
Fractals in Clinical Hemodynamics

I N this issue of ANESTHESIOL-
OGY, Bishop et al. report on a

novel approach to the interpreta-
tion of hemodynamic analysis,
namely fractal and multifractal.1

Although the readers of this jour-
nal are intimately familiar with the
cardiovascular system and its gyra-
tions in response to stress, surgery,
and anesthetics, the application of
fractals and specifically of multi-
fractals to data synthesis and inter-
pretation initially might seem be-
yond the reach of, or relevance to,
practitioners. My purpose in writ-
ing this commentary is to offer
context and perspective to what
the authors have done and what it
might mean to today’s clinician,
and to tomorrow’s.

First, let us observe that those
of us who care for sick patients in
highly technical environments are
data-rich and information-poor.
We who care for sick patients—
whether in the operating room on in the intensive care
unit—cannot possibly accumulate, absorb, and synthesize
the streaming waveforms or their 6-s scalar snapshots (the
glowing digits that announce a heart rate to be 82 beats/min,
a blood pressure to be 116/54 mmHg, and so on) that dance
across the monitor. Interpretive strategies abound, the sim-
plest of which is to create a time series of values and then
attempt to give some statistics on the time series. Technolog-
ical considerations aside, modern hardware and software
make it easy to determine the time intervals between heart-
beats (or its reciprocal, the instantaneous heart rate), the
series of systolic and diastolic blood pressures, and so forth.

Anesthesiologists are rightly most concerned about gross
trends: the heart rate going up and the blood pressures going
down signals a problem with intravascular volume, the blood
pressure going up and the heart rate going down suggests an
intracranial catastrophe, and so forth. But what if there is no
apparent trend? What if the values are seemingly scattered
around some value we call “normal”? Isn’t this just “regular rate
and rhythm”?

It is not. Normal hemodynamics (and several other aspects
of physiology) are inherently—if subtly—variable.2 Moreover,

changes in the character of that vari-
abilityoftenheraldsubstantialchanges
inpatient condition.3 Therefore, it is a
matter of some interest to characterize
that variability and more importantly
to detect and describe those changes
before gross deterioration of the
patient.4

The general structure of hemo-
dynamic time-series variability is
fractal. Like branching from a tree-
trunk (each branching level pro-
duces more, but smaller, branches),
the variability of physiology is
characterized by coarser and
finer excursions. Conventional
measures of dispersion do not do
us much good in talking about in-
stantaneous heart rates, any more
than they help us pick out a good-
looking tree at the horticultural
center. The key point is that the
variability of health physiology
can be analyzed on different tem-
poral scales. One way to go about

assessing variation across scales of time is to “coarse-grain”
the data, that is to average adjacent data points (pairs, threes,
fours, described as scale 2, scale 3, scale 4, and so forth) and
reassess the variability at scale. This is a basis for multifractal
assessment.5 The analysis of data from chronic illnesses (such
as congestive heart failure) produces very different patterns
across scales, typically reflecting loss of variability. Moreover,
such analyses seem to predict important clinical outcomes.6

All of this is prelude to the work presented in this issue of
ANESTHESIOLOGY. Bishop et al. reasoned that the stress of
operation and the interventions of the anesthesiologist might
acutely alter the mechanisms that give rise to multifractality
in human physiology. They acquired the available signals—
electrocardiograph and continuous blood pressure—and
processed those signals into beat-to-beat time series. Next,
they used wavelets to identify how much fractality was pres-
ent in the time series at different points in care.

Why wavelets? It’s easiest to ask why not a Fourier trans-
formation. Recall that any time series (or for that matter, any
polynomial) can be represented as a sum of sine waves of
different frequencies. That is the Fourier transformation. We
“hear” the Fourier transform every time we play music on an
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“… multifractal variable
physiology … is not only a
signature of health but also
a potential therapeutic tool
…”
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MP3 player—the digital bits that we download are no more
than the coefficients that set the strengths of different tones
(sine waves) that are combined to hear our favorite tune.

Wavelets accomplish much the same thing, with an im-
portant exception. Fourier coefficients localize frequency
across an entire time series, but wavelets localize their infor-
mation in both frequency and time and thus can encode
localized variability within the time series. Of course, just en-
coding the variability is not enough, one has to have a stan-
dard way of finding and describing that localized variability.
That way is the tongue-twisting “wavelet modulus maxima
technique” used by the authors. It turns out that just know-
ing the “wavelet modulus maxima” is enough to almost com-
pletely reconstruct a time series. It also enables one to char-
acterize how much “multifractality” there is in a time series
through display of a “singularity spectrum.” The “singulari-
ties” that are being characterized are the steps (slow excur-
sions) and cusps (rapid excursions) in the time series.

A singularity spectrum typically looks like a parabola. It
has a maximum (the peak) and a spread (a convenient way of
describing the spread of a parabola is to describe its width at
half height). Where that maximum occurs characterizes the
dominant fractal dimension. The width at half height gives a
sense of multifractality (fig. 1 in article by Bishop et al.).

Evidence continues to accumulate that variable physiol-
ogy, especially multifractal variable physiology, is not only a
signature of health but also a potential therapeutic tool when
applied via a physiologic support device, such as a mechani-
cal ventilator or cardiopulmonary bypass device.7–9 Novel
ventilator modes, such as adaptive servo ventilation, demon-
strate that application of variable support in one physiologic
system (respiratory system) promotes variable physiology in a
linked system (cardiac).10

What can we conclude from the article by Bishop et al.,
which shows us that a vasoconstrictor alters the fractal di-
mension of the blood pressure (but not the heart rate) while
atropine alters the fractal dimension of the heart rate (but not
the blood pressure)? What can we conclude from the failure
to detect a change in multifractality with either agent? Sim-
ply that acute management of anesthetized and critically ill
patients alters the physiologic regulatory mechanisms in ways
that cannot otherwise be detected with conventional dis-
plays. As the authors freely acknowledge, this is a pilot study,

and much remains to be done. As readers, and more impor-
tantly as clinicians, we should understand that hidden within
the rivers of data marching across the monitors is additional
information about the compensatory mechanisms that drive
patient physiology and our care. Fractal analysis of physio-
logic data is not yet ready for use at the bedside. But it is
coming in our clinical lifetimes.
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