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ABSTRACT

Background: Neutrophils are one of the predominant im-
mune cells initially migrating to surgical wound edges. They
produce mediators both associated with supporting (inter-
leukin [IL]-1�, C5a) and reducing (opioid peptides) pain.
Studies demonstrate neutrophil depletion/blockade reduces
nociceptive sensitization after nerve injury and carrageenan
administration, but enhance sensitization in complete
Freund’s adjuvant inflammation. This research identifies
the contribution of infiltrating neutrophils to incisional
pain and inflammation.
Methods: Antibody-mediated Gr1� neutrophil depletion
preceded hind paw incisions. Sensitization to mechanical
and thermal stimuli, effects on edema and local levels of
IL-1� and C5a were measured. Local effects of C5a or IL-1
receptor antagonists PMX-53 and anakinra on sensitization
after neutrophil depletion were examined. Groups of 4–8
mice were used.
Results: Anti-Gr1 antibody depleted more than 90% of cir-
culating and infiltrating skin neutrophils after incision. Neu-
trophil depletion did not change magnitude or duration of
mechanical hypersensitivity in incised mice. However, paw
edema was significantly reduced and heat hypersensitivity

was slightly increased in depleted animals. In depleted ani-
mals IL-1� levels were half of controls 24 h after incision,
whereas C5a levels were increased in both. Prominent IL-1�
immunohistochemical staining of epidermis was seen in both
groups. PMX-53 and anakinra reduced incisional mechani-
cal and heat nociceptive sensitization to the same extent,
regardless of neutrophil depletion.
Conclusions: Neutrophil-derived IL-1� and C5a do not
appear to contribute critically to peri-incisional nociceptive
signaling. Other sources of mediators, such as epidermal
cells, may need to be considered. Controlling inflammatory
activation of resident cells in epidermis/deeper structures
may show therapeutic efficacy in reducing pain from surgical
incisions.

P AIN after surgery remains problematic. Despite the
heightened attention given to postoperative comfort,

expanded use of patient-controlled analgesia devices, and in-
creasing use of multimodal therapy, almost all patients expe-
rience some degree of postoperative pain, and 30–60% of
patients undergoing surgery report moderate to severe pain
levels.1,2 On the other hand, progress has been made in un-
derstanding the mechanisms supporting this type of pain.
Investigators have addressed a wide range of factors like
wound dynamics, nociceptor sensitization, central nervous
system changes, and patients’ psychologic profiles to better
understand postoperative pain. A good deal of attention has
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What We Already Know about This Topic

• Neutrophils responding to injury release mediators that en-
hance sensitization and pain after neuropathic injury in ani-
mals, but their role in incisional surgery is not known

What This Article Tells Us That Is New

• In mice, depletion of neutrophils reduced paw edema and
tissue interleukin-1� concentrations after paw incision, but
failed to significantly alter mechanical hypersensitivity

• Blockade of C5a and interleukin-1� signaling reduced hyper-
sensitivity, suggesting that these factors are important to sen-
sitization after incisional surgery, but are not dependent on
local infiltration by neutrophils
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been focused on the liberation of local nociceptive mediators
after incision, and the interaction of those mediators with
primary afferent nerves.3,4 The implicit hope of this research
is that identification of key mediators and the sources of
those mediators will further facilitate the development of
specific therapeutic approaches.

One of the predominant immune cell types migrating to
the injured tissue are neutrophils, which are present in
wound edges within hours of incision, peak in abundance
within 24 h, and then slowly decline in number. In addition
to participating in fighting infection and regulating wound
healing, these cells produce many known nociceptive medi-
ators including cytokines, chemokines, proteinases, phos-
pholipases, reactive oxygen species, and other molecules.5

Cytokine-stimulated neutrophils can in turn activate addi-
tional incisional nociceptive mediators, such as complement
system components.6 Some of these mediators, namely inter-
leukin (IL)-1�7–9 and the complement fragment C5a,10,11 have
been shown to support nociception in rodent incisional pain
models.

Additional evidence suggests neutrophils regulate nocice-
ptive sensitization in other pain models. For example, deple-
tion of circulating neutrophils reduces nociceptive sensitiza-
tion early after peripheral nerve injury.12 Also, blockade of
neutrophil infiltration using the migration inhibitor fucoi-
din resulted in reduced mechanical hyperalgesia after carra-
geenan injection in the plantar tissue of rat hind paws, sug-
gesting that in this pain model neutrophils might contribute
to mediator production and sensitization.13 On the other
hand, neutrophils produce endogenous opioid peptides such
as met-enkephalin and �-endorphin, potentially reducing
pain.14 In the complete Freund’s adjuvant model of inflam-
matory pain, opioid peptides derived from neutrophils re-
duce nociceptive sensitivity, whereas depletion of neutrophils
does not alter baseline sensitization in this pain model.14–16

Thus, in some settings, neutrophils seem to provide a mecha-
nism for endogenous peripheral analgesia.

We do not at this point understand whether the complex
functions of neutrophils in incisional wounds lead to an
overall enhancement, as would be suggested by mediator
production, or reduction, as would be suggested by opioid
peptide release, in nociceptive sensitization after incision.
Furthermore, we do not understand for particular mediators
already linked to sensitization in incisional wounds, such as
IL-1� or C5a, whether local production by resident cells
versus neutrophil infiltration and release is the mechanism
responsible for the observed inflammation and sensitization.
In these experiments we utilized an antibody-mediated neu-
trophil depletion protocol combined with assessments of the
local consequences of incision to address these questions.

Materials and Methods

Animals
All experimental protocols were approved by Veterans Affairs
Palo Alto Healthcare System Institutional Animal Care and

Use Committee (Palo Alto, California) before beginning the
work. Male mice 10–14 weeks old of the C57Bl/6J strain
obtained from Jackson Laboratories (Bar Harbor, MA) were
kept in our facility a minimum of 1 week before initiating
experiments. All mice were kept under standard conditions
with a 12 h light/dark cycle and an ambient temperature of
22 � 1°C. Animals were allowed food and water ad libitum.
All procedures followed the guidelines of International Asso-
ciation for the Study of Pain for care and use of laboratory
animals. All experiments were done with 4–8 mice per
group, guided by power analyses based on pilot and previous
experimentation.

Hind Paw Incision
The hind paw incision model modified for mice was used in
a similar way as previous studies investigating nociceptive
effects and cytokine level changes following incision.10,17,18

Briefly, mice were anesthetized using isoflurane (AErrane;
Baxter Healthcare Corporation, Deerfield, IL), and after
sterile preparation, a 5-mm longitudinal incision was made
on the plantar surface of one hind paw. The underlying plan-
taris muscle was incised longitudinally; the wound was then
closed with a single 6-0 nylon suture and antibiotic ointment
was applied.

In Vivo Neutrophil Depletion
Treatment with functional grade purified antimouse Ly6G/
Gr-1 (RB6-8C5 clone; eBioscience, San Diego, CA) or
IgG2b control antibody (for controls) at 48 and 4 h before
incision was carried out. Separate groups of mice received 4
mg/kg intraperitoneal injections of either antibody. Blood
was collected by tail snip from anesthetized mice for neutro-
phil counts. For this purpose, blood samples were obtained
before antibody treatment, before incision, and daily afterward
for 5 days. Slides made using these samples were stained with
Wright–Giemsa stain. Counting was completed manually.

Assessment of Mechanical Sensitivity
Mechanical sensitivity after incision was measured by using
von Frey filaments following the “up-down” algorithm de-
scribed by Chaplan et al.10,18,19 After acclimating mice on
wire mesh platforms inside clear cylindrical plastic enclo-
sures, sequential application of filaments lateral to the central
wound edge was carried out. Hind paw withdrawal because
of fiber application was scored as a response. By using a
data-fitting algorithm, the mechanical withdrawal threshold
was calculated and subjected to parametric statistical analy-
sis.20 These experiments were done by a single experienced
experimenter not blinded to treatment groups.

Assessment of Heat Sensitivity
Heat sensitivity after incision was measured using a modified
method described by Hargreaves.21,22 Mice were acclimated
on a temperature-controlled glass platform (23.5 to 24.0°C)
in a plastic enclosure and the beam of light was applied to the
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area of hind paw incision. Withdrawal latency of the paw
from the heat source was measured, and to prevent tissue
damage, a 15-s cutoff was used. Three measurements were
made per animal per test session, separated by several min-
utes. These experiments were done by a single experienced
experimenter not blinded to treatment groups.

Assessment of Paw Edema
A laser sensor technique was used to determine the dorsal–
ventral thickness of the hind paw, as previously described.23

For laser measurements each mouse was briefly anesthetized
with isoflurane and then held vertically so the hind paw
rested on a table top below the laser. The paw was gently held
flat on the table with a small metal rod applied to the top of
the ankle joint. Using optical triangulation, a laser (4381
Precicura; Limab, Goteborg, Sweden) with a distance-mea-
suring sensor (200-mm range, 0.01-mm resolution) was used
to determine the distance to the table top and to the top of
the hind paw, and the difference was used to calculate the
dorsal–ventral paw thickness. Three measurements were
made per paw, per animal.

Drug Administration
For some groups of mice, anakinra (Amgen, Thousand
Oaks, CA), PMX-53 (Promix, Queensland, Australia), or
saline vehicle was injected subcutaneously into the plantar
skin of the hind paws of mice 2 h before incision and also
daily 2 h ahead of behavioral testing. Preliminary experi-
ments demonstrated this to be a point of maximal effect. For
these injections mice were gently restrained. The injection
volume was 15 �l administered through a 30-gauge needle,
which raised a bleb similar to the length of the incisional
wounds and approximately 1 mm of surrounding tissue.

Immunohistochemistry
The immunohistochemical analysis of mouse paw skin was
done according to previously published methods.9,10 Briefly,
the primary and secondary antibodies used were IL-1�
(H-153) rabbit polyclonal IgG, 1:50 (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA); fluorescein antirabbit IgG (H�L),
1:150 (Jackson ImmunoResearch Laboratories, West Grove,
PA); rat antimouse neutrophil (allotypic marker) monoclo-
nal antibody, 1:300 (AbD Serotec, Raleigh, NC); Texas red
anti-rat IgG (H�L), 1:150 (Vector Lab Inc., Burlingame,
CA); rat antimouse F4/80 antigen, 1:100 (AbD Serotec);
fluorescein anti-rat IgG (H�L), 1:500 (Vector Lab Inc.);
rabbit anti-�-endorphin, 1:100 (Peninsula Laboratories
LLC, San Carlos, CA), and Texas red antirabbit IgG (H�L),
1:500 (Jackson ImmunoResearch Laboratories). Confocal
laser-scanning microscopy was performed using Zeiss LSM
510 and LSM 510 META Laser Scanning Microscopes
(Thornwood, NY). Control experiments included incuba-
tion of slices in primary and secondary antibody-free solu-
tions, both of which led to low-intensity nonspecific staining
patterns in preliminary experiments. After exposure with ap-

propriate antibodies for neutrophils and macrophages, the
number per high power field (x40) was counted by a blinded
experimenter using SPOT Advanced software (SPOT, Ster-
ling Heights, MI).

Cytokine (IL-1�) and C5a ELISA
An ovular patch of full-thickness skin providing 1 to 1.5 mm
margins surrounding the hind paw incisions was collected
rapidly after carbon dioxide asphyxiation of animals. These
samples containing approximately 12 mg tissue per paw were
placed immediately into ice-cold 0.9% NaCl containing a
cocktail of protease inhibitors (Complete; Roche Applied
Science, Indianapolis, IN). Samples were homogenized and
centrifuged for 10 min at 12,000 x gravity at 4°C. An aliquot
of the supernatant fractions was subjected to protein assay
(DC Protein Assay; Bio-Rad Laboratories, Hercules, CA)
and subsequently C5a and IL-1� protein levels were mea-
sured by a R&D Systems EIA kit (Minneapolis, MN), ac-
cording to the manufacturer’s protocol. The experimenter
was blinded to the treatment groups.

Statistical Analysis
To compare time course and treatment effects for the behav-
ior studies, a two-way ANOVA (time, treatment) with re-
peated measures for time was performed with Bonferroni
correction for multiple comparisons. For data obtained from
the peripheral blood and skin neutrophil determination ex-
periments, a one-way ANOVA was performed with Bonfer-
roni correction for multiple comparisons. All comparisons
were run as two-tailed testing. All data are presented as
means � SEM, and differences were considered significant at
P � 0.05 (Prism 4.0; GraphPad Software, San Diego, CA).
No data were missing for any of the variables.

Results

Time Course of Neutrophil Depletion after
Anti-Ly6G/Gr-1 Antibody Treatment
The results of preliminary experiments showed that two in-
jections of anti-Gr-1 antibody were required to achieve sub-
stantial depletion of circulating neutrophils. In figure 1A, the
time course of antibody depletion and recovery is presented.
Depletion of more than 90% of circulating neutrophils was
achieved by the time of incision, and persisted for at least the
first 24 h. Circulating neutrophil counts remained depressed
for at least 3 days.

Anti-Ly6G/Gr-1 Antibody Treatment Significantly
Depletes Peri-Incisional Neutrophils
In order to assess the efficacy of the above two-dose depletion
regimen in preventing neutrophil accumulation after inci-
sion, immunohistchemical analysis of skin samples from sep-
arate groups of mice for neutrophils was next carried out.
This was done as the circulating neutrophil levels may not
reflect the actual tissue content of these cells after local injury.

Neutrophil Role in Incisional Pain and Inflammation
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Figures 1B and C show that 24 h after incision, there is a
marked reduction of infiltrating skin neutrophils in the anti-
Gr-1 antibody group compared with controls. The neutro-
phils were mostly seen as densely packed cells within the

superficial part of the incision site. At the same time-point,
the macrophage numbers were modestly decreased by the
antibody treatment. The macrophages were mostly seen in
the superficial dermal layers.

Effects of Anti-Ly6G/Gr-1 Antibody Treatment on
Incision-induced Mechanical and Heat Hypersensitivity
As the migration of neutrophils into injured tissue has been
implicated with both the production of pronociceptive me-
diators and the release of opioid peptides, we next deter-
mined if a reduction in these immune cells affected pain
sensitivity in the incisional model. Neutrophil depletion did
not change the magnitude or duration of mechanical hyper-
sensitivity in incised mice compared with controls (F1,50 �
0.43, P � 0.528; fig. 2A). However, the neutrophil-depleted
mice showed slightly increased heat hypersensitivity com-
pared with controls 24 h after incision (F1,72 � 5.84, P �
0.018). No difference was observed in the preincisional heat
sensitivity or 2 h after surgery, or at later time-points between
the neutrophil-depleted and mice treated with control anti-
body (fig. 2B).

Anti-Ly6G/Gr-1 Antibody Treatment Significantly
Reduces Paw Edema
In order to determine the contribution of neutrophils to a
separate index of the inflammatory response in incised ani-
mals, we measured paw thickness at time-points up to 72 h in
control and anti-Gr1-antibody-treated mice. There was a
significant difference between the neutrophil-depleted ani-
mals and controls in the measure of paw edema at the 2 and
24 h time-points (fig. 2C).

Effects of Anti-Ly6G/Gr-1 Antibody Treatment on Skin
C5a and IL-1� Levels
The effects of neutrophil depletion on proinflammatory me-
diator IL-1� and complement fragment C5a was next deter-
mined. Peri-incisional levels of IL-1� increased sharply in
skin after incision, but anti-Gr-1 mice displayed only ap-
proximately 50% of the levels achieved in control mice at
24 h after incision. At 72 h, control and neutrophil-depleted
mice had the same level of cytokine elevation. On the other
hand, levels of the pronociceptive complement fragment C5a
were increased to the same extent in both control and neu-
trophil-depleted animals 24 h after incision, but were lower
in the depleted animals 72 h after incision (fig. 3A–B). Thus
levels of the two mediators were altered differentially after
incision in the setting of neutrophil depletion.

As C5 is produced by organs such as the liver and only
activated to C5a locally, whereas IL-1� is locally produced
after trauma, we pursued complementary immunohisto-
chemical experiments for IL-1� to further localize its source
in the control and neutrophil-depleted mice. Figure 4 dem-
onstrates that neutrophils and dermal and epidermal cells
produce IL-1� 24 h after incisions in control animals, and

Fig. 1. Effects of Ly6G/Gr-1 antibody on circulating neutro-
phil and paw skin neutrophil and macrophage counts.
(A) Timeline of peripheral blood neutrophil depletion following
two doses of the antibody given 48 and 4 h before incision
(n � 7). (B) Immunoflourescence staining for neutrophils (an-
timouse neutrophil monoclonal antibody) and macrophages
(antimouse F4/80 antigen) with fluorescein anti-rat IgG (H�L)
as secondary antibody, 24 h after incision on samples ob-
tained from paw skin wounds. (C) Quantification of wound
edge neutrophils and macrophages 24 h after surgical inci-
sion (n � 7). *P � 0.05, ***P � 0.001 difference from control
antibody group, and ##P � 0.01, ###P � 0.001 difference
from Ly6G/Gr-1 antibody group. Ab � antibody; AGr1 �
anti-Gr-1.
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that the dermal and epidermal sources remain prominent in
neutrophil-depleted mice.

Effects of Anti-Ly6G/Gr-1 Antibody Treatment on
Neutrophil-derived �-endorphin
Double immunostaining for �-endorphin and neutrophils
in peri-incisional skin demonstrated many positive cells (fig.

5). In intact skin, �-endorphin positive cells were absent
(figs. 5A, C). After anti-Gr-1-antibody treatment, there was
an overall decrease in peri-incisional �-endorphin-positive
neutrophils (figs. 4E, F) compared with control antibody
group (figs. 5C, D).

Effects of Treatment with IL-1R or C5a Antagonists on
Nociceptive Hypersensitivity after Incision in
AGr-1�-depleted Mice
Lastly, we examined the contribution of local IL-1� and C5a
signaling in skin after incision both under control and neu-
trophil-depleted conditions. The selective complement frag-
ment C5a receptor antagonist PMX-53 (30 mcg/paw) re-
duced both mechanical and heat nociceptive sensitization to
the same extent regardless of neutrophil depletion during the

Fig. 2. Effects of Ly6G/Gr-1 antibody on pain and inflamma-
tion after hind paw incision. (A) Mechanical allodynia was
measured in the neutrophil-depleted (AGr1 Ab) and control
(C Ab) mice using calibrated von Frey filaments before and at
different time-points after incision (n � 6 per group). (B) Paw
withdrawal latencies to heat stimuli were measured in both
antibody-treated groups using the Hargreaves method
(n � 7 per group). (C) Measurement of paw edema using a
laser assay in the antibody-treated mice (n � 7 per group).
Mean � SEM values of each group were analyzed by
two-way ANOVA with post hoc Bonferroni correction com-
paring treatment groups at each time-point. **P � 0.01,
***P � 0.001. Ab � antibody; AGr1 � anti-Gr-1; C �
control; INC � incision.

Fig. 3. Effects of hind paw incision on peripheral (A) C5a and
(B) interleukin-1� levels. The levels of these mediators were
measured in hind paw plantar skin at baseline and at the 2–72
h time-points after incision. The selected time-points were
based on the behavior data presented in fig. 2. Different
groups of mice were used for each time point (n � 6 per
group). Data are presented as mean � SEM and were ana-
lyzed by two-way ANOVA with post hoc Bonferroni correc-
tion. **P � 0.01, ***P � 0.001, and ###P � 0.001 difference
from control antibody group. Ab � antibody; AGr1 � anti-
Gr-1; IL � interleukin.
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72-h period following incision (figs. 6A, B). Similarly, there
was no significant difference in the effect of treatment with
the IL-1R antagonist anakinra (1.5 mg/paw) between the
depleted and control groups with respect to its ability to
reverse mechanical or heat nociceptive sensitization (figs. 6C,
D). Thus, although IL-1� and C5a both seemed to support
sensitization, neutrophil-derived IL-1� and C5a did not
appear to contribute critically to peri-incisional nocicep-
tive signaling.

Discussion
Investigations during the past several decades have identified
many nociception-relevant components of the complex in-
flammatory soup generated after incision or tissue damage.
Abundant evidence demonstrates that many of these media-
tors on their own or in combination can cause nociceptive
sensitization. Some of these mediators, including IL-1� and
C5a, two of the better examined nociceptive mediators in
incisional pain models, can be generated by multiple cell

types. Generally missing from these investigations have been
experiments directed at understanding which sources of the
mediators are most relevant to pain versus other wound pro-
cesses, such as healing or fighting infection. Such informa-
tion both aids in our understanding of incision-related noci-
ceptive mechanisms and helps to define the cellular targets
when designing analgesic strategies.

These studies used antibody-mediated neutrophil deple-
tion to examine their function in the early period surround-
ing hind paw incision in mice. The antibody used here pro-
vided profound reductions in the levels of wound-area
neutrophils in the early postincision period, causing small
but significant changes in heat sensitization in the 24-h pe-
riod after hind paw incision and no changes in mechanical
nociceptive sensitization. Meanwhile, neutrophil depletion
was effective in reducing postincisional edema. Looking
more closely, the levels of IL-1� were reduced in the peri-
incisional skin of neutrophil-depleted animals 24 h after in-
cision compared with controls, whereas complement frag-

Fig. 4. Interleukin-1� (IL-1�) is produced by neutrophils and other cell types after hind paw incision. Immunostaining for IL-1�
at 24 h after incision shows: (A) Control mice without incision have very low basal expression of the cytokine; (B) High-power
image of the nonincised dermal layer; (C) Control antibody-treated mice after incision produce the cytokine in the epidermal and
dermal layers; (D) High-power image of the incised dermal layer shows neutrophil abundance and colocalization with IL-1�;
(E) Neutrophil-depleted mice have epidermal cytokine production; (F) High-power image of the incised dermal layer showing
relatively rare IL-1� positive cell profiles. IL � interleukin.
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ment C5a was not reduced significantly in either group at
this time-point. In both cases, they were still increased above
baseline levels at a time-point when incisional sensitization
was maximal. The local injection of the IL-1 receptor antag-
onist anakinra retained full effect in reducing mechanical
allodynia even after neutrophil depletion, suggesting that the
residual IL-1� production was sufficient to support nocice-
ptive sensitization. It had been reported previously that the
systemic administration of anakinra reduced nociceptive sen-
sitization after hind paw incision.8 Most IL-1� production
in neutrophil-depleted mice appeared to be within the epi-
dermal keratinocytes, shown previously to produce this cy-
tokine after incision.24

Evidence suggests that in some systems the conversion of
C5 to C5a is supported by a proteolytic reaction on the
surface of neutrophils or by the action of neutrophil-derived
myeloperoxidase products.6,25,26 In fact, a positive feedback
loop has been hypothesized in which C5a-mediated neutro-
phil recruitment leads to further augmentation of C5a pro-

duction.6 In our experiments, C5a levels were decreased
moderately and the selective C5a receptor antagonist
PMX-53 administered locally reduced nociceptive sensitiza-
tion to the same extent in control and neutrophil-depleted
mice. This agent has been shown to reduce nociceptive
changes in mice after incision, perhaps by a mechanism in-
volving a reduction in primary afferent nerve fiber activity.11

A strong circumstantial case can be made that infiltrating
neutrophils support nociception in inflamed tissues. Acti-
vated neutrophils produce many mediators linked to nocice-
ption, including IL-1� and C5a, as well as reactive oxygen
species, metalloprotinases, and other molecules.5 The injec-
tion of exogenous IL-1� and C5a into rodent hind paw skin
lowers nociceptive thresholds.11,27 Moreover, neutrophils
are recruited into paws after the injection of carrageenan
model of inflammatory pain, and blocking the migration of
neutrophils from the vasculature reduced mechanical hyper-
algesia in these studies.13 Conversely, complete Freund’s ad-
juvant induced inflammation and hyperalgesia were unaf-

Fig. 5. �-endorphin (END) is produced by neutrophils and other cell types after hind paw incision. Immunostaining for END at
24 h after incision shows: (A) Control mice without incision have no expression of END; (B) High-power image of the nonincised
dermal layer; (C) Control antibody-treated mice after incision produce END in the epidermal and dermal layers; (D) High-power
image of the incised dermal layer shows neutrophil abundance and colocalization with END; (E) Neutrophil-depleted mice have
epidermal END production; (F) High-power image of the incised dermal layer showing relatively fewer END/neutrophil positive
cells. END � �-endorphin.
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fected by neutrophil depletion, despite reductions in IL-1�
levels to a degree similar to that observed in our studies.16

Importantly, the recruitment of activated neutrophils into
hind paw tissues by virtue of local CXCL2/3 injection did
not by itself cause hyperalgesia.16 Moreover, neutrophils
have been observed to infiltrate damaged nerves locally and
at dorsal root ganglion level and have been linked to nocice-
ptive sensitization in models of neuropathic pain.12,28,29

Thus the apparent role of neutrophils in supporting nocice-
ption may depend both on the site and mechanism of inflam-
mation and perhaps on the method of disruption of local
neutrophil recruitment, i.e., depletion versus inhibition of
migration.

Our results indicate that depending on the site of produc-
tion in wounds, mediators like IL-1� and C5a might have
different effects; we were able to reduce inflammation as
measured by a reduction in paw thickness, and we observed a
similar degree of nociceptive sensitization in neutrophil-de-
pleted animals. Previous studies show that IL-1� and C5a
can increase endothelial leak and edema,30,31 suggesting that
a reduction in neutrophil-derived mediators could reduce
edema. However, previous studies suggest that the richly

innervated epidermal layer may be an important source of
IL-1� after hind paw incision and in inflamed tissues.24 Un-
clear at this time is the mechanism by which in the absence of
infection keratinocytes are stimulated to produce mediators
like IL-1�, although recent evidence suggests that neuro-
peptides and adenosine triphosphate, which are present at
increased levels in injured tissue, may be able to stimulate
the assembly and activation of IL-1�-producing inflam-
masomes.32,33 Once produced and released, peripheral sen-
sory nerves penetrating the epidermis may be exposed to high
local concentrations of IL-1� and other mediators.3 This
model of mediator-neuron interaction accommodates both
the observations that neutrophil depletion affects sensitiza-
tion minimally, and the observation that locally adminis-
tered anakinra retains its ability to reduce sensitization even
after neutrophil-generated IL-1� is eliminated.

Conversely, a significant number of studies examining the
properties of endogenous opioids produced by leukocytes
have been provided.34 Leukocytes, including neutrophils,
produce proopiomelanocortin and proenkephalin under in-
flammatory conditions.35–37 Also, the expression of opioid
receptors on peripheral neurons is enhanced under inflam-

Fig. 6. Effect of inhibition of locally administered C5a and interleukin-1� receptor antagonists on incisional pain after neutrophil
depletion. Mechanical allodynia and heat hyperalgesia were measured in the neutrophil-depleted (AGr1 Ab) and control (C Ab)
hind paw-incised mice at different time points. Before behavioral measurements, mice received local PMX-53 (A, B), anakinra
(C, D), or saline vehicle injection (n � 6 per group). Mean � SEM values of each group were analyzed by two-way ANOVA with
post hoc Bonferroni correction. *P � 0.05, ***P � 0.001. Ab � antibody; AGr1 � anti-Gr-1; C � control; INC � incision.
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matory conditions.38,39 Endogenous opioid peptides in sites
of inflammation can be released spontaneously, though re-
lease is augmented by the presence of corticotropin-releasing
factor or stress.40–42 Importantly, in models of inflamma-
tion and metastatic bone cancer pain, the local injection of
opioid receptor antagonists or antibodies enhance nocicep-
tive sensitization by blocking local opioid signaling.15,42,43

Also, the duration of inflammation is related to the strength
of the role of endogenous opioids in limiting sensitization.34

It is therefore possible that under the relatively acute condi-
tions employed in our studies, analgesic mechanisms sup-
ported by inflammation and neutrophilic infiltration had
not developed to the degree that their effects were more
prominent. Indeed, our previous report shows that naloxone
administration after incision causes a worsening of the heat
hyperalgesia and mechanical allodynia, which are most
prominent a few days after incision.44 There is further sup-
port for the type of injury determining the duration and
extent of neutrophil-mediated proalgesic versus analgesic
mechanisms. In the setting of nerve injury, neutrophils
steadily and continuously infiltrate endoneurium for 7 or 8
days, whereas they peak in 24 h after skin incision and de-
cline rapidly to reach baseline levels in 3 days.12,45 Neutro-
phil depletion attenuated nerve injury-induced hyperalgesia
by potentially decreasing mediators responsible for induc-
tion of pain. However, local application of corticotropin-
releasing factor to the site of nerve injury produced analgesia
mediated by opioid-containing leukocytes.40 Therefore, it
seems that the neutrophils and opioid peptides produced by
them are participating in an intensely localized inflammatory
response. However, skin inflammatory response appears to
be more diffused and involve many nonimmune cells.
Keratinocytes and fibroblasts can produce and release pro-
opiomelanocortin products, providing a potential nonim-
munological origin for some portion of the peripheral
opioids limiting sensitization after tissue injury.46,47

Other immune sources of endogenous opioids, like mem-
ory T lymphocytes, which contain endorphin and migrate
preferentially to inflamed tissues, could also contribute to
limiting sensitization.48

It needs to be acknowledged that the present study has the
following limitations. Although depleting neutrophils using
antibodies to surface antigens has been the preferred tech-
nique for causing depletion with profound effects seen in
these and other experiments, the technique is not entirely
selective. The monoclonal antibody RB6-8C5 against sur-
face antigen granulocyte receptor (Gr-1) has been widely
used, but may result in depletion of select subpopulations of
monocytes and macrophages that participate in the inflam-
matory process.49,50 The alternative 1A8 antibody ostensibly
has a better selectivity in depleting circulating neutrophils,
but possesses a similar profile to RB6-8C5 in terms of deplet-
ing the wound macrophages.51 Here we observed a modest
decrease in wound area macrophage numbers, which could
be attributed to the RB6-8C5 antibody as well as to the

decrease in neutrophil-mediated chemotactic signals. In ad-
dition, the present study has the limitation of having the
behavior assessments being done by the experimenter not
blinded to treatment groups, as experimenter bias could af-
fect the pain tests’ results.52

Inflammatory mediators derive from multiple cell types
in incisional wounds. Not all sources necessarily make the
same contribution to nociceptive sensitization. Moreover, it
should be kept in mind that any conclusions drawn concern-
ing nociception may not apply to the source of mediators
critical for wound healing or fighting of infection, which may
rely more heavily on mediators derived from infiltrating im-
mune cells. Likewise, our experiments were directed primar-
ily at nociception deriving from skin and superficial tissues
rather than deeper structures such as muscle and fascia,
which may play a prominent role in pain-related behaviors
observed in animals and pain scores reported in humans after
incision.53,54 Nevertheless, therapies directed at controlling
the inflammatory activation of the epidermis may show effi-
cacy in reducing pain from surgical incisions.

The authors thank Deyong Liang, Ph.D. (Anesthesiology Service,
Veterans Administration Palo Alto Health Care System, Palo Alto,
California, and Department of Anesthesia, Stanford University, Palo
Alto, California), for valuable discussions throughout the prepara-
tion of the manuscript.
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