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ABSTRACT

Nerve growth factor (NGF) was originally discovered as a neu-
rotrophic factor essential for the survival of sensory and sympa-
thetic neurons during development. However, in the adult
NGF has been found to play an important role in nociceptor
sensitization after tissue injury. The authors outline mechanisms
by which NGF activation of its cognate receptor, tropomyosin-
related kinase A receptor, regulates a host of ion channels, recep-
tors, and signaling molecules to enhance acute and chronic pain.
The authors also document that peripherally restricted antago-

nism of NGF-tropomyosin-related kinase A receptor signaling
is effective for controlling human pain while appearing to main-
tain normal nociceptor function. Understanding whether there
are any unexpected adverse events and how humans may change
their behavior and use of the injured/degenerating tissue after
significant pain relief without sedation will be required to fully
appreciate the patient populations that may benefit from these
therapies targeting NGF.

P AIN is essential for the protective sensibility that en-
ables the avoidance of tissue injury and promotes heal-

ing after injury. However, many types of chronic pain be-
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of life. Persistent chronic inflammatory, neuropathic, and
cancer pain present major health challenges throughout the
world.1,2 However, management of chronic pain is often
ineffective or incomplete3,4 because current therapies are far
from ideal, attributable in part to a high incidence of dose-
limiting side effects.4,5 Indeed, few current treatments effec-
tively control chronic pain without unwanted side effects
and/or abuse liability.

International guidelines recommend a multimodal combi-
nation of pharmacologic and nonpharmacologic modalities as
the most effective strategy for managing chronic pain and its
associated disabilities; the goal of treatment should be to effec-
tively reduce pain and suffering while improving function.6

Acetaminophen (paracetamol), nonsteroidal antiinflammatory
drugs such as ibuprofen and cyclooxygenase-2 inhibitors, and
opioids such as tramadol or morphine are the gold standard
analgesic drugs in clinical practice. However, concerns regard-
ing the cardiovascular risks of cyclooxygenase-2 inhibitors and
the gastrointestinal and renal side effects of nonsteroidal antiin-
flammatory drugs may limit the use of these medications.7

Where more conservative methods have failed, appropriately
dosed and monitored opioids are associated with a decreased
incidence of organ toxicity and fewer potentially life-threatening
complications than are nonsteroidal antiinflammatory drugs.6,8–10

However, there is a broad spectrum of opioid-mediated side effects
and liabilities, including loss of drug effectiveness, constipation (the
most common long-term side effect causing noncompliance), drug
diversion, respiratory depression, and accidental death caused by
overdose.

The effective management of chronic pain can improve pa-
tients’ quality of life, functional status, and reduce healthcare
costs.4,11 However, despite significant advances in our under-
standing of the pathophysiology of chronic pain,12 its manage-
ment continues to challenge physicians.3 The development of
new agents for managing chronic pain without significant car-
diovascular, gastrointestinal, or central nervous system side ef-
fects remains a significant, unmet clinical need.

In the current article, we present evidence for a new ap-
proach to the management of chronic pain that targets the
effects elicited by nerve growth factor (NGF). The major
objectives of this article are to review the science behind
targeting NGF or its cognate receptor tropomyosin-related
kinase A receptor (TrkA) for the relief of pain, outline the
preclinical and clinical data suggesting that these therapies
may be efficacious for relieving several types of chronic pain,
and discuss potential side effects of these therapies. For more
detailed and exhaustive scientific discussion of NGF and its
receptors, there are several excellent reviews.13–16

NGF Belongs to a Family of Neurotrophins
Nerve growth factor belongs to a family of molecules known
as neurotrophins, which are approximately 12.5-kd proteins
that form tightly bound homodimers. The neurotrophin
family of target-derived proteins regulates the survival, devel-
opment, and function of subsets of sensory and sympathetic

neurons.17,18 Other mammalian members of the neurotro-
phin family are brain-derived neurotrophic factor (BDNF),
neurotrophin-3 and neurotrophin-4/5. The specificity of ac-
tion of these molecules is a result of their binding specificity
to a family of receptors called tropomyosin-related kinase
(Trk) receptors.19 TrkA preferentially binds NGF; TrkB
binds both BDNF and neurotrophin-4/5; and TrkC binds
neurotrophin-3. Neurotrophins also signal via a second re-
ceptor called the p75 receptor, which binds all neurotrophins
(i.e., there is little specificity exerted via the p75 receptor).
Trk receptors often are referred to as high-affinity receptors,
in contrast to the low affinity p75 receptor. However, the
difference between Trk and p75 receptors is not one of af-
finity but rather kinetics.

NGF binds to TrkA, whereupon the NGF-TrkA complex
is internalized and transported from peripheral terminals to
sensory cell bodies in the dorsal root ganglion (DRG).20–22

Evidence from several sources suggests that NGF cannot ini-
tiate signaling in the cell soma and that instead the NGF-
TrkA complex activates transcription factors that control
downstream gene expression.21,23 Interactions between p75
and TrkA receptors in determining the response to NGF
have been reported.24,25 Furthermore, there is evidence that
NGF and BDNF can sensitize the discharge of sensory neu-
rons through p75 receptors.26,27 However, because this re-
view is directed toward the effects of NGF in enhancing
acute and chronic pain in the adult, and Trk antagonists also
produce significant relief of chronic pain, in this review we
focus on the NGF-TrkA system.

The NGF-TrkA Nociceptor Axis: From
Development to Adulthood
The role of NGF in neuronal development has been known
since its discovery nearly 60 yr ago.28 NGF plays a critical role in
the development of the peripheral nervous system by promoting
growth and survival of some neural crest-derived cells in devel-
oping embryos, in particular sensory and sympathetic neu-
rons.28,29 An important documentation of these relationships is
that selective mutations in NGF or TrkA genes cause congenital
insensitivity to pain in humans and loss of pain behaviors in
genetically altered mice.30–34 For example, congenital insensi-
tivity to pain with anhidrosis, a human condition in which
patients generally have normal proprioception and normal sen-
sation to innocuous pressure but abnormal sensation to thermal
stimuli, is caused by a mutation in the TrkA gene35 that results
in a structural neuropathy affecting unmyelinated peripheral
nerve fibers. Indeed, genetically modified animals lacking the
NGF or TrkA gene are born with virtually no small-caliber
primary sensory neurons and are profoundly unresponsive to
noxious stimuli.19,32,33

Studies of NGF deprivation during critical periods of
growth support the results of these genetic manipulation
experiments. One method of producing long-term NGF de-
privation is by immunizing animals to induce autoimmunity
against NGF. Such studies have reported that NGF is in-

Mechanisms of Pain Reduction via NGF-TrkA Inhibition

Anesthesiology 2011; 115:189 –204 Mantyh et al.190

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/115/1/189/255083/0000542-201107000-00035.pdf by guest on 10 April 2024



volved in maintenance of sympathetic neurons and the reg-
ulation of the substance P (SP) content of embryonic and
neonatal sensory neurons.36,37 Immunizing pregnant rats
against NGF causes depletion of SP in DRG neurons in
animals exposed in utero or as newborns,38,39 although the
regenerative capacity of DRG neurons after axotomy in
NGF-immunized animals was unimpaired.37 Anti-NGF an-
tibody administered during early postnatal development in
rats has revealed that DRG neurons lose the requirement for
NGF for survival shortly after birth, but NGF still has an
influence on the phenotype of nociceptors for another 10 d.
This was shown by demonstrating that withdrawal of NGF
during a critical period led to a developmental switch of
high-threshold mechanoreceptors to sensitive mechanore-
ceptors, which normally are relatively rare.40 Importantly,
this phenotypic switch of nociceptors occurs in the absence
of cell death, despite the loss of NGF.41

Collectively, immunologic and genetic studies of NGF de-
privation during development and maturation demonstrate
that NGF has three separate roles—one for survival and devel-
opment of sensory and sympathetic neurons, the second in
maintaining the peptidergic phenotype of primary afferent neu-
rons in the early postnatal period, and the third being a key
upstream modulator of the expression and sensitization of a
variety of neurotransmitter, receptor, and ion channels ex-
pressed by adult nociceptors. However, whether adult sensory
neurons require NGF for maintenance of their phenotype and,
if so, how much NGF remains to be determined.

NGF-TrkA Signaling, Nociceptors, and Pain
in the Adult

A Role for NGF in Nociception in the Adult
A role for NGF has been demonstrated in acute, transient
nociceptive responses and in longer-term, chronic pain.42–45

As early as 1977, a report that NGF exerts effects on mast
cells suggested that the physiologic effects of NGF were not
limited to neuronal development and maturation.42 The in-
volvement of NGF in nociception and the ability of NGF to
sensitize nociceptors occurs only after sensory fibers have lost
their dependence on NGF for survival.46 As we discuss be-
low, the NGF-TrkA axis appears to play a pivotal role in the
early, intermediate, and long-term generation and mainte-
nance of several types of acute and chronic pain.

An important point in assessing the involvement of the
NGF/TrkA pathway in driving a particular chronic pain
state is the issue of the specific populations of primary affer-
ent sensory nerve fibers that innervate the injured/diseased
tissue. Four broad subtypes of primary sensory neurons have
been characterized within the DRG, of which three broad
categories are known to be important in nociceptive trans-
mission in the normal animal: thin myelinated A�-fibers,
peptidergic unmyelinated (C-) fibers, and nonpeptidergic
unmyelinated (C-) fibers.47 Peptidergic C-fibers and the ma-
jority of A�-fibers express TrkA, corresponding to approxi-
mately 40% of adult DRG cells,48 and are responsive to

NGF.47,48 These TrkA-positive fibers innervate skin, viscera,
muscle, and bone.49–52 In contrast, nonpeptidergic C-fibers
(which express c-RET or the binding site for the lectin Grif-
fonia simplicifolia IB4) lack TrkA or p75 and thus are unre-
sponsive to NGF (TrkA-negative); these fibers innervate skin
but not the skeleton.52–54 These data suggest that a key factor to
consider when assessing the analgesic efficacy of targeting NGF-
TrkA signaling in an acute or chronic pain state is the fraction of
NGF-responsive (TrkA-positive) nociceptors that innervate the
tissue from which the pain is arising because this innervation,
and thus the analgesic efficacy of targeting NGF-TrkA signal-
ing, may vary considerably from tissue to tissue.

Direct Actions of NGF
The pivotal role of NGF in inflammatory pain is exemplified
by the expression and/or release of NGF by certain inflam-
matory cells, including eosinophils, lymphocytes, macro-
phages,55,56 and mast cells,57 as a consequence of injury (fig.
1). Moreover, NGF is up-regulated in experimental models
of inflammation, including those induced by carrageenan,
formalin, and complete Freund’s adjuvant,45,58–60 as well as
in models of autoimmune arthritis61 and ultraviolet-B-radi-
ation–induced acute inflammation.62 Cutaneous adminis-
tration of NGF to rodents63 and humans64 causes hyperal-
gesia within 1 or 3 h, respectively, suggesting that NGF leads
to a relatively rapid sensitization of cutaneous nociceptors.
These rapid effects in the rat are thought to be mediated
primarily through NGF binding with TrkA expressed on
mast cells, causing degranulation and release of a variety of
algogenic mediators, such as histamine, prostaglandin E2,
serotonin, hydrogen ions, and bradykinin, as well as addi-
tional NGF (fig. 1b), although the contribution of mast cells
is not as clear in humans. NGF can also be produced by
noninflammatory cells, such as keratinocytes65 and endothe-
lial cells,66 in addition to other inflammatory cells, such as
fibroblasts67 and T cells, in various in vitro culture models.68

The NGF-induced release of inflammatory mediators
from mast cells contributes to the sensitization of polymodal
nociceptors. In addition, NGF binds TrkA receptors ex-
pressed on the peptidergic fiber terminal (fig. 1), leading to
sensitization of primary afferent nociceptors to thermal and
chemical stimuli in vitro and in vivo.69,70 This NGF-TrkA
activation of intracellular signaling cascades in the primary
afferent neurons results in sensitization or increased expres-
sion of a number of receptors and channels at the membrane
surface, including transient receptor potential vanilloid 1
(TRPV1), acid-sensing ion channels 2 and 3, endothelin
receptors, bradykinin receptors, voltage-gated sodium, and
calcium channels, delayed rectifier potassium currents, and
putative mechanotransducers,59,71–73 that contribute to im-
mediate hypersensitivity after inflammation (fig. 1b).

An important mechanism seen within minutes to hours of
NGF-TrkA binding is the sensitization of the heat-sensitive ion
channel TRPV169,74 expressed by small-diameter peptidergic
fibers. Acute sensitization of TRPV1 by NGF may involve di-
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rect phosphorylation, at least partly because of TrkA-mediated
activation of p38 mitogen-activated protein kinases75 or phos-
phoinositol-3 kinase and disinhibition after hydrolysis of phos-
phatidylinositol-4,5-bisphosphate.76,77 Ultimately, sensitiza-

tion of TRPV1 decreases the temperature threshold of sensory
neurons to noxious heat.75–77 However, this does not happen at
the level of individual TRPV1 channels recorded in dissociated
DRG cells; the inward current response to noxious heat in-

Fig. 1. Schematic showing the neurotransmitters, receptors and ion channels that are modulated and up-regulated by NGF binding
to TrkA-positive primary afferent sensory nerve fibers. Tropomyosin-related kinase A receptor (TrkA)-positive primary afferent nerve
fibers have their cell body in the dorsal root ganglia (DRG) and transmit sensory information from the periphery to the spinal cord and
brain. During inflammation, injury, or certain diseases, inflammatory, immune, or Schwann cells release nerve growth factor (NGF) that
binds to TrkA, which in turns directly activates and/or sensitizes nociceptors (A). NGF and its cognate receptor TrkA are transported
in a retrograde direction to the DRG, resulting in increased synthesis of neuropeptides (e.g., substance P [SP], brain-derived
neurotrophic factor [BDNF]), receptors, ion channels, and anterograde transport of certain neurotransmitters, receptors, and ion
channels from the DRG to the periphery tissue and spinal cord. NGF is released during inflammatory injury, principally from mast cells
but also from other recruited cells (B). Binding of NGF to TrkA on mast cells causes release of inflammatory mediators, such as
histamine, serotonin (5HT), and protons (H�), as well as NGF. Binding of NGF to TrkA on the peptidergic (TrkA-positive) fiber terminal
activates intracellular signaling pathways (represented by arrows), which results in either increased expression (bold) or modulation
(1 or 2) at the membrane surface of a number of receptors, including bradykinin (BK) receptors (B2R); ion channels, including
transient receptor potential vanilloid 1 (TRPV1); acid-sensing ion channels (ASIC) 2/3; voltage-gated sodium (Nav) or calcium (Cav) ion
channels; delayed rectifier potassium (K�) currents; and putative mechanotransducers. These rapid changes (taking from minutes to
hours) in the afferent terminal modify the sensory fiber’s response to sensory stimuli and the propagation of sensory impulses to the
dorsal horn. CGRP � calcitonin gene-related peptide.
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creases as TRPV1 channels are translocated from the interior of
the cell to the plasma membrane,78,79 but the temperature
threshold does not change.74 Thus, any change in temperature
threshold of a thermal nociceptor caused by NGF-induced sen-
sitization of TRPV1 receptors results from a greater depolariza-
tion that causes the fiber to reach firing threshold at a lower
temperature.

Retrograde Transport of NGF-TrkA Drives
Transcriptional Changes in Nociceptors
After the period of immediate hypersensitivity with NGF
release after tissue injury, early transcriptional changes occur
in the sensory signaling pathway. Because NGF principally
signals via retrograde transport of the internalized NGF-
TrkA complex, there is a delay (from hours to days) before
some of NGF’s contribution to hypersensitivity is seen. After
retrograde transport to the DRG, the signal from the NGF-
TrkA complex can produce changes in sensory phenotype
through the switching on (and off) of gene promoters (fig. 2),
which leads to increased synthesis of peptides (e.g., SP, calci-
tonin gene-related peptide [CGRP], and BDNF), and of
nociceptor-specific ion channels (NaV 1.8, CaV 3.2, 3.3) at
the DRG.80–83 For example, exposure of TrkA-positive sen-
sory neurons to NGF increases expression of the nociceptive
acid-sensing ion channel 3 via control of the promoter region
of its gene.81 NGF-induced altered gene expression can also
lead to a change in phenotype, whereby a population of
sensory neurons switches from nonpeptidergic to peptidergic
and becomes more responsive to NGF.84 Peripheral and dor-
sal horn terminals of peptidergic fibers express increased lev-
els of peptides (SP, CGRP, and BDNF) as a result of these
proteins being packaged and transported in the retrograde
and anterograde directions from the soma (fig. 2).58,83 In-
deed, systemic administration of anti-NGF neutralizing an-
tibodies prevents the inflammation-induced up-regulation
of neuropeptides (SP, CGRP) and the increased expression
of the immediate early gene c-Fos in dorsal horn neurons
without modifying swelling and erythema.60 The peptides,
SP and CGRP on subsequent stimulation of the peptidergic
primary afferent neurons, may contribute to an exaggerated
inflammatory response.58,85 In addition, SP has been re-
ported to cause local expression of NGF in keratinocytes.86

NGF, BDNF, and Central Sensitization
A delayed phase of the inflammatory response to NGF (7 h
to 4 d after NGF-TrkA binding in rodents) involves an in-
direct effect of NGF on synaptic transmission between noci-
ceptors and second-order cells in laminae I and II of the
spinal cord via its effect on the release of peptides such as
BDNF (fig. 2).87 Evidence from 1994 suggests a role for the
glutamatergic N-methyl-D-aspartate channel because NGF-
induced behavioral hypersensitivity was selectively blocked
by the noncompetitive N-methyl-D-aspartate receptor antag-
onist MK-801.45 The N-methyl-D-aspartate receptor plays a
fundamental role in the development of wind-up and central

sensitization, mechanisms that are thought to contribute to
the development of facilitated sensory signals after in-
jury.88,89 One potential mechanism believed to contribute to
the development of central sensitization in the dorsal horn is

Fig. 2. Changes at the dorsal horn synapse after activation of
a TrkA-positive sensory nerve fiber. Longer-term (days) post-
translational effects of nerve growth factor (NGF)-tropomyo-
sin-related kinase A receptor (TrkA) binding and transport to
the dorsal root ganglion (DRG) include an increase (shown as
1) in the concentration of peptides (e.g., substance P [SP],
calcitonin gene-related peptide [CGRP], and brain-derived
neurotrophic factor [BDNF]) in dorsal horn terminals of pep-
tidergic (TrkA-positive) primary afferent neurons. Release of
these peptides, in addition to glutamate acting on �-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) re-
ceptors, on subsequent stimulation of peptidergic (TrkA-pos-
itive) primary afferent neurons and binding to their respective
receptors (SP to NK-1, CGRP to CGRP-R, BDNF to TrkB)
may cause strong depolarization of the postsynaptic second-
order projection neuron, changes in transcriptional activity in
the second-order projection neuron (e.g., increased expres-
sion of c-Fos), and ultimately removal of the magnesium
(Mg2�) block of the glutamatergic N-methyl-D-aspartate
(NMDA) receptor. BDNF acts specifically as a central modu-
lator via binding to postsynaptic TrkB receptors, whereupon
the BDNF-TrkB complex switches on intracellular protein
kinases, leading to phosphorylation of NMDA receptors and
facilitated opening. This increases the probability of central
sensitization and facilitated transmission through the dorsal
horn synapse and via third-order neurons to the sensory
cortex in the brain.
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Fig. 3. Nerve growth factor (NGF) induces sprouting and neuroma formation by sensory and sympathetic nerve fibers in a model
of skeletal pain. Confocal images of periosteum of bone were acquired from whole mount preparations, tiled and overlaid (to
scale) on a three-dimensional microcomputed tomography rendering of a sham femur (A) or sarcoma � vehicle femur (B),
respectively, using Amira� software (Visage Imaging, San Diego, CA). Note that the tumor-injected femur (B) has significant
cortical bone deterioration and a pathologic reorganization of calcitonin gene-related peptide (CGRP) nerve fibers (in red)
compared with the sham bone (A). The boxed areas in (A) and (B) correspond to the confocal images in (C) and (D), respectively.
High-power confocal images of nondecalcified whole mount preparations of the femoral periosteum from sham � vehicle (C)
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the NGF-dependent up-regulation of BDNF in peptidergic
nociceptors.90,91 In addition, BDNF is transported not only
in a retrograde direction to peripheral terminals, but also in
an anterograde direction from the DRG to terminals in the
dorsal horn (see fig. 2).91–93 BDNF is constitutively ex-
pressed in small and medium DRG neurons, and released
only with strong presynaptic stimulation.94 Upon release,
BDNF acts as a central modulator via postsynaptic TrkB, the
cognate receptor for BDNF.95,96 BDNF-TrkB binding on
second-order cells can activate intracellular protein kinases,
which can lead to phosphorylation of glutamate �-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors. This
phosphorylation has been shown to contribute to central sensi-
tization at the dorsal horn synapse, particularly in combination
with up-regulated peptides (SP and CGRP) acting on postsyn-
aptic receptors (fig. 2). BDNF up-regulation after peripheral
inflammation is NGF dependent because up-regulation is in-
hibited with administration of anti-NGF antibody.97 Behav-
ioral observations indicate that antagonism of central BDNF
attenuates the second (delayed) phase of hyperalgesia induced
by formalin and the thermal hyperalgesia induced by carra-
geenan in an NGF-dependent manner, demonstrating a role for
BDNF in hypersensitivity and pain.95 Collectively, the data
suggest that BDNF-dependent activation of TrkB signaling is
required for the development of the central sensitization process
that underlies the development of persistent heat and me-
chanical hypersensitivity in the setting of tissue inflamma-
tion or injury.98

These preclinical data point to a fundamental difference
between the role of NGF during growth and differentiation,
and its role in the adult sensory system when NGF-TrkA
becomes a major player in the modulation and sensitization
of a significant population of nociceptors that are involved in
driving chronic pain. As NGF plays a prominent role in acute
nociception and in mechanisms behind chronic hypersensi-
tivity, there is a clear scientific rationale for interrupting
NGF-TrkA signaling as a target for pain relief therapeutics.

NGF-TrkA–induced Sprouting and Neuroma
Formation
One intriguing but largely unexplored mechanism by which
NGF may also generate and maintain hypersensitivity is by
inducing aberrant sprouting and/or neuroma formation in
response to tissue and/or nerve injury.99–101 In previous
studies in a rat model of neuroma, an NGF-sequestering

fusion protein reduced both neuroma formation and the
spontaneous, ectopic discharge that is a defining characteris-
tic of painful neuromas.100 Other evidence suggests that local
administration of NGF to normal peripheral nerves can also
induce nerve sprouting of peptidergic (TrkA-positive)
nociceptors.101

NGF activation of TrkA-positive fibers has also been
demonstrated to induce a remarkable reorganization of sen-
sory and sympathetic nerve fibers. In a mouse model of bone
cancer, it was shown that when osteosarcoma cells induce a
tumor within bone, there is a remarkable sprouting and for-
mation of neuroma-like structures by TrkA-positive sensory
and sympathetic nerve fibers in the periosteum (fig. 3).102

This sprouting appears to occur within a week of tumor and
tumor-associated stromal cells releasing NGF (fig. 3).
Within this 1-week interval, these sensory and sympathetic
nerve fibers appear to grow more than 1 mm in length and
achieve a density never observed in normal bone (fig. 3).
Sustained administration of an anti-NGF sequestering ther-
apy largely blocked the pathologic sprouting of sensory and
sympathetic nerve fibers and the formation of neuroma-like
structures and significantly inhibited the generation and
maintenance of cancer pain in this model (fig. 3).102

A major issue in interpreting this remarkable and patho-
logic nerve sprouting is the source of the NGF driving this
growth. Recent studies using canine prostate cells injected
into the mouse bone shed light on the possible source of
NGF because the canine prostate cells do not express
NGF.103 After the prostate cells were injected into bone,
sclerotic bone lesions similar to that found in human prostate
cancer patients were observed, and TrkA-positive sensory
and sympathetic nerve fibers innervating the prostate tumor-
bearing bone marrow underwent a remarkable and patho-
logic sprouting.104 These prostate cells did not express de-
tectable levels of messenger RNA coding for NGF,103 so
these studies suggest that the source of NGF is not the tumor
cells but rather NGF released by tumor-associated stromal,
inflammatory, and immune cells,68,105,106 which frequently
account for 10–80% of the cells comprising the tumor mass.
These data demonstrate that even in the adult bone marrow,
NGF released by these inflammatory, immune, and stromal
cells can induce a 10- to 70-fold increase in density of TrkA-
positive sensory nerve fibers in the bone marrow. The phe-
notype of these newly sprouted nerve fibers may be quite
different from nerve fibers that innervate the normal bone

Fig. 3. (Continued) or sarcoma � vehicle (D) mice showing CGRP-positive nerve fibers and green fluorescent protein
(GFP)-positive sarcoma cancer cells (green). When GFP-positive tumor cells invade the periosteum, they induce ectopic
sprouting of CGRP-positive sensory fibers (D, arrow) and the formation of neuroma-like structures. Administration of NGF
sequestering therapy (10 mg/kg; intraperitoneal, given at d 6, 12, and 18 after cell injection) reduces sarcoma-induced nerve
sprouting of CGRP-positive (E), 200-kd neurofilament (NF200)-positive (F), and tyrosine hydroxylase (TH)-positive (G) nerve
fibers at d 20 after cancer cell injection. Nerve fiber density was determined by measuring the total length of nerve fibers per
unit volume in the periosteum. *P � 0.05. Bars represent the mean � SEM. Reproduced and modified from Mantyh WG,
Jimenez-Andrade JM, Stake JI, Bloom AP, Kaczmarska MJ, Taylor RN, Freeman KT, Ghilardi JR, Kuskowski MA, Mantyh PW:
Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain.
Neuroscience 2010; 171:588–98, with permission from Elsevier.
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 Anti-NGF attenuates
fracture-induced pain in mice

 Anti-NGF attenuates knee pain while walking in osteoarthritis patients

TrkA inhibition attenuates
fracture-induced pain in mice
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Fig. 4. Therapies that sequester nerve growth factor (NGF) or inhibit tropomyosin-related kinase A receptor (TrkA) demonstrate
significant analgesic efficacy in mouse and a human model of nonmalignant skeletal pain. In a mouse model of bone fracture,
pain-related behaviors (the time spent guarding of the fractured limb during a 2-min observation) were significantly reduced by
anti-NGF therapy (10 mg/kg, intraperitoneal, administered at d 1, 6, and 11 after fracture) (A) and the pan-Trk antagonist
ARRY-470 (30 mg/kg, oral, administered twice daily beginning on d 1 after fracture) (B). Note that anti-NGF therapy (A) and the
pan-Trk inhibitor (B) both reduced nonmalignant fracture pain-related behaviors by approximately 50%. Anti-NGF therapy
reduced walking pain in human patients with moderate to severe osteoarthritis pain (C). The patient’s assessments of knee pain
while walking in response to therapy were obtained at baseline and at the indicated times with the use of a visual analog scale
that ranged from 0 to 100. In the case of knee pain, a decrease in the score indicates improvement (i.e., less pain).
Changes are reported as least-squares means � SE. P � than 0.001 for the comparisons of all doses of anti-NGF
(tanezumab) with placebo in the assessment of knee pain, except for the comparison of tanezumab, 10 �g per kilogram
of body weight, with placebo in the patient’s global assessment, for which P � 0.001. Reproduced with permission from
Koewler NJ, Freeman KT, Buus RJ, Herrera MB, Jimenez-Andrade JM, Ghilardi JR, Peters CM, Sullivan LJ, Kuskowski MA,
Lewis JL, Mantyh PW: Effects of a monoclonal antibody raised against nerve growth factor on skeletal pain and bone
healing after fracture of the C57BL/6J mouse femur. J Bone Miner Res 2007; 22:1732– 42, with permission from John Wiley
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and, as such, these newly sprouted nerve fibers may provide
an anatomical substrate that drives skeletal pain. In support
of this hypothesis, preventive treatment with an antibody
that sequesters NGF, administered when prostate tumor-
induced pain and bone remodeling are first observed, blocks
the ectopic sprouting and significantly attenuates the devel-
opment and severity of cancer pain.104

Sprouting of presumptive TrkA-positive nerve fibers has
also been observed in nonmalignant skeletal pain states in
human and animals. For example, studies have reported that
in humans with chronic discogenic pain, there is growth of
CGRP-positive nerve fibers into normally aneural and avas-
cular areas of the intervertebral disc.107 Other studies have
demonstrated significant sprouting of CGRP-positive nerve
fibers after bone fracture in rat and in the arthritic joints of
humans and animals.108–111 These reports suggest that after
injury or disease of the skeleton, significant sprouting of
TrkA-positive nerve fibers can occur, and it appears that
endogenous stromal, inflammatory, and immune cells are a
major source of NGF.68,105,106

These data on the ectopic sprouting of TrkA-positive sen-
sory and sympathetic nerve fibers indicate how preemptive
treatment with therapies that block NGF activation of TrkA
may reduce the attendant pain but also block the pathologic
remodeling of sensory and sympathetic nerve fibers that is a
major driver of chronic hypersensitivity. This might be rele-
vant in situations in which one can predict that tissue/nerve
injury is about to occur, such as before amputation or ortho-
pedic surgery, or when disease progression is highly likely,
such as in osteoarthritis, pancreatic cancer, or tumor metas-
tasis to bone.

NGF-TrkA Interactions and Chronic Pain:
Preclinical Evidence

Anti-NGF Reduces Pain in Animal Models
A number of strategies have been developed to investigate the
role of endogenous NGF in chronic pain. Most commonly,
anti-NGF antibodies or a TrkA-IgG fusion protein to se-
quester NGF have been developed to block the biologic ac-
tivity of NGF. Alternatively, it is possible to prevent NGF
binding and activation of TrkA, for example with anti-TrkA
antibody or a small molecular inhibitor of TrkA, although
NGF activity via p75 will remain intact. These approaches
have provided additional evidence for the role of NGF in
acute and chronic hypersensitivity in adult animals after in-
flammatory injury.

The systemic administration of anti-NGF antibody has been
shown to prevent the acute thermal45,60 and mechanical hyper-

algesia induced by complete Freund’s adjuvant,60 whereas ad-
ministration of a TrkA-IgG fusion protein minimized behav-
ioral symptoms of hyperalgesia induced by carrageenan112,113

or ultraviolet B radiation.62 In addition, although not consid-
ered in detail here, in models of visceral inflammatory pain,
hyperalgesia is markedly reduced by pretreatment with an
NGF-neutralizing antibody or TrkA-IgG fusion molecule, for
example in acetic acid-induced gastric inflammation,114 trini-
trobenzene sulfonic acid-induced colonic hypersensitivity,115

and turpentine- or acrolein-induced cystitis.116,117 Further-
more, in a model of colitis, trinitrobenzene sulfonic acid-in-
duced colonic hypersensitivity was also reversed by administer-
ing an anti-NGF antibody.115

Antibodies to NGF reversed the established hyperalgesia
in a rodent model of autoimmune arthritis,61 suggesting that
NGF is involved in prolonged hyperalgesia. In addition, the
NGF-neutralizing antibody was at least as effective as indo-
methacin,61 used clinically for relieving arthritis pain. A role
for NGF in maintenance of hypersensitivity in chronic injury
has also been demonstrated using a model of bone can-
cer103,118 and a model of closed femur fracture119,120 (fig. 4).
Indeed, anti-NGF produces a profound reduction in ongo-
ing and movement-evoked bone cancer pain-related behav-
iors that is greater than that achieved with acute administra-
tion of morphine.103,118

Early preclinical experiments modeling long-term NGF
deprivation by active immunization of adult animals to au-
toproduce antibodies against NGF demonstrated a reduc-
tion in the number of peripheral DRG fibers compared with
untreated controls.121,122 This reduction was selective for
unmyelinated C-fibers and was associated with diminished
responsiveness to nociceptive stimuli.122 However, in later
studies that used passive immunization, in which antibodies
raised against NGF or TrkA were injected into mature ani-
mals, normal nociceptive function remained intact with
minimal loss of functional sympathetic or sensory neu-
rons.118,119 Such anti-NGF antibody treatment reduces pain
caused by fracture or tumor growth in bone by about
50%,118–120 despite no reduction in the number of periph-
eral sensory or sympathetic nerve fibers innervating the skin
or bone.102,118

One unique aspect of the sensory innervation of bone and
joint, which may partially explain why anti-NGF therapy is
effective in relieving malignant and nonmalignant skeletal
pain, is that more than 50% of nerve fibers innervating bone
are CGRP-positive fibers,52 nearly all of which coexpress
TrkA (fig. 5).123 Accordingly, few unmyelinated nonpepti-
dergic (IB4-positive/RET-positive) nerve fibers are present

Fig. 4. (Continued) and Sons; Ghilardi JR, Freeman KT, Jimenez-Andrade JM, Mantyh WG, Bloom AP, Bouhana KS, Trollinger
D, Winkler J, Lee P, Andrews SW, Kuskowski MA, Mantyh PW: Sustained blockade of neurotrophin receptors TrkA, TrkB and
TrkC reduces non-malignant skeletal pain but not the maintenance of sensory and sympathetic nerve fibers. Bone 2011;
48:389–98, with permission from Elsevier Ltd; and Lane NE, Schnitzer TJ, Birbara CA, Mokhtarani M, Shelton DL, Smith MD,
Brown MT: Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med 2010; 363:1521–31, with
permission from Massachusetts Medical Society.
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in bone,52–54 so therapies that target NGF or TrkA may be
particularly efficacious in relieving bone pain where the tis-
sues are innervated by nociceptors that express TrkA and
respond to NGF.

Importantly, preventing NGF-TrkA signaling does not
appear to compromise normal physiologic responses to in-
jury, which are critical for effective healing. For example,
NGF blockade does not affect the normal inflammatory re-
sponse (erythema, heat, and swelling).60,113 In addition, at
least cursory examination of anti-NGF therapy reveals no
modification of the biomechanical properties of the femur or
histomorphometric indices of bone healing,120 and load
bearing remains intact, but more extensive and exhaustive
studies on bone healing are clearly needed. In contrast, in
some but not all studies in mouse, rat, and humans using
various models of bone injury, nonsteroidal antiinflamma-
tory drugs and selective cyclooxygenase-2 inhibitors have
been shown to inhibit effective bridging of the fracture site,
resulting in delayed bone healing and decreased bone
strength.124,125 In addition, in a model of bone cancer, neu-

rochemical markers associated with peripheral and central
sensitization, such as c-Fos, are reduced on administration of
anti-NGF antibody118; although tumor growth, bone de-
struction, and markers of sensory or sympathetic innervation
in the skin are unaffected.

Collectively, the preclinical data suggest that reducing or
preventing the NGF production that is associated with some
types of injury, through the sequestering of NGF or the
inhibition of NGF-TrkA signaling, is effective in reducing
hypersensitivity in animal models. Importantly, the studies
discussed suggest that, at least at the time points examined,
this approach does not obviously compromise normal noci-
ceptor function or cause the loss of sympathetic or sensory
nerve fiber innervation of the skin or bone.

NGF-TrkA Interactions and Pain: Human
Studies
In humans, as in animal models, subcutaneous NGF evokes
long-lasting mechanical hyperalgesia.126–128 Furthermore,
NGF is locally up-regulated in humans presenting with
chronic pain, such as arthritis, migraine/headache, fibromy-
algia, or peripheral nerve injury.129–132 These observations
suggest that in humans, as in preclinical animal models, the
ongoing production of NGF may be involved in chronic
pain and changes in sensitization. Indeed, there are at least
three major pharmacologic strategies under development
that target NGF-TrkA signaling for the treatment of chronic
pain and that have produced effective reduction in hypersen-
sitivity in preclinical models. These are sequestration of NGF
or inhibiting its binding to TrkA,61,133 antagonizing TrkA so
as to block NGF from binding to TrkA,134–136 and blocking
TrkA kinase activity.137 Among the first such molecules to be
investigated preclinically were a TrkA-IgG fusion protein,138

MNAC13,134 and PD90780,136 which act by inhibiting the
binding of NGF to TrkA and ALE0540,135 which appears to
act by modulating the interaction of NGF with p75 and
indirectly affecting TrkA activation. Although several of
these molecules showed efficacy in reducing nociceptive be-
haviors, they were not advanced into clinical trials because of
specificity or immunologic response issues. For instance,
ALE0540 does not appear to have sufficient selectivity when
compared with other tested receptors in vitro, MNAC13 is a
mouse monoclonal antibody unsuitable for use in humans, and
TrkA-IgG contains the extracellular domain of a normal human
receptor (TrkA) and thus is likely to have significant conse-
quences if immunogenicity develops. This potentially would be
similar to the problems seen in rare patients treated with recom-
binant analogs of erythropoietin when they became autoim-
mune to their endogenous erythropoietin.139 In contrast, a
number of humanized anti-NGF monoclonal antibodies—
RN624 (tanezumab), JNJ-42160443, REGN475, PG110,
�-D11, AMG-403, which exert their analgesic effect by seques-
tering endogenous NGF—are being investigated in clinical tri-
als in patients with various types of chronic noncancer
pain.133,140 The outcomes of these clinical trials will provide key

Fig. 5. There are differences in the percentages of tropomy-
osin-related kinase A receptor (TrkA)-positive sensory nerve
fibers that innervate the bone versus skin. The skin is inner-
vated by thickly myelinated A-� fibers (TrkA-negative), thinly
myelinated A� fibers (both TkA-negative and TrkA-positive),
unmyelinated peptide-rich C fibers (TrkA-positive), and un-
myelinated peptide-poor C-fibers (TrkA-negative). In con-
trast, the bone appears to be predominantly innervated by
thinly myelinated A� fibers (mostly TrkA-positive) and pep-
tide-rich C-fibers (also mostly TrkA-positive). The percent-
ages and types of sensory nerve fibers innervating the
skin51,54,148,149 and bone52,123,150,151 were estimated from pre-
vious studies. Thus overall more than 80% of all sensory nerve
fibers that innervate the bone are TrkA-positive, whereas only
30% of the sensory nerve fibers that innervate skin are TrkA-
positive, which might help explain why blocking nerve growth
factor or TrkA is highly efficacious in attenuating skeletal pain.
Reproduced with modifications from Castanẽda-Corral G,
Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kac-
zmarska MJ, Ghilardi JR, Mantyh PW: The majority of myelin-
ated and unmyelinated sensory nerve fibers that innervate bone
express the tropomyosin receptor kinase A. Neuroscience
2011; 178:196–207, with permission from Elsevier Ltd.123
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information on the efficacy of anti-NGF antibody therapy for
the relief of pain in patients with different forms of chronic pain.
Importantly, in studies published to date and in line with pre-
clinical studies, anti-NGF therapy appears to be antihyperalge-
sic (i.e., normalizing a decreased nociceptive threshold) as op-
posed to analgesic (i.e., increasing normal and sensitized
nociceptive threshold). Long-term studies are needed to enable
a comparison of the safety profile of anti-NGF antibody therapy
with those of currently used analgesic agents for chronic non-
cancer pain, for which adverse side effects include gastrointesti-
nal problems and potential cardiovascular risks. In addition, the
safety profile of anti-NGF therapies must be investigated in a
range of patients with different types of chronic pain.

The Potential for NGF-TrkA Therapeutics
Ultimately, the utility of NGF antagonism for pain relief in
humans will depend on the contribution of the various NGF
signaling pathways to the specific chronic pain condition. It
is likely that not all types of pain are effectively reversed by
antagonizing NGF-TrkA signaling. This therapeutic ap-
proach clearly relies on NGF being an important driver of the
increased pain sensitivity; if other factors are responsible for
driving the hyperalgesic state, inhibition of NGF may not be
effective. For example, target-derived NGF is lost in condi-
tions such as diabetes in which peripheral fibers suffer dam-
age, a condition often accompanied by pain. Here, NGF
might be expected to improve regeneration,141,142 thereby
reducing pain. However, this approach was abandoned in
patients with diabetic peripheral neuropathy because of dose-
limiting painful side effects.143

Nerve growth factor may be primarily involved in the
initiation of changes that lead to chronic pain and may not
itself have a prominent role in maintenance of hypersensitiv-
ity. Thus, the stage at which NGF is important in the devel-
opment of ongoing hypersensitivity needs to be defined.
Moreover, the extent to which signaling pathways are inter-
linked may limit their use clinically and in the interpretation
of preclinical results. For example, anti-TrkA antibodies
should suppress TrkA signaling, but they may also affect p75
signaling because there is speculation that the two pathways
interact.144 In addition, specific nociceptor innervation of
each tissue may influence the efficacy of NGF-TrkA–
blocking strategies. Preclinical investigators who have fo-
cused on skeletal pain have proposed that anti-NGF treat-
ment may be particularly effective in pain that originates
in bone102–104,118,119,145 because more than 50% of the
myelinated and unmyelinated nerve fibers that innervate
bone are responsive to NGF.123

To optimize the therapeutic potential of NGF inhibitors,
additional research is needed to establish which types of hu-
man chronic pain are driven by and, more importantly,
maintained by NGF. It is also important to understand when
in the disease process NGF antagonism is most effective. For
example, the pain that immediately follows bone fracture
(from seconds to minutes later) is not inhibited by treatment

with anti-NGF antibody in preclinical studies, whereas 24 h
after fracture, anti-NGF therapy reduced bone fracture pain
by more than 50% (fig. 4).119,120 This may indicate that
initial nociceptive signals are driven by activation of, for ex-
ample, mechanotransducers independent of NGF, whereas
secondary nociception that occurs hours to days after fracture
may be increased by the release of NGF, contributing to
activation and sensitization of nociceptors.120 Additional
study is needed to evaluate the putative effects of anti-NGF
on other disease processes, such as weight loss in autoim-
mune arthritis61 and bone loss in the chronic pain condition
known as complex regional pain syndrome I.146

In addition to defining the analgesic efficacy of blocking
the NGF-TrkA axis, key safety issues that need to be ad-
dressed with any therapy targeting NGF or TrkA include
effects on normal autonomic and sensory neuron structure
and function; physiologic responses to injury, wound heal-
ing, and endocrine function; ability to cross the placental or
blood–brain barriers in the normal or injured state; and thus
any influence on central nervous system neurons, such as the
basal forebrain cholinergic neurons that are sensitive to
NGF. In addition, given that bone pain may be a major
target for NGF-TrkA therapies, understanding how these
therapies affect individuals with advanced bone degeneration
will be critical. Indeed, recent human clinical trials in elderly
humans with osteoarthritis have been halted because of the
need for earlier-than-expected joint replacement in a small
subset of patients.140 Whether this earlier-than-expected
joint replacement in patients being treated with anti-NGF is
attributable to greater use of the diseased joint or unforeseen
adverse events on the biomechanical properties of bone itself
remains a critical but unanswered question. These data em-
phasize the need to understand clearly not only the analgesic
efficacy of TrkA-NGF blocking therapies and any unex-
pected effects but also how patients with chronic pain change
their behavior and use of the injured/degenerating tissue after
administration of a therapy that provides significant pain
relief without sedation.

Conclusion
This review provides an overview of the mechanisms by
which NGF drives acute and chronic pain in the adult and
outlines how NGF has a distinct role in the adult compared
with the developing nervous system. To date, therapies that
target NGF-TrkA signaling have shown significant analgesic
efficacy in animals and humans in several difficult-to-treat
chronic pain states. In choosing which chronic pain states to
target with NGF-TrkA therapies, a key issue to consider is
the fraction of NGF-responsive (TrkA-positive) nociceptors
that innervate the tissue from which the pain is arising be-
cause this innervation varies considerably from tissue to tis-
sue. If successful, therapies that target NGF-TrkA signaling
represent a new class of analgesic therapy that has the poten-
tial to change the therapeutic landscape of how we treat
several types of chronic pain.
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