
REVIEW ARTICLE

David S. Warner, M.D., Editor

Genetic Variation, �-blockers, and Perioperative
Myocardial Infarction

Peter Nagele, M.D., M.Sc.,* Stephen B. Liggett, M.D.†

ABSTRACT

Perioperative myocardial infarction is a common and poten-
tially fatal complication after noncardiac surgery, particular
among patients with cardiovascular risk factors. �-blockers
have been considered a mainstay in prevention and treatment
of perioperative myocardial infarction, yet recent evidence
suggests that �-blockers may have an unfavorable risk profile
in this setting, and the use has become controversial. What
seems conspicuously absent from the current discussion is
the appreciation of how much interindividual genetic varia-
tion influences the clinical response to �-blocker therapy.
Genetic variation in the adrenergic signaling pathway is com-
mon, and has a major impact on adrenergic receptor function
and �-blocker efficacy in other cardiovascular diseases, such
as heart failure and hypertension. Genetic variation in the
cytochrome P450 2D6, or CYP2D6, enzyme, which is re-
sponsible for the metabolism of most �-blockers, is also im-
portant and can lead to poor metabolizing of �-blockers
(potential toxicity) or their ultra-rapid degradation (de-
creased efficacy). Here, we review the molecular, cellular, and
physiologic consequences of polymorphisms in the adrener-
gic signaling pathway and CYP2D6 gene, and show that
these are likely relevant factors influencing efficacy, safety,

and toxicity of �-blocker therapy in prevention and treat-
ment of perioperative myocardial infarction.

T HE use of �-blockers has been considered the standard
of care to reduce myocardial ischemia and infarction

both during and after noncardiac surgery, and has been rec-
ommended by international practice guidelines.1,2 However,
since the publication of the POISE study in 2008,3 a large
clinical trial with more than 8,000 patients that showed an
increased risk of death and stroke among patients random-
ized to receive metoprolol in these settings, the use of
�-blockers to reduce perioperative cardiac risk has become
controversial. Although the debate is still ongoing and the
controversy is far from being settled,4 one crucial aspect re-
garding the efficacy and safety of �-blockers in the perioper-
ative period has not been explored: the influence of genetic
factors.

Ample evidence exists that the individual response to
�-blockers in other clinical settings is substantially influ-
enced by genetic variation in adrenergic signaling5–8 and
drug metabolism pathways, most notably in the cytochrome
P450 2D6, or CYP2D6, enzyme,9–12 which is responsible
for the metabolism of most �-blockers.13 Here we provide a
concise overview of the genetic variability within these path-
ways relevant to �-blocker responses. Furthermore, we dis-
cuss potential links between genetic factors and the risk for
the adverse outcomes during �-blocker treatment, such as
hypotension and stroke, observed in recent clinical trials in
the perioperative period.3,14–18

Perioperative Myocardial Infarction—A
Hidden Epidemic

Perioperative myocardial infarction, or MI, is a common and
serious complication after surgery, often referred to as a “hid-
den epidemic.”19,20 A recent study among 85,000 inpatient
surgeries showed an overall incidence rate of 0.5% for peri-
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operative MI, which was associated with a 30–40% mortal-
ity rate.21 The risk for perioperative MI is at least on an order
of magnitude higher among patients with preexisting cor-
onary artery disease undergoing major noncardiac surgery
(reported risk: 5–6%).14,22–24,105 Taking into account that
an estimated 230 million surgeries are performed annually
worldwide, more than 1 million patients are expected to
suffer from perioperative MI or cardiac death each year.

The Pathophysiology of Perioperative MI
Several important differences exist between perioperative MI
and acute MI in a nonoperative setting.20 Perioperative myo-
cardial ischemia and infarction are often “silent,” with min-
imal classic clinical symptoms of an acute MI, such as chest
pain or dyspnea.23,25–27

Two major causes of perioperative MI can be distin-
guished.28,29 The first cause involves the destabilization of a
vulnerable atherosclerotic plaque, followed by acute coro-
nary artery thrombosis, and subsequent myocardial ischemia
and infarction.30 Causes for plaque destabilization in the
perioperative period are manifold, but the most apparent are
surgical stress resulting in hypertension, tachycardia, and in-
creased catecholamine levels, and hypercoagulability caused
by surgical trauma. This pathophysiological process is iden-
tical to an acute coronary syndrome.31 Although potentially
fatal, the minority of perioperative MIs, however, are caused
by an acute coronary syndrome.

The second, more common, mechanism for perioperative
MI is an imbalance between myocardial oxygen demand and
supply. In the setting of stable coronary artery disease with
fixed atherosclerotic lesions, events resulting in higher oxy-
gen demands in the myocardium that cannot be met by the
limited blood flow can lead to myocardial ischemia and in-
farction. Common reasons for high myocardial oxygen de-
mand and/or reduced oxygen supply in the perioperative
period include tachycardia, acute hemorrhage, hypotension,
hypoxemia, hypertension (increased myocardial wall stress),
fever, and sepsis syndrome. In addition, endothelial dysfunc-
tion also plays a crucial role.32,33 Clinically, this type of peri-
operative MI resembles a non-ST segment elevation MI and
is typically associated with a smaller increase in cardiac bio-
markers than an acute coronary syndrome.23–25,34–41

Common to both mechanisms is the activation of the
sympathetic nervous system, which increases heart rate
and cardiac oxygen consumption by catecholamine-medi-
ated activation of �-adrenergic receptors, or �AR, on the
myocardium. A logical intervention to potentially prevent
myocardial ischemia in the perioperative period is the
administration of �AR antagonists, or �-blockers, to de-
crease myocardial energy expenditure.

�-blockers in the Prevention of
Perioperative MI
Because of results showing a significant reduction in mortal-
ity among patients with acute coronary syndrome who were

treated with �-blockers,42,43 clinicians concerned about peri-
operative myocardial infarction reasoned that �-blockers
may provide the same benefits to surgical patients. Mangano
et al. showed in the 1990s that prophylactic atenolol reduced
perioperative myocardial ischemia by 50%, and the inci-
dence of cardiac deaths after noncardiac surgery by 10% in
patients with or at risk for coronary artery disease.44,45 When
bisoprolol was given to high-risk patients who had a positive
dobutamine stress echocardiography 30 days before surgery
in the unblinded DECREASE I trial, a similar observation
was made: nonfatal MI and cardiac death rates were signifi-
cantly lower in patients who received bisoprolol compared
with placebo.46 These consistent findings along with evi-
dence from the efficacy of �-blockers in acute coronary syn-
drome led to a strong recommendation (class I and IIa) by
the American College of Cardiology and the American Heart
Association in their 2002 guideline for perioperative evalua-
tion for noncardiac surgery.47 However, a systematic review
published in 2005, which included a meta-analysis of all
randomized controlled trials that evaluated �-blockers in
noncardiac surgery, raised new issues. This analysis showed
that �-blockers were likely efficacious in lowering the rate of
perioperative MI and cardiac death, but were also associated
with a substantial risk for adverse cardiovascular side effects,
such as hypotension and bradycardia requiring treatment,
suggesting that there was risk of hypoperfusion of other or-
gan systems.48 Two large randomized controlled trials were
published in 2006, in which patients undergoing major non-
cardiac surgery who received either metoprolol or placebo on
the day of or 1 day before surgery had no difference in post-
operative cardiovascular morbidity or overall mortality.15,17

The authors from both trials concluded that �-blockers were
not effective in reducing the rate of postoperative cardiac
events. Two years later in 2008, the largest perioperative
�-blocker study so far, the POISE trial, was published.3 The
POISE study randomized more than 8,300 �-blocker-naïve
patients to either extended-release metoprolol or placebo on
the morning of and for 30 days after surgery, and used a
composite of nonfatal MI, cardiovascular death, and nonfa-
tal cardiac arrest as primary outcome. The results indicated
that metoprolol usage was associated with reduced risk for
MI and the composite endpoint (hazard ratio of 0.84 and
0.73, respectively), but also was associated with significantly
higher risks for death and stroke (hazard ratio 1.33 and 2.17,
respectively) compared with placebo. A subsequent meta-
analysis including 33 trials with more than 12,300 patients,
which was largely driven by the POISE data, found similar
results and concluded that evidence did not support the use
of �-blockers to prevent perioperative cardiovascular events
in noncardiac surgery.49 In the light of these data and the fact
that patients who were chronically titrated to �-blockers had
reportedly better outcomes (which is supported by two very
recent studies50,51), the 2007 American College of Cardiol-
ogy/American Heart Association guidelines2 were again up-
dated in 2009 to reflect the new evidence, and now recom-
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mend the use of �-blockers titrated to heart rate and blood
pressure.1

�-blockers are most often used in the treatment of hyper-
tension, angina, and myocardial infarction, and, more re-
cently, congestive heart failure. By antagonizing the action of
norepinephrine and epinephrine on �1- or �2-adrenergic re-
ceptors expressed on cardiac myocytes, these agents can fully,
or partially, block these actions of the sympathetic nervous
system. The source of cardiac norepinephrine is, from its
release from the prejunctional cleft of sympathetic neurons,
innervating the heart (fig. 1). The release of norepinephrine
is, in part, mediated by a negative feedback loop by �2AAR
and �2CAR expressed on the prejunctional cleft: increased
norepinephrine in the cleft binds these �2AR subtypes,
which depress subsequent release.52 This mechanism is one
of several that are thought to regulate neurotransmitter re-
lease and potentially mitigate against “over-stimulation.”
There is also evidence that prejunctional �2AR can regulate
release in a positive feedback loop,53 although norepineph-
rine has a low affinity for the �2AR subtype. The source for
epinephrine is systemic in nature, arising from the adrenal
gland. In the “basal-state,” sympathetic nervous activity at
the heart is modest at best, as indicated by a small decrease in
resting heart rate from a single dose of atenolol in normal
subjects. However, when activated by the aforementioned
perioperative conditions, such as pain and surgical stress,
sympathetic nervous activity can be marked, with �-blocker
administration causing a substantial reduction in heart rate,
cardiac contractility, and myocardial oxygen consumption.

Recent evidence, however, suggests that there is substan-
tial interindividual difference in how patients respond to
�-blockers: Some patients experience strong side effects such
as excessive hypotension and bradycardia, whereas others ex-
perience no measurable response. Several lines of evidence
suggest that the individual genetic background is responsible
for these observed response differences.

Impact of Genetic Polymorphisms on
�-blocker Response
The most common form of genetic variation is the exchange
of a single base pair in the DNA strand; this is referred to as
single nucleotide polymorphism, or SNP (for a list of com-
monly used genetic terms, please refer to the appendix). The
genome of a human contains approximately 3 billion (3 �
109) base pairs, and each individual harbors approximately
10–20 million SNPs. Most of these SNPs are silent as they
fall outside of the coding region of genes, or exons. Of those
in the coding region, some do not change the encoded amino
acid because of redundancy of the genetic code. These are
termed “synonymous” SNPs, and those that result in the
encoding of a different amino acid are termed “nonsynony-
mous” SNPs. Noncoding SNPs, such as those in gene pro-
moter regions, may also have significant effects leading to
clinical phenotypes. Within the genes of interest that are
discussed in this review, there is the 1 s coding for adrenergic
receptors and cytochrome P450, as well as several important
nonsynonymous SNPs known for their functional conse-
quence on the receptor and enzyme function. Nonsynony-
mous SNPs commonly cause a reduced function or activity
of the affected protein, but on rare occasions novel protein
functions may result. In the next section, we will discuss the
most important SNPs and gene variants within adrenergic
receptors and the �-blocker-metabolizing cytochrome P450
2D6 enzyme.

Genetic Variation of the Cardiac
Adrenergic Axis

�2-adrenergic Receptors
As introduced above and summarized in figure 1, there are
multiple receptor pathways that might influence �-blocker
response, and if genetic variations in these pathways are pres-
ent, they could represent the basis for interindividual varia-
tion in the response to perioperative �-blockers. The physi-
ologic effect of �-blockers is dependent, in part, on the
presence of a cardiac �AR agonist to antagonize. Thus poly-
morphisms (defined as a genetic variation with a prevalence
of more than 5% in a population) of the �2A and the �2CAR,
which partially control norepinephrine release, could alter
�-blocker responsiveness.54,55 Within the coding block of
the intronless (consisting only of a single exon) �2AAR gene,
there is one nonsynonymous polymorphism. At amino acid
position 251, the most common allele results in Aspargine,
but a relatively rare polymorphism results in an encoded

Fig. 1. Cardiac adrenergic receptors and polymorphisms rel-
evant to �-blocker responsiveness. Shown are the presyn-
aptic �2A- and �2CARs, which when activated by epinephrine
or norepinephrine, decrease norepinephrine release from the
presynaptic nerve terminal. Presynaptic �2AR activation in-
creases norepinephrine release: on the cardiomyocyte, cat-
echolamine-activated �1AR and �2AR increase inotropy and
chronotropy, and can under-signal dampening because of
receptor phosphorylation by GRKs (G-protein coupled recep-
tor kinase).

Genetic Variation in �-blocker Therapy
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Lysine (table 1, fig. 2). In African-Americans the frequency
of the �2ALys251allele is 4%; in Caucasians it is 0.4%. In
functional studies using the wild-type and Lysine variant
recombinantly expressed in Chinese hamster ovary cells, the
�2ALys251 receptor had an approximately 50% increase in
function.56 Thus, the minor variant represents a gain-of-
function, and if present in an individual would be expected
to be manifested as a decrease in norepinephrine release,
compared with an individual expressing �2AAsn251, under
the same stimulation. Given the rare prevalence of
�2ALys251, this variant has not been studied in clinical trials.
In contrast, a coding polymorphism of the �2CAR, which
consists of an in-frame deletion of 12 nucleotides and results
in deletion of four amino acids, occurs in approximately 40%
of African-Americans and approximately 3% in Caucasians.
This deletion is in the third intracellular loop of the receptor,
and results in a nearly complete loss of function because of

loss of receptor coupling to its cognate G-protein, or Gi.
57

This polymorphism, termed �2CDel322–325, has been as-
sociated with increased norepinephrine (or its transporter) in
the cardiac presynaptic cleft,58 increased risk for heart fail-
ure,59 and a significantly reduced survival benefit in heart
failure patients when taking the �-blocker bucindolol.54 The
other presynaptic adrenergic receptor that has been thought
to have some control over norepinephrine release is the
�2AR, although the relevance is less certain as compared with
the �2A- and �2CAR. The �2AR is also polymorphic, and
will be discussed below in the context of myocardial adren-
ergic receptor.

�1-adrenergic Receptor Polymorphisms
�1AR are the predominant �AR in the heart and mediate an
increase in heart rate and contractility. �1AR are encoded by
the ADRB1 gene, which consists only of a single coding
block, or exon. Myocyte �1AR are a major target for epi-
nephrine and norepinephrine. Not only does this subtype
increase cardiac inotropy and chronotropy, signaling of
�1AR has been shown to evoke specific proapoptosis sig-
nals.60 A common polymorphism of the �1AR is observed at
amino acid position 389, where Arginine (Arg) or Glycine
(Gly) can be found (table 1, fig. 2). The originally cloned
�1AR had a Glycine at this position, but it is now clear that
in African-Americans, Glycine and Arginine allele fre-
quencies are approximately the same, and in Caucasians
the Arginine allele frequency is approximately 70%. In
transfected cells, we found that �1Arg389 exhibited a
threefold-greater stimulation of adenylyl cyclase and cyclic
adenosine monophosphate compared with �1Gly389.61

This was found to be because of an increase in the forma-
tion of the agonist-receptor-Gs complex. The gain-of-
function was also observed in [35S]GTP�S binding stud-
ies, confirming that the phenotype was because of
enhanced coupling of the receptor to G�s.

Transgenic mice were then constructed62 to express
�1Arg389 and -Gly389 receptor in cardiomyocytes in a tar-
geted manner using the �-myocin heavy chain promoter. In
lines with equivalent expression, we found higher basal and

Table 1. Localization of Polymorphisms of Selected Adrenergic Receptors or Related Genes

Receptor/
Protein Gene Reference “Variant”

Allele Frequency

PhenotypeCaucasians
African-

Americans

�2A ADRA2A Asparagine-251 Lysine-251 0.0040 0.040 Increased Coupling
�2C ADRA2C — Del322–325 0.04 0.43 Heart failure
�1 ADRB1 Serine-49 Glycine-49 0.15 0.15 Downregulation

— Arginine-389 Glycine-389 0.73 0.58 Decreased coupling
�2 ADRB2 Arginine-16 Glycine-16 0.61 0.50 Increased desensitization

— Glutamine-27 Glutamic acid-27 0.43 0.27 Reduced desensitization
— Threonine-164 Isoleucine-164a �0.02 �0.004 Loss-of-function

�3 ADRB3 Tryptophan-64 Arginine-64 0.10 ? Loss-of-function
GRK5 GRK5 Glutamine-41 Leucine-41 0.01 0.23 Enhanced desensitization

of �1AR

Fig. 2. Localization of the common polymorphisms of the
adrenergic receptors. The schematic shows a prototypic
7-transmembrane spanning receptor. The amino acid posi-
tions within the respective receptor protein are given,
whereas their physical positions within the prototypic recep-
tor are approximated.
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dobutamine-stimulated cardiac contractility in �1Arg389
mice compared with -Gly389 mice at 3 months of age.62

Interestingly, by 6 months of age Arg389 mice were unre-
sponsive to agonist, whereas Gly389 mice retained respon-
siveness and showed only a minor decline in agonist-pro-
moted contractility. At this juncture we considered the
possibility of a “phenotypic switch,” which might imply that
any pharmacogenomic effect would also have a time-depen-
dent element. However, this possibility was subsequently
shown not to be the case when we examined cardiac explants.
In these transgenic mice, we also observed a decrease in heart
rate to acutely or chronically administered �-blocker only in
the Arg389 mice, which was the first evidence that this locus
might have an effect on �-blocker outcomes in a clinical
setting.62 The basis for this appeared to be the greater poten-
tial for an enhanced inotropic state in hearts expressing
�1Arg389, and thus a higher potential to be antagonized by
a �-blocker back toward baseline. Subsequent studies in ex-
planted human hearts confirmed the enhanced function of
�1Arg389 in normal hearts, as well as hearts with end-stage
failure.63 The difference in maximal contraction between
Arg389 and Gly389 failing human hearts was not as pro-
nounced as was observed in normal hearts. So there was no
switch in the phenotype, because Arg389 remained the
hyperfunctioning receptor, but rather a dampening of the phe-
notypic difference between the variants as heart failure pro-
gresses. These results are consistent with studies of agonist-
promoted desensitization (which occurs in heart failure

caused by the increased catecholamines) of these two recep-
tors expressed in model cells, which showed that Arg389
undergoes greater desensitization than Gly389.64 In clinical
studies, �1Arg389 has been associated with enhanced exer-
cise capacity in heart failure65 and an improved mortality
outcome in response to �-blocker in heart failure.63 It should
be noted that in this latter study the �-blocker was bucin-
dolol, which had failed to show a group mean improvement
in survival. However, with patient stratification by �1AR
genotype, an improvement in survival was clearly evident for
those with the �1Arg389 genotype receiving bucindolol
compared with those with the same genotype receiving pla-
cebo, or the Gly389 genotype receiving bucindolol or pla-
cebo (fig. 3). These results highlight the potential for phar-
macogenomic markers to bring drugs, previously thought to
be ineffective, into use for selected populations based on
genotype. DNA from a placebo-controlled trial with other
�-blockers (such as metoprolol and carvedilol) using similar
outcomes is not available, so a direct comparison of these
results with different drugs has not been carried out. How-
ever, other studies without placebo arms have suggested that
the findings with bucindolol in heart failure may be unique
to that �-blocker.66 This may be because of the fact that
bucindolol acts as an inverse agonist at �1Arg389, but not
Gly389, whereas metoprolol and carvedilol are neutral an-
tagonists for both allelic forms of the receptor.63 As intro-
duced above, there appears to be a small but independent
effect of the �2CDel322–325 genotype on heart failure out-

Fig. 3. Pharmacogenetics of the �-blocker bucindolol in chronic heart failure. Shown are Kaplan-Meyer curves showing survival
stratified by treatment group and the �1Arg- or �1Gly389 polymorphism. Those with the �1Arg389 genotype receiving
bucindolol had a 38% improvement in survival over placebo patients of the same genotype. Gly389 carriers on bucindolol
showed no improvement. From Liggett SB et al., Proc Natl Acad Sci USA 2006; 103:11288–93. Reprinted with permission from
the National Academy of Sciences, USA.63

Genetic Variation in �-blocker Therapy
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come in response to bucindolol as well.54 The mechanisms
behind this effect are not altogether clear, but appear to be
because of a loss of counter-regulatory function during a
marked decrease in norepinephrine that is found in a subset
of heart failure patients treated with bucindolol. The
�1Arg389 polymorphism has also been associated with a
greater decrease in blood pressure during atenolol treatment
of hypertension67 and improved treatment outcomes in hy-
pertensive patients.68

A less common polymorphism of the �1AR is found in
the amino terminus, where Serine is substituted by Glycine.
The �1-Gly49 receptor appears to undergo enhanced ago-
nist-promoted down-regulation in recombinantly expressed
cell lines.69 The low allele frequency of Gly49 has generally
made investigations of this polymorphism not feasible be-
cause of statistical power considerations.

�2-adrenergic Receptor Polymorphisms
�2AR, encoded by the ADRB2 gene, are widely expressed in
virtually all cell types. Their presence on smooth muscle me-
diates relaxation and thus dilation of vasculature and the
airways. Their somewhat more limited expression on cardiac
myocytes mediates increased inotropy and chonotropy, as
well as antiapoptotic effects. The �2AR has three nonsynony-
mous, or amino acid-changing, polymorphisms at amino
acid positions 16, 27, and 164. The most pronounced phe-
notype is the substitution of Isoleucine for Threonine at
position 164, which is in the fourth transmembrane domain
of the �2AR. The �2Ile164 receptor is markedly uncoupled
from stimulation of adenylyl cyclase caused by impaired ag-
onist-receptor interaction.70,71 However, the variant is rare,
with the heterozygous state being found in less than 5% of
the population. A homozygous individual has never been
reported. In heart failure patients, �2Ile164 is associated with
a marked decrease in exercise capacity in otherwise matched
patients,72 and also increased mortality.73 �-blocker respon-
siveness has not been adequately assessed with this variant
because of its low allele frequency. The other two polymor-
phisms at positions 16 and 27 are in the extracellular amino
terminus of the �2AR, and appear to have effects on agonist-
promoted down-regulation of the receptor.74,75 In terms of
pharmacogenetics, these two polymorphisms have been pri-
marily studied in the context of �-agonist treatment for
asthma.76 However, several studies have indicated that the
polymorphism at 16 and/or 27 may have effects on heart
failure survival during �-blocker therapy (including “�1-spe-
cific antagonists”).77,78 The molecular basis for these obser-
vations remains unclear.

�3-adrenergic Receptor Polymorphisms
Of adrenergic receptors, the �3AR is the least understood
in terms of cardiovascular function.79 Initial work showed
that the �3AR has an important role in regulating metab-
olism in adipocytes.80 Recent data, however, suggest that
�3ARs mediate vasodilation when �1AR and �2AR are

not functional, perhaps preventing excessive overstimula-
tion by catecholamines.81 Other studies have demon-
strated that activation of �3AR increases formation of
nitric oxide and evokes a decrease in inotropy.82,83 One
polymorphism has been identified in the coding region of
this receptor (ADRB3 gene), at position 64 (Tryptophan/
Arginine). One group has reported that the Arginine re-
ceptor has depressed agonist-promoted coupling to cyclic
adenosine monophosphate production,84 although an-
other group has found no differences.85 Several studies
have suggested relationships between �3AR alleles and
cardiac or metabolic risk factors.86,87 A recent paper
showed that in diabetic patients �3AR are often up-regu-
lated, whereas �1AR are simultaneously down-regulated,88

which may result in an altered response to �-blocker therapy.

GRK5 Polymorphisms
In addition to these variations in the relevant receptors, one
polymorphism in the second messenger system within a G-
protein-coupled receptor kinase (GRK5) has recently shown
in vitro and in vivo evidence for relevance to �-blocker re-
sponsiveness.89 The GRKs phosphorylate multiple G-pro-
tein coupled receptors during agonist activation, which acts
to partially uncouple the receptor form Gs, and is a major
mechanism of desensitization. A nonsynonymous polymor-
phism of GRK5, where the major allele Glutamine at amino
acid position 41 is substituted by Leucine, has been found.89

It is prevalent in African-Americans but not Caucasians, as
seen in table 1. In transfected cells and transgenic mice,
GRK5-L41 has been shown to exhibit enhanced desensitiza-
tion of �1AR.89 In a mouse model of heart failure those mice
expressing GRK5-L41 were partially protected from failure
and had no additional benefit from �-blockers compared
with mice expressing the Q41 allele. Similar findings were
also observed in a prospective clinical trial in heart failure,
where those not receiving �-blockers but with the L41 allele
had survival similar to Q41 subjects on �-blocker and im-
proved survival over Q41 subjects not receiving �-blocker.
Thus GRK5-L41 acts as a “genetic �-blocker,” and when
present may obfuscate the need for these agents, or, may
indicate that a lower dosage is necessary to achieve the desired
outcome.

A recent study of the gene encoding the � subunit of Gs

(GNAS) showed that patients with a certain haplotype
had a significantly different G�s expression, cyclic aden-
osine monophosphate production, and cardiac perfor-
mance during cardiac surgery,90 indicating that genetic
variation within the adrenergic second messenger system
may also play an important role for how patients respond
to �-blockade.

Genetic Variation of Drug Metabolism of
�-blockers–Cytochrome P450 2D6
Genetic variation not only influences the pharmacodynam-
ics, but also the pharmacokinetics of �-blocker treatment.

EDUCATION

Anesthesiology 2011; 115:1316 –27 P. Nagele and S. B. Liggett1321

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/115/6/1316/255692/0000542-201112000-00032.pdf by guest on 10 April 2024



Most �-blockers, such as metoprolol and propranolol, are
extensively metabolized in the liver by cytochrome P450
2D6, or CYP2D6, a hepatic enzyme of the cytochrome P450
family.91 CYP2D6 is responsible for the phase I metabolism
of approximately 25% of all commonly used drugs and is
thus one of the most important drug-metabolizing en-
zymes.92,93 CYP2D6 is involved in the metabolism of anti-
depressants, antiemetics, anticancer drugs, antipsychotics,
opioids (tramadol, morphine, codeine), and �-blockers.

The CYP2D6 gene is very polymorphic, with close to 100
known variants.93,94 These CYP2D6 gene variants have a
major impact on the CYP2D6 enzyme activity, with some
variants resulting in a complete loss-of-function phenotype
whereas others lead to a gain-of-function. With �-blockers,
several studies have reported a clinically relevant, several-fold
difference in metoprolol plasma concentrations among pa-
tients with different CYP2D6 variants.95–97 The ability of
the CYP2D6 enzyme to metabolize substrates has been strat-
ified into four classes: ultra-rapid metabolizers (UM), exten-
sive metabolizers (EM, considered the normal phenotype),
intermediate metabolizers (intramuscular) and poor metabo-
lizers (PM).93 Table 2 lists the most important CYP2D6
alleles and haplotypes and their respective allele frequency.
The genetic basis of these CYP2D6 phenotypes has also been
ascribed to copy number variation within the CYP2D6 gene.
Copy number variation is defined as a variable number of
DNA segments compared with the reference genome and
include deletion, but also duplication or multiplication of
large segments (more than 1 kB) of DNA. For CYP2D6, the
most functional allele determines the phenotype. If an indi-
vidual has at least one fully functional CYP2D6 allele, the
resultant phenotype is considered wild-type or extensive me-
tabolizer. With one or two reduced-function alleles, an in-
termediate metabolizer phenotype results, and with two non-
functional alleles, for example because of deletion, a PM
phenotype results. On the contrary, if individuals possess
more than two copies of a fully functional CYP2D6 allele (up
to 13 have been described), likely after several ancestral du-

plication events, an UM phenotype ensues (fig. 4).94,98 It is
of note that substantial ethnic differences exist in the distri-
bution of CYP2D6 alleles: PM are more common in people
from European ancestry, whereas UM are more prevalent in
people from North Africa and Oceania.98

The functional consequences of copy number variants or
SNPs in CYP2D6 enzyme activity are nontrivial: Individuals
with a PM phenotype are unable to adequately metabolize
CYP2D6 substrates (e.g., drugs) and higher, potentially dan-

Table 2. Common and Important CYP2D6 Polymorphisms

CYP2D6
Allele/Haplotype Nucleotide Change

Metabolizer
Class Caucasians

African-
Americans

1 Reference EM(wild-type) 0.33–0.36 0.29–0.35
2 2850C�T, 4180G�C EM 0.22–0.33 0.18–0.27
3 2549delA PM 0.01–0.04 0
4 1846G�A PM 0.12–0.21 0.06–0.08
5 CYP2D6 deleted PM 0.02–0.07 0.06–0.07
6 1707delT PM 0.01 0
9 2,615–2617delAAG IM 0–0.02 0
10 100C�T IM 0.01–0.02 0.03–0.08
17 1023C�T, 2850C�T IM 0 0.15–0.23
29 1659G�A; 1661G�C; 2850C�T;

3183G�A;4180G�C
IM No data No data

41 2988G�A IM No data No data
UM Multiple copies UM 0.02 0.01–0.05

EM � extensive metabolizer; IM � intermediate metabolizer; PM � poor metabolizer; UM � ultrarapid metabolizer.

Fig. 4. Effects of CYP2D6 genotype on CYP2D6 substrate
metabolism. Extensive metabolizers have one or two normal
copies of the CYP2D6 gene and are considered wild-type. A
normal �-blocker dose will likely result in a therapeutic drug
concentration. Ultra-rapid metabolizers possess more than 2
functional copies (up to 13). A CYP2D6 substrate (e.g., meto-
prolol) will be rapidly metabolized and the drug effect mini-
mal. Intermediate metabolizers have one or two hypofunc-
tional CYP2D6 alleles, which result in a reduced CYP2D6
function. Substrate metabolism is reduced and higher drug
concentrations result with the possibility of an exaggerated
response. Poor metabolizers have two nonfunctional copies
of CYP2D6, which result in a nonfunctional enzyme. This may
lead to toxic drug concentrations.
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gerous, plasma drug concentrations can result. Patients with
an UM phenotype will rapidly metabolize the drug, and
plasma drug concentrations from standard dosing can be too
low to be efficacious. On the other hand, if a prodrug must be
metabolized into an active form by CYP2D6, an opposite
picture results: PM patients will not reach effective drug
concentrations, whereas UM patients will develop increased
plasma levels and are at higher risk for adverse drug effects.
An example for the latter is the case of a fatal morphine
poisoning in a neonate that was breastfed by a mother who
received codeine.99 Codeine is a prodrug that must be me-
tabolized by CYP2D6 to morphine, and because the mother
was a CYP2D6 UM and required high doses of codeine,
toxic plasma concentrations of morphine resulted in the
neonate.

It is of note that CYP2D6 is the only enzyme in the
cytochrome P450 family that is not inducible, which results
in a substantially higher contribution of genetic differences
to enzyme activity level and clinical phenotype. However,
CYP2D6 can be inhibited by many drugs and, as a conse-
quence, a lower enzyme activity may result than may be
expected simply based on the CYP2D6 genotype. This pro-
cess is called phenocopying. Two of the clinically most im-
portant inhibitors of CYP2D6 are paroxetine,100 a selective
serotonin reuptake inhibitor, and statins.101

The evidence clearly supports a major role of CYP2D6
polymorphisms in the pharmacokinetics of �-blockers, but
does this role also translate into relevant differences in clini-
cal outcomes? Current evidence suggests so. Several studies
independently found that patients with PM phenotype, who
were treated with metoprolol, had a higher risk to develop
bradycardia and lower blood pressure and had a higher inci-
dence of adverse drug reactions.9–12 UM subjects have been
reported to not achieve a therapeutic effect of standard dos-
ing of metoprolol10 (fig. 5). It is of note, however, that rou-

tine genotyping for CYP2D6 variants is not commonly per-
formed clinically.

Impact of Genetic Variation on the Use of
�-blockers in Perioperative MI
Data presented in the previous sections clearly show that
gene variants have a significant impact on the individual
response to �-blocker-therapy, but is there evidence to sup-
port the influence on perioperative myocardial infarction? A
study published in 2005 with more than 700 patients with
acute coronary syndrome who received standard �-blocker
therapy in the emergency department shows a significant
impact of ADRB2 genotype on survival.102

For perioperative �-blockade, three recent papers provide
indirect evidence that genetic variation in CYP2D6-depen-
dent metabolism as well as adrenergic signaling may influ-
ence outcomes.50,103,104 Particularly the apparent decreased
risk associated with atenolol, which is not metabolized by
CYP2D6, compared with metoprolol, which undergoes ex-
tensive CYP2D6-dependent metabolism, is very interesting.

Whether, however, the conditions of perioperative MI are
such that these polymorphisms have a significant impact on
outcomes, remains a critical question that needs to be ad-
dressed. The idea that “one drug fits all” is being questioned
in virtually all of clinical medicine. Given the apparent interin-
dividual variation in efficacy and adverse effects of �-blockers
for prevention of perioperative MI, the biologic plausibility, and
the low costs of genotyping by modern methods, it seems to us
that a rigorous pharmacogenomic investigation is indicated. Ul-
timately, this could lead to a “genetic scorecard” that would
recommend when a �-blocker should be used and the dose, for
prevention of perioperative MI. As these trials are being contem-
plated, we implore investigators in other current trials of peri-
operative MI prevention to collect blood for archival purposes
so that a DNA bank can be established and subsequent phar-
macogenomic hypotheses pursued.

In conclusion, we believe that there is strong evidence to
suspect that polymorphisms in the adrenergic signaling path-
way and CYP2D6-dependent �-blocker metabolism influ-
ence efficacy, safety and toxicity of �-blocker therapy in pre-
vention and treatment of perioperative MI. It is to be
expected that the emphasis on careful �-blocker dose titra-
tion, as recommended in the most recent American College
of Cardiology/American Heart Association guidelines,1

might lessen the disparate effects of genetic polymorphisms.
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Appendix: Glossary
Allele: A version of a gene. Usually two or more versions exist.

Codon: Sequence of three nucleotides of DNA that encodes a single
amino acid.

Exon: Nucleic acid sequence, usually within a gene, that is tran-
scribed into messenger RNA and protein often after splicing which
removes introns.

Gene: Commonly defined as a stretch of DNA that encodes for a
protein or RNA; in humans, genes often consist of multiple exons
and introns and may span tens of thousands of base pairs.

Intron: Nucleic acid sequence within a gene that is removed before
the gene is transcribed into protein by splicing.

Locus: Specific position on a chromosome.

Mutation: Rare changes in the DNA sequence; in classic genetics
mutations are often associated with specific traits.

Nonsynonymous: A DNA substitution that causes a change in the
amino acid sequence of a protein.

Polymorphism: A variation in DNA sequence as compared with
a “reference” sequence (usually the more common allele). Typ-
ically, polymorphisms are so noted when the frequency is greater
than 1% in a given population. A single-nucleotide polymor-
phism changes only a single nucleotide and is the most common
form of genetic variation.
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