the arterial line used for
intraoperative blood sampling. Only 0.3–3% of the data
were marked as “bad” for each patient and these regions were
excluded.

Multifractal Analysis
Multifractal analysis of HR and MAP data were undertaken
using the wavelet transform modulus maxima (WTMM)
technique. An introductory explanation of the technique is
given in Appendix 1 with full details of our implementation
in Appendix 2. In summary, the data (fig. 2A) is initially

subjected to a wavelet transform; a signal-processing tech-
nique used to explore structural properties at different length
(or time) scales, akin to a mathematical zoom lens. The trans-
form results in a matrix of coefficients (figs. 2B and C),
whose maxima encode the self-similar behavior. Signals with
self-similar scaling behavior show branching maxima pat-
terns, appearing like an inverted leafless tree that can be seen
throughout the pictorial representation, with smaller
branches at fine scales and larger trunks at coarse scales. The
WTMM technique characterizes the different branching
patterns as singularity spectra (fig. 2D), enabling the self-
similarity of different signals to be measured and compared.

The WTMM analysis was implemented in Matlab v7.5.0
(MathWorks, Natick, MA) with Wavelet Toolbox v4.1
(MathWorks), and the support tools were coded in the Java
programming language, Java v1.6 (Oracle Corporation,
Redwood Shores, CA). The Matlab scripts and Java support
programs were designed and written in-house and the Mat-
lab code is available for download (see Supplemental Digital
Content 1–6, http://links.lww.com/ALN/A875, a collec-
tion of files containing the Matlab code, usage instructions,
and open-source license agreement). Full details of the de-
sign, implementation, and optimization decisions can be
found in Appendix 2.

The remaining data were divided into windows of 256
consecutive beats and the HR and MAP were subject to
fractal analysis using the WTMM technique with maximum
scale 48 beats and partition function fitting over scales 5–32
beats. A definition of these parameters and discussion on
their optimization based upon our experimental experience
can be found in Appendix 2. The corresponding spectra were
parameterized in terms of dominant Hölder exponent, hm,
and WHH, as previously described (see Introduction and fig.
1). The spectral parameters for heart rate (hm

HR, WHHHR)
and MAP (hm

MAP, WHHMAP) were recorded in operation
order and paired with the logbook of operative events for
subsequent interpretation and analysis. Episodes of hypoten-
sion where �-1 agonist metaraminol (0.5 mg IV bolus) had
been administered at the anesthetist’s discretion were identi-
fied. Multifractal analysis was performed for the periods im-
mediately before and after vasoconstrictor administration.

The WTMM technique is subject to several technically
challenging issues regarding wavelet choice and the selection
and optimization of parameters. Importantly the particular
choice of wavelet and optimization strategies have effect only
on estimation of the absolute spectral parameters; provided
that these choices remain static throughout the analysis, the
trends in spectral parameters (which we are interested in in
this study) are preserved. Interested readers are referred to
Appendix 2 and Oświęcimka et al. for further detail.16

Statistical Analysis
The Hölder exponents, hm

MAP and hm
HR before and after

metaraminol bolus are represented as mean � SE. These are
further subdivided upon whether the patient received treat-

Table 1. Patient Demographics

Patients Characteristics

Total number of patients 4
Sex: Male:Female 4:0
Mean age (range) 78 yr (69–87 yr)
Mean height � 95% CI 174 � 12 cm
Mean weight � 95% CI 72 � 12 kg
Hypertension, number of patients 2
Ischaemic heart disease, number of

patients
2

Regular �-blockers, number of patients 3
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ment with atropine. A two-tailed, paired Student t test is
used to compare per-patient mean values of hm

MAP and hm
HR

before and after metaraminol bolus (per-patient mean values
are used to eliminate errors because of multiple compari-
sons). Robust hypothesis testing on hm

HR to compare patients
based upon administration of atropine is difficult, as in-
dependence between measurements from the same patient
cannot be assured. However, results of a two-tailed paired
Wilcoxon signed-rank test (with 1,000-round Monte Carlo
jitter modification for tied ranks) is presented under the as-
sumption of independence for reference.

Statistical analysis is similarly presented for WHHHR and
WHHMAP. Further details on the quality of the WHH results
and the methodological issues surrounding WHH estimation
are included in the Discussion.

All statistical tests were performed using the R statistical
package v2.13.1 (The R Foundation for Statistical Comput-
ing, Vienna, Austria) and two-tailed P � 0.05 was consid-
ered to be statistically significant.

Results
Between the four patients, a total of nine events of suitable
data quality were obtained where no other confounding an-
esthetic (e.g., fluid administration) or surgical perturbation
was present. Summary statistics for the spectral parameters
calculated from these events are detailed in tables 2 and 3.

Figure 3A shows the effect of vasopressor boluses on the
dominant Hölder exponent for MAP, hm

MAP. Immediately
after the bolus, a statistically significant increase in hm

MAP is
seen (table 2), reflecting a change to a more correlated phys-
iologic process with greater long-term memory behavior.
During this time the system exhibits a short period of corre-
lated behavior (Hölder exponents more than 1) or near-
correlated behavior (Hölder exponents tending toward 1).
Subsequently hm

MAP decreases to a value greater than its start-
ing point, suggesting a more correlated underlying behavior
persists. Metaraminol causes almost pure �-1 adrenergic me-
diated vasoconstriction, changing an under-filled vasculature
into a much “tighter” system with fewer homeokinetic mech-
anisms in action. In other words, less homeokinetic complex-
ity is present. Our observation of altered fractal behavior in
response to pharmacological perturbation indicates a pro-
found alteration in the nonlinear character of the ensemble of
interacting physiologic homeokinetic mechanisms. Thus,
cardiovascular pharmacology allows the clinician not only to
manipulate traditional physiologic parameters, such as blood
pressure or HR, but also to fundamentally control the stabil-
ity of the system as a whole by modifying the total activity/
number of homeokinetic mechanisms in operation.

The effect of a metaraminol bolus on the dominant
Hölder exponent for heart rate, hm

HR is shown in figure 3B
and behaves differently to that for blood pressure.

Fig. 2. The wavelet transform modulus maxima (WTMM) technique applied to patient physiologic data. (A) A typical 256
consecutive beat recording of human heart rate captured during the intraoperative period. (B) The wavelet transform of the trace
in figure 2A using a third-order Gaussian pseudowavelet. Singularities (representing self-similar behavior) are seen merging and
extending from the smallest to the largest scales. (C) A 3-dimensional representation of figure 2B. The self-similar scaling
behavior is seen by the merging pattern of the peaks extending from the smallest to the largest scales. The lines joining the
peaks of the scaling map are the wavelet modulus maxima and encode the multifractal behavior. (D) The resulting singularity
spectrum demonstrates the underlying multifractal structure.
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Metaraminol has essentially no direct chronotropic effect
and this may explain why the dynamical nature of heart rate
homeostasis is unaffected. Statistical nonsignificance is dem-
onstrated in table 2.

Measures of the degree of multifractality for MAP and
HR (WHHMAP and WHHHR) varied throughout the intra-
operative period and were altered by metaraminol but with-
out discernable pattern (table 3).

In some cases, it had been necessary for the attending
anesthetist to give atropine (600 �g, IV bolus) intraopera-
tively. Figure 3 is marked based upon whether the patient
had received atropine, with summary statistics shown in table
2. Atropine tended to make the heart rate fluctuations (fig.
3B) more positively correlated in behavior (higher hm

HR).
This is clearly evident even before metaraminol is given. At-
ropine antagonizes the background parasympathetic tone
and prevents further modulation of parasympathetic effects
on the cardiac electrical systems. It could be considered as
removing a degree of freedom from the nonlinear heart rate
feedback, reducing the homeokinetic complexity and tend-
ing to make the system more correlated in its behavior. Fol-
lowing a metaraminol bolus, the dominant correlated behav-
ior is sustained. In contrast, the effect of atropine is not

clearly seen in MAP fractality (fig. 3A; identical marking),
suggesting that heart rate variation is not a key homeokinetic
mechanism in the determination of MAP.

The retrospective analysis performed in this study pres-
ents its own challenges, particularly in providing assurance
that the effects demonstrated are not artifact. We consider in
turn a number of factors that we show do not influence
fractal structure.

The effects of ectopic beats and arterial line artifacts on
fractal structure were evaluated using a technique similar to
Ivanov et al..1 Beat-to-beat HR was converted to interheart
beat interval and intervals of greater than three standard de-
viations were corrected through linear interpolation, includ-
ing the point either side of the outlier. A similar approach was
adopted for mean arterial blood pressure. The interbeat dif-
ference in mean arterial blood pressure was calculated and
differences of greater than three standard deviations were
corrected by linear interpolation. Overall approximately 3 or
4% of data points were interpolated by this method. Com-
parison of the fractal spectra for preprocessed and unpro-
cessed data sets demonstrated that no significant changes
occurred after preprocessing, except in blocks where many
errant data points clustered. A number of the 256 data point

Table 2. The Effect of Metaraminol on the Maximum Hölder Values of Mean Arterial Blood Pressure and Heart Rate

Maximum Hölder Values
(by Intervention) Mean � STDERR P Value

hm
MAP

Before metaraminol 0.78 � 0.10 0.012* (for Before metaraminol,
Immediately after
metaraminol)

0.256 (for Before metaraminol
and After metaraminol)Immediately after metaraminol 1.52 � 0.04

After metaraminol 1.08 � 0.15
hm

HR

Before metaraminol 0.86 � 0.16 0.194 (for Before metaraminol,
Immediately after
metaraminol)

0.095 (for Before metaraminol
and After metaraminol)Immediately after metaraminol 0.74 � 0.12

After metaraminol 0.56 � 0.17
hm

HR

No atropine 0.55 � 0.08 �0.01* (for No atropine, Atropine)
Atropine 1.04 � 0.06

* Statistically significant, P � 0.05.
hm

HR � maximum Hölder value of heart rate; hm
MAP � maximum Hölder value of mean arterial blood pressure; HR � heart rate; MAP �

mean arterial blood pressure; STDERR � standard error of the mean.

Table 3. The Effect of Metaraminol on the WHH of Mean Arterial Blood Pressure and Heart Rate

WHH (by Intervention) Mean � STDERR P Value

WHHMAP

Premetaraminol 0.15 � 0.10 0.894 (for Before metaraminol,
Immediately after
metaraminol)

0.701 (for Before metaraminol
and After metaraminol)Immediately after

metaraminol
0.22 � 0.15

After metaraminol 0.18 � 0.11
WHHHR

Premetaraminol 0.39 � 0.15 0.184 (for Before metaraminol,
Immediately after
metaraminol)

0.265 (for Before metaraminol
and After metaraminol)Immediately after

metaraminol
0.18 � 0.07

After metaraminol 0.48 � 0.18

HR � heart rate; MAP � mean arterial blood pressure; stderr � standard error of the mean; WHH � width-at-half-height; WHHHR �
width-at-half-height of heart rate; WHHMAP � width-at-half-height of mean arterial blood pressure.
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blocks (12% of total blocks) contained a large proportion of
interpolated points (up to 21% points were interpolated) and
despite showing multifractal behavior in the unprocessed
analysis they demonstrated monofractal behavior after linear
interpolation. An unstable patient with frequent marked
fluctuations in HR or blood pressure would be heavily inter-
polated by this technique, removing the fractal structures of
interest. We therefore concluded that interpolation at the
preprocessing stage was unnecessary as it did not provide a
significant increase in the quality of results, neither were
artifacts or ectopics found to be responsible for the vast ma-
jority of the detected fractal structure.

The analysis of mean arterial blood pressure in ventilated
patients is subject to the effects of changes in intrathoracic
pressure with ventilation (respiratory swing). We compared
multifractal analysis of the beat-to-beat mean arterial blood
pressure recording with a detrended version. Blood pressure
was detrended to remove respiratory swing by fitting a piece-

wise cubic hermite interpolating polynomial to the maxima
identified through a peak-finding algorithm, and subtracting
these polynomials from the original signal. Piecewise cubic
hermite interpolating polynomials are cubic splines that are
not guaranteed to be continuous in derivatives greater than
the first order, thus permitting a tight fit to the data. Subse-
quent multifractal analysis of detrended MAP demonstrated
no significant change in the multifractal spectra. We there-
fore concluded that respiratory detrending was unnecessary.

Finally, to exclude analytical artifacts, we tested the valid-
ity of analyzing blocks of a fixed number of heart beats (256
consecutive beats) with blocks of fixed time duration, be-
cause this may have led to inconsistent results when pharma-
cological interventions with chronotropic effect were used
intraoperatively. The patients in figure 3B have heart rates
that vary from 31 beats/min to 80 beats/min, thus two 256-
beat blocks could vary by as much as 5 min in duration. We
repeated our analysis with fixed length blocks of 3.2-min
duration. No significant changes were seen, with the hm

HR

response similarly partitioning on prior administration of
atropine. Limiting the blocks to a fixed time period includes
more or fewer points than previously, hence small differences
in the fractal estimation are to be expected. In practice, the
length of each block could be fixed at any length. Our choice
of 3.2 min was restricted by the timing and clustering of
interventions during the operative period and was selected to
ensure that the blocks were long enough to encompass the
same behavior of interest as blocks in figure 3B.

No obvious difference in behavior was observed in pa-
tients who were perioperatively �-blocked. Furthermore,
similar behavior was seen following both aortic clamping and
unclamping. This may seem rather surprising because it is
reasonable that large physiologic consequences might be ex-
pected from aortic cross-clamping. In practice, the authors
see very few and, at most, only short-lived, traditional hemo-
dynamic consequences in patients undergoing elective aortic
aneurysm repair, and hence it is likely that this study is inad-
equately powered to detect more subtle changes in physio-
logic behavior.

Discussion
To our knowledge this is the first application of multifractal
analysis to study the dynamics of heart rate and blood pres-
sure under acute intraoperative physiologic perturbation.
Goldberger et al. demonstrated that the resting heart rate
dynamics of young, healthy subjects show multifractal struc-
ture, suggesting that the classic understanding of “homeosta-
sis” is too simple and underlying control systems are para-
doxically “far from equilibrium.”2 Periods of physical stress
including vigorous exercise and critical illness demonstrate
the great adaptability of homeostatic mechanisms; such dy-
namic scaling behavior may be conferred by the fractal prop-
erties of the physiologic feedback cascades. However, the
self-similar scaling demonstrated in HR behavior degener-
ates with advancing age and chronic heart failure. Loss of

Fig. 3. (A) The effect of an IV metaraminol bolus (0.5 mg) on
hm

MAP, across all four patients (nine events in total). After a
metaraminol bolus the system demonstrates more persistent
behavior than before. Immediately after a bolus the system is
frequently linear for a short period of time. No obvious differ-
ence was observed between patients who had previously
received (red lines) or not received (blue lines) atropine. (B)
The effect of an IV metaraminol bolus (0.5 mg) on hm

HR for
patients A–D. The increase seen in hm following metaraminol
is no longer present and an overall trend is not evident. In this
case the hm

HR lines partition on whether the patient previously
received atropine (red lines) or not (blue lines). The heart rate
fractal behavior shows more persistent behavior in the pa-
tients that received atropine. hm

MAP � maximum Hölder value
of mean arterial blood pressure; hm

HR � maximum Hölder
value of heart rate.
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fractal scaling ability is implicated in the reduced adaptability
and consequent susceptibility of the elderly and comorbid at
times of physiologic stress.2

We demonstrate that fractal properties change during the
intraoperative period and physiologic mechanisms change
fractal properties in two different ways. First, the process can
change its dominant scaling (or self-similar) property, be-
coming more or less persistent in behavior. Second, control
systems can become more or less multifractal, hence display-
ing greater or fewer self-similar behaviors. We postulate that
these changes are the result of homeostatic adaption during
times of increased stress in critical illness and are modulated
by a combination of endogenous and exogenous factors. Fur-
thermore, we provide the first demonstration that physio-
logic multifractal behavior can be acutely modified by phar-
macological intervention.

Situations of intraoperative hypotension represent a ho-
meostatic challenge. In a dynamic model, as the system
moves further from equilibrium, more/stronger homeoki-
netic processes are recruited. Within this paradigm, physiol-
ogy is maintained but the fluctuations must also increase in
complexity. Conversely, restoration of physiology by thera-
peutic intervention may be expected to reduce fluctuation
complexity, as fewer restorative homeokinetic processes are
active. Similarly, interventions that limit the possible dy-
namic response of the system to perturbation (for example,
pharmacological vagolysis with an antimuscarinic, which
limits the heart’s ability to respond with changes in HR) may
similarly reduce fluctuation complexity.

A key result is the observation of a fundamental difference
in response of hm

MAP and hm
HR to vasoconstrictor therapy.

Vasoconstriction led to an increase in hm
MAP (fig. 3A) but not

in the case of hm
HR (fig. 3B). This suggests that vascular tone

is an important homeokinetic mechanism in the control of
MAP but not of heart rate, which seems reasonable. Con-
versely, administration of atropine is expected to eliminate
HR variability from the ensemble of homeokinetic processes.
Figure 3B demonstrates a consistently higher value of hm

HR

for those patients pretreated with atropine. This implies a
more correlated and less complex signal, consistent with a
reduction in homeokinetic degrees of freedom. This parti-
tioning is not evident for MAP data (fig. 3A), suggesting that
pharmacological “paralysis” of HR variability does not much
affect control and stability of MAP, which seems intuitively
reasonable.

Goldberger et al.2 demonstrated that physiologic pro-
cesses possess fractal structure and the fractal properties
change in chronic disease, reflecting a reduction in homeo-
kinetic repertoire in the failing organism. It seems plausible
that the fractal properties of the same systems change or
degenerate after acute insults. External perturbations such as
changes in mechanical ventilation, surgical insults, and phar-
macological interventions can have a marked effect on vas-
cular physiology, and these alone might explain some of the
detected changes in fractal structure. Analysis of how fractal

properties change in response to a perturbation can also give
useful insight into the underlying system. An extreme exam-
ple occurs when nonlinear systems are on the verge of insta-
bility. A small external perturbation can have a destabilizing
effect, leading to profound changes in behavior that perhaps
in other situations would not occur.

Oświęcimka et al.17 demonstrated that multifractal anal-
ysis using short blocks of data produced errors in estimation
of the multifractal spectrum tails, hence leading to errors in
the calculation of WHH. The short time intervals used in this
study and the inherent inaccuracies in WHH estimation are
the most probable reason why trends are not seen in WHH
during periods of instability and pharmacological manipula-
tion.

Our values of hm
HR Hölder exponents are rather larger

than those reported previously.1,2 We attribute this effect to
the comparatively short blocks of length 28 we analyzed,
much shorter than those used in other work.1,16,17 This will
tend to give larger, more correlated, estimates for hm

HR. As
demonstrated by Oświęcimka et al.17 errors in the estimation
of hm are reasonably preserved with decreasing block length,
and despite our absolute values being larger than previous
works, we believe the overall trends demonstrated in this
study are physiologically meaningful. Our measurements are
therefore necessarily distinct from those of others1,2 in that
they represent short-range scaling behavior and we cannot
draw conclusions over longer time scales in our strongly per-
turbed systems where exogenous influences are likely to be
causing significant changes of state. However, we suggest
that it is the short-range scaling behavior that is of most
clinical relevance in describing hemodynamic instability,
which occurs over short time scales.

The authors acknowledge that a retrospective study of this
size can only draw limited conclusions but believe that it does
provide a basis for future research avenues. We have chosen to
study acute changes in intraoperative physiology. However, it
seems reasonable to assume that similar considerations should
apply to acute, critical illness. Recording of real-time physiologic
data are commonplace in the intensive care setting and this
suggests the possibility of using the technique not simply as a
means of analyzing physiologic behavior, but also as a clinical
tool for detecting and characterizing incipient instability and
homeostatic activity and breakdown.

The field of nonlinear analysis, of which fractal analysis is
only a small part, may provide insight into human physiol-
ogy beyond that which can be derived directly from classic
measures. Traditional approaches to homeostasis have con-
centrated on the interplay between linear feedback mecha-
nisms. The application of techniques such as fractal dynam-
ics presupposes a shift in paradigm to one in which the
physiology is regarded holistically as a nonlinear “black box”
and the patient’s behavior is defined in terms of an abstract
“state space,”18 where external perturbations and clinical in-
terventions are shown to move a patient from one state to
another. Fractal properties are one measure of this state space
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and are shown in this study to change in association with
external perturbations in a seemingly predictable way, with
vasopressor agents and atropine producing more correlated
and less complex fractal properties of blood pressure and HR
control mechanisms, respectively. We suggest that studying
the effect of perturbations to fractal systems is a valid and
powerful technique for analyzing the underlying dynamical
properties, giving information about current state and poten-
tial future behavior. Complex behavior is an emergent prop-
erty of both the perturbing inputs and their interplay with
nonlinearities: Many clinicians involved in the management
of critically ill patients will recall patients who have re-
sponded unexpectedly to an intervention that should have
improved their illness. An understanding of the state space
and the ability in real-time to determine where in the state
space a given patient lies may provide a powerful tool in
guiding clinicians to the most appropriate package of inter-
ventions to restore the patient to a stable state.

The authors thank Professor J. Suckling, Ph.D., Department of
Psychiatry, University of Cambridge, Cambridge, United Kingdom,
for helpful discussions and suggestions.
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Appendix 1

Understanding Wavelets and the Wavelet Modulus
Maxima Technique
The wavelet transform of a signal is a mathematical method that
permits exploration of its properties at different length (or time)
scales, akin to a mathematical zoom lens. The transform calls upon
an underlying function, a wavelet, that itself can be thought to
behave like a mathematical measuring tape. Many different types of
wavelets exist and the particular choice of wavelet is application-
dependent. The wavelet most frequently used in physiologic appli-
cations is the third-order derivative of the Gaussian.

In a similar fashion to the Fourier transform, which transforms
a signal into frequency components, the wavelet transform decom-
poses a signal into its constituent wavelets. Analogously to the Fou-
rier transform, the wavelet transform represents the synthesis of the
original signal from superimposed copies of the wavelet varying
only in scale and position. It is this decomposition that provides
insight into the properties of hidden structures such as self-similar-
ity within the original signal across length or time scales.

The wavelet transform applied to a Cantor set (a mathematically
defined data series that is apparently irregular but has known self-
similarity properties, fig. 4A) is shown as a two-dimensional map
(fig. 4B) and three-dimensional surface (fig. 4C), as a pedagogical
example. The transform reveals an underlying structure within the
signal. Branching patterns akin to an inverted leafless tree can be
seen throughout the pictorial representation, with smaller
branches at finer scales and larger trunks at coarser scales. The
recursive, branching structure is a representation of the self-
similarity and it is this pattern that encodes the hidden fractal
information of interest. The wavelet transform modulus maxima
technique is one way to quantify and characterize the branching
pattern, allowing the self-similarity of different signals to be
measured and compared. In the absence of self-similarity (frac-
tality) the branching pattern is lost.

Characterization of the branching pattern is performed through
the detection of maxima (peaks) in the surface plot (fig. 4C). Sub-
sequent computational analysis of the maxima across length (or
time) scales produces a singularity spectrum. The singularity spec-
trum for the Cantor set is a multifractal spectrum with hm centered
at 0.5 (fig. 4D).
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Appendix 2

Implementation of the Wavelet Transform Modulus
Maxima Technique
A step-by-step guide detailing the implementation of the wavelet
transform modulus maxima is contained below:

1. Represent the signal or data of interest as a continuous vector f�,
e.g., intraheart beat intervals.

2. To minimize edge artifacts, pad the data f� of size n with a
further n values; with n/2 pad values at the start of the data
and n/2 pad values at the end of the data. The pad at the start
should take the value f�(1) and at the end of the data the
value f�(n).

3. Calculate the absolute wavelet transform W� a(f�,s) by convo-
lution of the vector with a third-order Gaussian wavelet over
scales s � 1…scale_max. The parameter scale_max is de-
scribed later.

W� a� f�, s� � ��
��

	�

f��x�
�x � t
s � � dx�

The third-order Gaussian wavelet is defined by:


� x� � x�3 � x2� � e�
1
2x2

The wavelet transform acts as a mathematical “zoom lens,”
analyzing the signal according to length scale. The choice of

wavelet derivative is important. A wavelet derivative of order n
will remove all polynomial trends from the data of degree n-1,
thus a third-order Gaussian kernel will remove all polynomial
trends up to quadratic degree. A third-order Gaussian is suffi-
cient for most purposes.

4. Remove the padding from the beginning and end of the coefficient
matrix. The wavelet transform coefficient matrix is smoothed be-
fore the next step; a suitable approach is described later.

5. The set L of individual lines of local maxima, li, are found by
iterative search through W� a, and represent the paths along the
peaks in the wavelet surface plot, figure 2C. Each maxima line,
li�L, is itself a vector containing the point at each scale that lies
on the maxima line.

6. The supremum is found for every point on each maxima line,
defined in pseudocode as:

for each maxima line li in L

supremum(li, 1) � li (1);
max � li (1);
for each scale s in 2…scale_max

if (Wa(li(s), s) � max) then
supremum(li, s) � Wa(li(s), s)
max � supremum(li, s)

else
supremum(li, s) � max

end
end

end

Fig. 4. (A) Graphical representation of a mathematically generated Cantor set with a priori known fractal parameters. (B, C) The
absolute continuous wavelet transform of the Cantor set in figure 4A, represented as a 2-dimensional map and 3-dimensional
surface. The branching pattern of the maxima (peaks) reveals the underlying fractal structure. (D) The singularity spectrum of
the Cantor set in figure 4A, computed using the wavelet modulus maxima technique. The wide spectrum reveals the multifractal
structure of the set.
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In words, the supremum of the line at scale s is the largest wavelet
transform coefficient that lies on the maxima line from scale 1 up to
and including the coefficient at scale s. Thus the supremums along
each line form a monotonically increasing sequence.

7. Define a partition function over scales s � 1…scale_max and
lines li�L as:

Z�q,s� � �l,�L
�supremum�li,s��q

and construct a double-log plot of Z(q,s) against scale s for each
order q � qmin…qmax in step sizes of qstep, resulting in one
line on the plot for each q value. The partitioning orders qmin,
qmax, and the step size qstep are described later.

8. The self-similarity exponents are derived from the linear relation:

log�Z�q,s�� � ��q�log s 	 c�q�

where the gradient of the straight lines for individual q-lines in the
double-log plot defines �(q). Straight line fitting only occurs be-
tween the scale ranges fit_min to fit_max, discussed below.

9. Compute the singularity spectrum via a Legendre transform:

D(h) � qh(q) � �(q) where h(q) �
d�(q)

dq

and plot D(h) against h.

10. Fit a polynomial to the plot of D(h) against h (using least
squares regression) and find the maxima hm and width-at-half-
height using analytical methods. The choice of polynomial
order is discussed below.

Fine-tuning and Algorithm Design
The choice of tuning parameters and the design of key algorithm
routines is critical to producing an automated implementation of
the algorithm.

Wavelet Coefficient Smoothing
The continuous wavelet transform function introduces numerical
noise into the coefficient matrix, particularly at small scales, which
complicates the discovery of maxima lines. The noise is an artifact
resulting from the discrete representation of the continuous wavelet
function and its convolution with the quantized, discrete represen-
tation of the continuous physiologic signal. To overcome difficul-
ties in maxima finding, a triangular smoothing function is applied
to the coefficient matrix along each scale, with the width of the
smoothing proportional to the scale, i.e., a wider smoothing func-
tion at larger (coarser) scales.

The scale_max Parameter
The scale_max parameter dictates the largest scale over which the algo-
rithm looks for self-similar behavior. This is necessarily smaller than the
amount of data; it would not be worthwhile searching for self-similarity
between two different 3-min blocks in a sample of only 4-min dura-
tion. Experimentally an upper limit of scale_max � 48 beats was found

to be realistic when working with data of length 256 beats. Scales
greater than 48 beats added little to the analysis other than extra noise,
and in turn resulted in a longer computation time.

Finding Maxima Lines
The discovery of maxima lines within the wavelet coefficient matrix is
a difficult task because of coefficient noise (even after the coefficient
smoothing described above). Ideally the set of all possible connecting
maxima lines would be determined and then the solution with the
smallest residual distance between line segments chosen. Unfortunately
this is numerically intractable. A close approximation is instead found
using a breadth-first algorithm. The algorithm starts at the coarsest
scale and for each maxima at the coarse scale computes the distances to
the maxima at the next finest scale. The distances are then ordered
(shortest first) and the maxima with the shortest distances are joined,
ensuring that branching only occurs from coarser to finer scales. This
procedure is iterated over decreasing scales until the finest scale is
reached. To finish, some cleansing is performed. First, any maxima
lines that do not run from the finest to the coarsest scale are analyzed. If
any of these lines start and terminate at adjacent scales and are separated
by no more than a predefined distance, they are joined to make a longer
maxima line. Empirically this identifies the majority of maxima lines
that are missed by the initial approximation technique. Second, lines
that do not start at the finest scale are pruned from the set of maxima
lines, as all singularities must be connected to the finest scale.

Partitioning Function: Parameters q_min, q_max
and q_step
A key part of the algorithm is the calculation of the partition function in
step 7. To ensure the resulting singularity spectrum is well defined, a
large number of moments of order q are calculated at the partitioning
stage. Many implementations of the wavelet transform modulus
maxima technique use a range of q’s from �5 to 5 (with a step-size of 1);
here a range from q_min � �8 to q_max � 	8 with a step-size q_step �
0.15842 (resulting in 101 steps between �8 and 8) is adopted. The use of
smoothing and other techniques, which minimize the effect of noise, re-
sulted inan implementationthatcouldoperateover sucha largenumberof
moments.

Occasionally it was necessary to limit the range of moments used.
Monofractal datasets that result in very narrow singularity spectra re-
quired q_min to be increased to 1. Partitioning over these datasets
produced very small numbers after raising each partition to a negative
power; the numbers were sufficiently small that they could not be
accurately represented by the computer’s floating-point mechanisms.
The errors introduced by the inaccurate representation were large com-
pared with the values being stored, resulting in errors in the singularity
spectrum, producing a nonsense spectrum. The restriction of q_min to
1 solved this issue, but it results in only half of the narrow monofractal
spectrum being calculated under these conditions (fig. 1C).

Partitioning Function: Parameters fit_min and fit_max
The double-log plot of Z(q, s) against scale s results in 101 different
curves (one for each moment q) and each of these curves is linear
over a limited region of interest. The location of the linear region
varies and is dependent upon scale_max and the size of the original
dataset. Analyses for a block length of 256 beats using the data in
this study revealed that the linear region fell in the range of scales
fit_min � 5 to fit_max � 32 beats. Linear regression lines were
fitted for each of the 101 different curves in the double-log plot
between fit_min and fit_max.
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Fitting the Singularity Spectra and Calculating the
Fractal Parameters
A sixth-order polynomial was fitted to points defining the sin-
gularity spectra; this provided the best fit over a wide range of
resulting spectra. On the rare occasion that an incorrect fit was

produced by the regression algorithm, this was identified by eye
and corrected before calculation of the spectral parameters. The
spectral parameters (hm and width-at-half-height) were calcu-
lated directly from the polynomial regression equation using
analytical techniques.

ANESTHESIOLOGY REFLECTIONS FROM THE WOOD LIBRARY-MUSEUM

Not a 7% Solution: A “20% Cocain” Syringe

Although “a seven-per-cent solution” of cocaine may have sufficed for the fictional character Sher-
lock Holmes, this unusual syringe in the Wood Library-Museum’s collection is clearly marked by the
manufacturer as “20% Cocain.” As toxic a concentration of local anesthetic as that may seem today,
remember that cocaine’s powerful side effects were not widely understood during its first decade or
so of clinical use, so 20% solutions were painted topically on patient’s gums and smaller volumes of
such high-concentration cocaine were injected. Bear in mind that many American dentists during the
late 1880s and 1890s were used to seeing jactitations and even frank seizures during hypoxic nitrous
oxide anesthetics, so a cocaine-induced grand mal seizure was not that novel a clinical experience.
(Copyright © the American Society of Anesthesiologists, Inc.)

George S. Bause, M.D., M.P.H., Honorary Curator, ASA’s Wood Library-Museum of Anesthesiology,
Park Ridge, Illinois, and Clinical Associate Professor, Case Western Reserve University, Cleveland, Ohio.
UJYC@aol.com.
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