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ABSTRACT

Background: It is still unknown whether anesthetic state tran-
sitions are continuous or binary. Mathematical graph theory is
one method by which to assess whether brain networks change
gradually or abruptly upon anesthetic induction and emergence.
Methods: Twenty healthy males were anesthetized with an
induction dose of propofol, with continuous measurement
of 21-channel electroencephalogram at baseline, during an-
esthesia, and during recovery. From these electroencephalo-
graphic data a “genuine network” was reconstructed based
on the surrogate data method. The effects of topologic struc-
ture and connection strength on information transfer
through the network were measured independently across
different states.
Results: Loss of consciousness was consistently associated
with a disruption of network topology. However, recovery of
consciousness was associated with complex patterns of al-
tered connection strength after the initial topologic structure
had slowly recovered. In one group of subjects, there was a
precipitous increase of connection strength that was associ-
ated with reduced variability of emergence time. Analysis of
regional effects on brain networks demonstrated that the
parietal network was significantly disrupted, whereas the
frontal network was minimally affected.
Conclusions: By dissociating the effects of network struc-

ture and connection strength, both continuous and discrete
elements of anesthetic state transitions were identified. The
study also supports a critical role of parietal networks as a
target of general anesthetics.

C ONTROVERSY persists as to whether anesthetic state
transitions occur continuously, via “flip-flop” mecha-

nisms, or by shifting phases. Theories of general anesthesia
related to neural information synthesis would predict a
graded, continuous transition from general anesthesia to
consciousness during emergence.1 Theories of general anes-
thesia that relate to sleep-wake neurobiology might predict a
binary “flip-flop” from unconsciousness to consciousness.2

Still other frameworks suggest that emergence relates to a
number of discrete phase transitions.3–5 It is also possible
that anesthetic state transitions have both continuous and
discrete components that can be dissociated. Furthermore,
recent data suggest that anesthetic induction and emergence
are not simply “mirror images” of one another, but are char-
acterized by a distinct neurobiology.2,6 The nature of anes-
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What We Already Know about This Topic

• General anesthesia is characterized by a disruption of network
communication, but whether this occurs in a continuous or
stepwise fashion is unknown.

What This Article Tells Us That Is New

• Electroencephalographic data during induction of and emer-
gence from propofol anesthesia in humans can be analyzed
using graph theory to model network behavior.

• Both continuous and discrete elements were observed in tran-
sitions between the awake and anesthetized states, particu-
larly in the parietal cortex.
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thetic induction and emergence will be important to clarify
for a more precise understanding of general anesthetic mech-
anisms as well as for the development of more sophisticated
intraoperative neurophysiologic monitors.

Analysis of network-level properties may be particularly
suited to investigating anesthetic state transitions, because
general anesthesia is characterized by a disruption of network
communication.7–17 Graph theory is one method by which
to represent networks in the brain, where neural regions can
be considered the nodes of the graph and the relationship
between them the edges. Brain networks have a conserved
organization across species and spatial scales that enable op-
timal information processing among distributed neural net-
work elements.18 This “small world” network organization is
similar to that of an airport system, in which certain hubs act
as densely connected nodes that can enhance the efficiency of
travel. That two nodes are connected by an edge reflects the
structure or topology of a network; however, edges may vary as
reflected by their connection strength. Thus, global network
efficiency in the brain can be deconstructed into the elements
of topologic structure and connection strength (discussed
further in the Materials and Methods section). By delineat-
ing the effects of general anesthesia on these two elements
independently, we can more precisely characterize the net-
work properties of anesthetic state transitions.

Using electroencephalographic data from human sub-
jects, we tested the hypothesis that network topology and
connection strength changed independently during anes-
thetic state transitions and that these changes could therefore
be both discrete and continuous. Because of the significant
increase of electroencephalographic power in lower-fre-
quency bandwidths during general anesthesia, the correla-
tion across nodes could be spurious. Thus, to achieve the
objective of our study, we refined techniques to eliminate
spurious network connections such that only “genuine” net-
works would be reconstructed and analyzed.19,20 Finally,
given the proposed importance of the frontal-parietal net-
work in the mechanism of general anesthesia,21–23 we as-
sessed whether the components of network topology and
connection strength were differentially altered in these brain
regions.

Materials and Methods

Drug Administration and Electroencephalography
After institutional review board approval (Asan Medical
Center, Seoul, Korea) and informed consent, 20 healthy hu-
man participants were studied with 21-channel electroen-
cephalography. Three states were investigated: (1) baseline
consciousness (eyes closed); (2) general anesthesia, defined as
loss of response to the command “open your eyes” after in-
duction with 2 mg/kg of the intravenous agent propofol
(Diprivan®, AstraZeneca, London, United Kingdom); and
(3) recovery from general anesthesia, defined by a return of
responsiveness to the command “open your eyes.” Electro-
encephalographic data on 10 of these subjects were originally

gathered for a study of the frontoparietal system,12 but un-
derwent a completely different analysis for the current study;
novel data from another 10 subjects were included for the
current investigation. Each volunteer fasted for 8 h before
study drug administration. We excluded volunteers who had
known allergy to propofol, medical conditions, abnormal
laboratory findings with clinical significance, or a body
weight that was not within 30% of ideal range. The average
age was 23 � 2 yr (range, 20–28 yr).

An 18-gauge angiocatheter was placed in a vein of the
antecubital area. Subjects received an initial intravenous bo-
lus of 2.0 mg/kg of propofol. Time to loss of consciousness
(LOC) was determined every 5 s by the loss of response to
verbal command. If respiratory depression occurred, lungs
were manually ventilated with 100% oxygen via facemask to
maintain an end-tidal carbon dioxide concentration of
35–45 mmHg. Manual ventilation was discontinued when
the spontaneous respiratory rate exceeded 12 breaths/min
and end-tidal carbon dioxide was less than 45 mmHg. Time
to return of consciousness (ROC) after the intravenous bolus
of 2.0 mg/kg of propofol was determined by the recovery of
response to verbal command; this assessment started 10 min
after LOC. Upon completion of the measurement of electro-
encephalographic activity, subjects were transferred to the
postanesthesia care unit, breathing room air. During the re-
covery period, subjects were monitored with electrocardiog-
raphy, pulse oximetry, and noninvasive blood pressure mea-
surement for 1 h. If vital signs were stable and full recovery
from sedation was confirmed, the subject was discharged
from the hospital.

The electroencephalograms of 21 channels (Fp1, Fp2, F3,
F4, F5, F6, F7, F8, Fz, C3, C4, Cz, T7, T8, P3, P4, P5, P6,
P7, P8, Pz referenced by A2, 10–20 system) were recorded
with the subjects’ eyes closed, with a sampling frequency of
256 Hz and 16-bit analog-to-digital precision by WEEG-
32® (LXE3232-RF, Laxtha Inc., Daejeon, Korea). Baseline
electroencephalography was recorded for 5 min before an
intravenous bolus of propofol was administered. Electroen-
cephalography was recorded continuously during and after
the intravenous bolus of propofol and up to 10 min after
ROC. Before the analysis of electroencephalographic data, a
Fourier-based band-pass filter was applied to a frequency
range of 0.5–55 Hz. Epochs with artifacts were eliminated
from the analysis.

Reconstruction of “Genuine Networks” from
Electroencephalographic Data
General anesthesia is associated with a marked increase in the
power spectrum of lower-frequency waveforms.24 In a finite-
size dataset, lower-frequency power spectra of the electroen-
cephalogram produce larger spurious cross-correlations.
Müller et al. suggested a method to estimate genuine, spuri-
ous, and total cross-correlation strengths of multichannel
electroencephalograms based on surrogate (i.e., randomized)
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electroencephalographic data.20 For a given electroencepha-
lographic dataset, spurious correlation strength cs is esti-
mated by the cross-correlation values of randomized data.
The surrogate dataset has the same power spectra and the
same data length as the original electroencephalographic
data, but no genuine cross-correlation because of phase ran-
domization.25 Thus, if the surrogate data have a cross-corre-
lation value, it must have resulted from the finite-size effect
by a combination of the finite data length used and the power
spectra of the given electroencephalogram. Genuine correla-
tion strength of the original electroencephalographic data cg

is defined as the deviation from this randomized dataset.
Both correlation strengths cg and cs are normalized values
within 0 and 1.

Brain networks were constructed by using only genuine
correlation strengths with 21-channel electroencephalogra-
phy, which eliminates the analysis of spurious correlation
effects during assessment of network properties. First, we
calculated the genuine correlation strengths for all pairs of
electroencephalogram channels, which were defined as the
significant deviation from 1,000 pairs of randomized surro-
gate data for each pair of channels. If a pair of electroenceph-
alogram channels had a nonzero genuine correlation, it was
deemed to be connected. Conversely, if the nonzero correla-
tion was not significantly deviated from the spurious corre-
lation of the surrogate date set, the pair was deemed to be
unconnected.

Global Efficiency of Genuine Networks
The anatomic and functional networks of the normal brain
have a typical structure called “small world” organization,
which is an optimal network structure for economic wiring
and fast information transmission.18,26 The hubs of the air-
port system also result in a small world network. This opti-
mal network structure is slightly changed in various cognitive
tasks, but significant disruptions have been reported in
disease states such as epilepsy, schizophrenia, and demen-
tia.27–30 To quantify the overall state of a brain network with
one index, we used a measure of global efficiency Eg. Global
efficiency is a representative index for network properties and

quantifies the information transmission capacity of a net-
work.18 By definition, if the correlation across nodes in-
creases, the global efficiency also increases. However, global
efficiency depends on both the topologic structure and cor-
relation or connection strength of the nodes. For example, if
the topologic structure is not amenable to efficient informa-
tion transfer (as in a regular lattice structure), the increase in
global efficiency would be small even though the correlation
across nodes was large. Therefore, the decomposition of the
effects of the two network elements (topologic structure and
connection strength) on the global efficiency provides more
detailed information about the network. In terms of neuro-
physiology, rapid changes in connection strength may be
mediated by variations of synchronization.31

Consider graph G as an abstract representation of a net-
work. It consists of a set of nodes (or vertices) and a set of
edges (or connections). In a graph, we can find the shortest
path between a certain pair of nodes. In figure 1A, for exam-
ple, the shortest path between two nodes, “A” and “C,” is
A3B3D3C and the shortest path length is 6 (1 � 3 � 2).
The path, A3B3D3C, is shorter than another path,
A3D3C, based on the total weight of the path. Therefore,
the shorter the mean path length over all pairs of nodes, the
more efficient the information transmission is in a network.
The global efficiency Eg quantifies the efficiency of informa-
tion transmission of a network based on the average weight of
edges that must be traversed to go from one node to another.
By definition, the global efficiency Eg is the inverse of the
average shortest path length (1/dij) over all pairs of nodes in a
network G. It is defined as follows,

Eg �
1

N�N � 1� �
i, j�G, i � j

1

dij
, dij �

1

cg �i, j�
(1)

where dij is the shortest path length between node i and j. The
dij is defined with inverse genuine correlation strength cg (i, j).
If cg (i, j) � 1 for a perfectly coherent case, then dij � 1. On
the other hand, if cg (i, j) � 0 for a completely uncorrelated
case, then dij is infinite. Therefore, the path length dij has a
value between 1 and infinity. Here, the path length is defined
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Fig. 1. Different types of networks that consist of four nodes. (A) Weighted network: a network weighted on edges by genuine
correlation strengths; (B) unweighted network: a network that consists of only a connected (1) or unconnected state (0), without
weighted values; (C) all-to-all connected network: a network in which all nodes are connected to one another. The connected
nodes are denoted with a solid line, whereas the disconnected nodes are denoted with a dotted line.
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by the correlation between two neural events as a measure of
functional similarity. It is important to stress that the
“length” of the path has a functional definition rather than a
spatial one. More strongly connected nodes are functionally
“closer” to one another and therefore transfer information
more efficiently. Consider the analogy of a cell phone and
assume you had to transmit information to both a friend next
door and a friend across town. If you were unable to call your
friend next door because of lost connection strength, but
were nonetheless able to call your friend across town, then
you would have a functionally shorter path length to your
cross-town friend in comparison with your spatially close
neighbor.

However, the shortest path for a pair of nodes changes
depending on the type of network. In a weighted network
(fig. 1A), for instance, the shortest path between the node
“A” and “C” is A3B3D3C with a path length of 6,
instead of A3D3C with a path length of 11. The path
length is different in the unweighted network (fig. 1B), even
though it has the same connection structure. For the un-
weighted network, the shortest path length between the node
“A” and “C” is A3D3C with a path length of 2, instead of
A3B3D3C with a path length of 3. In the same connec-
tion structure, the connection strengths change the shortest
path between nodes, implying that the arrangement of con-
nection strengths in the network affects the information
transmission capacity. It is also clear that the topologic struc-
ture affects the global efficiency. Therefore, the information
transmission capacity of the network depends on the separate
properties of network structure and connection strength.
The all-to-all connected network is the ideal network in
terms of information transmission (fig. 1C).

Dissociating the Effects of Network Structure and
Connection Strength on Global Efficiency
We dissociated the effect of network structure and the effect
of connection strength on information transmission in the
anesthetized brain.

The contribution of connection strength to global efficiency
estr was defined as the ratio between the global efficiencies of a
genuine network and an unweighted network (which has no
contribution from strength because it is unweighted).

estr �
Eg

Eb

The unweighted network, in which all weights of genuine
network connections less than or equal to 1 were replaced
with 1, was constructed and the global efficiency was calcu-
lated as follows.

Eb �
1

N�N � 1� �
i, j�G, i � j

1

dij
b

where dij
b is the shortest path length between node i and j in

the unweighted network.

The contribution of network structure to global efficiency
etop was defined as the ratio between the global efficiencies of
the unweighted network and a totally connected network, in
which all shortest path lengths are 1.

etop �
Eb

Et

Because the global efficiency of the totally connected net-
work is optimal under a given condition, the difference be-
tween global efficiencies for two networks results from only
the specific structure of an unweighted network in the same
connection strengths of edges. Et is always 1 so it was used
only for conceptual symmetry in both definitions. Both in-
dices, estr and etop, have a value between 0 and 1.

Moving Window Method
We assumed that 12-s intervals of electroencephalographic
data can maintain a stationary state. The electroencephalo-
graphic data were segmented with a 12-s electroencepha-
logram window moving at 4 s; for each window, the gen-
uine, spurious, total correlation strengths, as well as the
estr, etop, and Eg were calculated (see Supplemental Digital
Content 1, which describes more detailed methods,
http://links.lww.com/ALN/A679).

Pharmacokinetic Simulation
Based on the population pharmacokinetic and pharmacody-
namic models of lipid emulsion propofol derived in a previ-
ous study,32 stochastic and deterministic simulations for
plasma and effect-site concentrations of propofol were per-
formed using NONMEM 712 (ICON Development Solu-
tions, Dublin, Ireland). The blood-brain equilibration rate
constant (ke0) of propofol in these models was obtained using
the Bispectral Index as a surrogate measure of propofol effect
on the central nervous system. Individual pharmacokinetic
parameters included in simulations of propofol effect-site
concentrations were calculated using the patient’s age and
point estimates of fixed effect parameters. Point estimates of
fixed and random effect parameters were used in stochastic
simulations. Variances of random effect (interindividual and
residual) parameters were fixed at 0 in a deterministic simu-
lation, which produces the same plasma and effect-site con-
centrations of propofol as predicted by a target-controlled
infusion system. Two thousand stochastic simulations were
conducted.

Statistical Analysis
For statistical analysis, the three states were separated into a
total of six substates. The Baseline state was separated into B1
(from 0 to 2.5 min) and B2 (from 2.5 min to 5 min), the
Anesthetized state was separated into A1 (0 to 2 min after
LOC) and A2 (�2.5 to 0 min before ROC), and the Recov-
ery state was separated into R1 (0 to 2.5 min after ROC) and
R2 (2.5 to 5 min after ROC). Because the duration of the
anesthetized state is different for each subject, we separated
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the substates based on the LOC and ROC times to facilitate
statistical comparison. The correlation strengths, estr, etop,
and Eg, were compared across the six substates; the signifi-
cance was assessed by a repeated measures one-way ANOVA
and a post hoc analysis using the Tukey multicomparison test.
For the comparison of estr and etop between the frontal and
parietal regions across six substates, the repeated measure two-
way ANOVA and the post hoc analysis using the Bonferroni
multicomparison test were applied. A P value of �0.05 was
considered significant. The mean � SD and the results of
the post hoc test are presented in Supplemental Digital Con-
tents 2– 6 (http://links.lww.com/ALN/A680, http://links.
lww.com/ALN/A681, http://links.lww.com/ALN/A682,
http://links.lww.com/ALN/A683, http://links.lww.com/ALN/
A684). The D’Agostino-Pearson omnibus normality test was
conducted before performing the ANOVA test. A formal statis-
tical consultation was obtained at the Center for Statistical Con-
sultation and Research at the University of Michigan (Ann Ar-
bor, MI), and the GraphPad Prism Version 5.01 (GraphPad
Software Inc., San Diego, CA) was used.

Results

Spurious and Genuine Network Connections
The genuine, spurious, and total correlation strengths were
altered after loss and recovery of consciousness during gen-
eral anesthesia. Figure 2 presents the means of three correla-
tion strengths in different states of consciousness. The spu-
rious correlation strength significantly changed across the six
substates (F(5,95) � 19.2, P � 0.0001), increasing after loss
of consciousness and returning to the baseline level after the
recovery state. By contrast, the genuine correlation strength
showed the opposite change over the course of the experi-
ment (F(5,95) � 20.1, P � 0.0001). The genuine correla-
tion strength decreased after LOC and recovered quickly to
the baseline level. The total correlation strength also signifi-
cantly changed across states (F(5,95) � 6.16, P � 0.0001),

increasing after LOC and returning to the original level by
A2. Therefore, total correlation strength followed the spuri-
ous correlation strength pattern rather than the genuine cor-
relation strength pattern in the anesthetized state (see Sup-
plemental Digital Content 2, which is a table showing
mean � SD, http://links.lww.com/ALN/A680).

Dissociable Effects of Network Structure and
Connection Strength
Figure 3 demonstrates the distinctive contributions of topol-
ogy and connection strength to global efficiency in a single
subject. The global efficiency of genuine network Eg is dis-
played together with the effects of network structure etop and
connection strength estr, demonstrating distinct patterns of
estr and etop at LOC and ROC. After LOC, etop decreased
steeply, whereas estr decreased slowly; at ROC, estr increased
precipitously after etop had already been restored. Data from
this subject demonstrate that the temporal evolution patterns
of etop and estr can be dissociable from one another and be-
have independently at LOC and ROC.

The individual and mean values of etop and estr for the 20
subjects are shown in figure 4. Based on the typical pattern of
estr, the subjects were classified according to two types of
anesthetic responses. A subject was classified as “type 1” if
there was a large increase of estr at the ROC moment that
exceeded the maximum estr of the baseline state. If there was
no increase of estr, the subject was classified as “type 2.” Eight
of 20 subjects were classified as type 1 and the remaining 12
subjects were classified as type 2. Figure 3 is a salient example
from the type 1 group. Figure 4A and 4B demonstrate the
individual traces of etop (upper tracing in each panel) and estr

(lower tracing in each panel) for type 1 and type 2 subjects;
figure 4C and 4D demonstrate the average patterns of etop,
estr, and Eg for type 1 and type 2 groups.

For both types, most values for etop (topology) in the
baseline state are close to 1, indicating that the brain network
in this state has optimal information transmission capacity.
The etop of the type 1 group was significantly changed across

Fig. 2. The genuine and spurious correlation strengths across
consciousness, anesthesia, and recovery. The average gen-
uine, spurious, and total correlation strengths are displayed.
The spurious correlation strength was significantly increased
and the genuine correlation strength significantly decreased
after loss of consciousness (around 5 min). The total corre-
lation strength varied with the pattern of spurious correlation
strength.

Fig. 3. Dissociation of two network effects on the global
efficiency in a single subject. The effect of topologic structure
and the effect of connection strength on the global efficiency
are presented with the conventional global efficiency. It is
apparent that the global efficiency pattern can be decon-
structed to the topological structure and connection strength
effects.
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the six substates (F(5,35) � 10.5, P � 0.0001). After induc-
tion with propofol, the etop immediately decayed from 1 and
gradually returned to the baseline level a few minutes before
ROC. The estr of the type 1 group also significantly changed
across the six substates (F(5,35) � 6.94, P � 0.0001). After
induction, it gradually decreased and recovered in the A2
state before ROC. After ROC, it was fully recovered to base-
line level. The recovery process of etop and estr for the type 1
group began from the A2 state in the unconscious state.

For the type 2 response in figure 4D, both etop and estr

significantly changed across the six substates (F(5,55) �
17.07, P � 0.0001; F(5, 66) � 21.84, P � 0.0001, respec-
tively). The etop decreased after LOC and recovered before
ROC. The estr also decreased after induction but was not
fully recovered at the A2 period as was etop, which already had
a value comparable to those of the recovery states. The level of
the baseline state recovered by the end of the experiment. This
implies that the estr was not fully recovered immediately after
emergence but slowly returned to the original level. As a conse-
quence, the behaviors of estr in the A2 period (the period before
emergence) and the R1 period (the period after emergence) were
different between the type 1 and 2 groups.

During general anesthesia, etop showed a similar anes-
thetic response pattern for most subjects, whereas estr had two
distinctive anesthetic response patterns. At induction and
emergence, the estr of the type 1 group showed a pattern of

slow decay and sudden return; by contrast, the estr of the type
2 group showed a pattern of sudden decay and slow return.
Patterns of connection strength did not mirror changes in
electroencephalographic power or high-frequency activity,
suggesting that the observed changes were not due to elec-
tromyographic or other artifact (data not shown). (See Sup-
plemental Digital Content 3–4 for tables including mean �
SD and statistical results, http://links.lww.com/ALN/A681,
http://links.lww.com/ALN/A682.)

Pharmacologic and Behavioral Data for Type 1 and
Type 2 Response Groups
Subject characteristics such as dose of propofol, age, weight,
height, lean body mass, and body surface area were not dis-
tinguishable for subjects in the two response groups (table 1).
Simulations did not reveal any statistically significant differ-
ences in the plasma or effect-site concentrations between the
two groups (fig. 5). The volunteer responses during the study
period are presented in table 2. Although times to LOC and
ROC and the duration of unconsciousness failed to demon-
strate statistically significant differences between the two
groups, time to ROC and the duration of unconsciousness
were more variable in the type 2 subjects: SD (type 1 vs. type
2) � 1.32 versus 3.78 min and 1.31 versus 3.74 min, respec-
tively. Unusually delayed ROC was observed in one volun-
teer in the type 2 group (table 2). However, the tendency
remained unchanged even if this volunteer was excluded
from the analysis: SD of time to ROC and duration of un-
consciousness (type 1 vs. type 2) � 1.32 versus 1.75 min and
1.31 versus 1.70 min, respectively. The percentage of volun-
teers who demonstrated consistently quiet behavior during
the period of unconsciousness was twice as high in the type 1
group compared with the type 2 group (table 2).

Differential Effects in the Frontal and Parietal Lobes
In order to investigate local network properties, the same
parameters demonstrated in figure 4 were measured in the
frontal network (with nine electroencephalogram channels)
and the parietal network (with seven electroencephalogram

Fig. 4. Two types of anesthetic responses in brain networks.
The subjects were classified into two types of groups based
on the alterations of connection strength. (A and B) Individual
traces of etop (top tracing) and estr (bottom tracing) for the
type 1 (n � 8) and type 2 (n � 12) responses. (C) The mean
values of the type 1 group in which the estr showed a pattern
of “slow decay and sudden return” at loss of consciousness
(LOC) and recovery of consciousness (ROC). (D) By contrast,
in the average trace of the type 2 group the estr showed a
pattern of “sudden decay and slow return” at LOC and ROC.
Network topology etop demonstrated a consistent response
in all subjects.

Table 1. Volunteer Characteristics

Type 1
Emergence

(n � 8)

Type 2
Emergence

(n � 12)

Dose of propofol (mg) 151.9 � 23.9 155.3 � 26.2
Age (yr) 22.5 � 1.4 23.7 � 2.0
Weight (kg) 75.9 � 12.0 77.6 � 13.1
Height (cm) 177.5 � 5.0 176.9 � 5.3
LBM (kg) 59.7 � 6.3 60.3 � 6.8
BSA (m2) 1.93 � 0.15 1.94 � 0.17

The volunteer characteristics were not significantly distinguish-
able between the two types of emergence with P � 0.05 in the t
test and Mann–Whitney rank sum test. Data are stated as
mean � SD in the t-test and medians (25%, 75%) in Mann–
Whitney rank sum test.
BSA � body surface area; LBM � lean body mass.
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channels). Figure 6 shows the average patterns of etop and estr

over 20 subjects for the frontal and parietal networks. For
both parameters (etop and estr), the repeated measures two-
way ANOVA test (two factors: the state and the local net-
work) yielded a significant main effect of state (F(5,190) �
18.20, P � 0.0001 for etop; F(5,190) � 17.56, P � 0.0001
for estr), a nonsignificant effect of brain region (F(1,190) �
4.066, P � 0.0509 for etop; F(1,190) � 3.61, P � 0.065 for
estr), and a significant interaction between state and brain
region (F(1,190) � 18.12, P � 0.0001 for etop; F(1,190) �
2.477, P � 0.0335 for estr). The post hoc analysis using the
Bonferroni multicomparison test revealed significant differ-
ences between the frontal and parietal networks at the A1
state for both parameters (etop and estr) (t(19) � 8.486, P �
0.001 for etop; t(19) � 3.281, P � 0.01).

The etop of the frontal network was not significantly
changed over the course of the experiment, maintaining the
optimal information transmission capacity (F(5,95) �
0.439, P � 0.82). By contrast, the etop of the parietal network
significantly lost its optimal information transmission capac-
ity during the period after induction (A1). The decrease of
estr took place in both local networks (F(5,95) � 24.93, P �
0.0001 for the frontal network; F(5, 95) � 43.23, P �

0.0001 for the parietal network), but the parietal network
was more significantly disrupted than the frontal network in
terms of information transmission. (See Supplemental Dig-
ital Content 5– 6 for tables including mean � SD and
statisticalresults,http://links.lww.com/ALN/A683,http://links.
lww.com/ALN/A684).

Discussion
The results of this investigation point to several dissociable
network properties that may guide future study of network-
level anesthetic mechanisms as well as inform the develop-
ment of more sophisticated intraoperative neurophysiologic
monitors. First, we identified that there is a high degree of
spurious electroencephalographic cross-correlation after in-
duction with anesthesia that drives the aggregate value of
correlations. Spurious correlations must therefore be taken
into account when making electroencephalographic deter-
minations of behavioral state under general anesthesia. Sec-
ond, we identified dissociable properties contributing to the
global efficiency of the network. Alterations of network
structure (topology) appeared to have a consistent behavior
across all subjects, whereas changes in connection strength
demonstrated two distinct patterns. This implies that analy-
sis of topologic structure may be more reliable in assessing
anesthetic states or transitions and also has implications for
mechanisms of variable emergence. Third, our analysis re-
vealed differential network effects in the frontal and parietal
regions, with the parietal area network undergoing more
marked disruption of information transmission capacity.
This implies that decreased information processing in the
parietal lobe may be a mechanism of general anesthesia and
that the frontal lobe may be less informative regarding anes-
thetic state transitions.

Genuine Versus Spurious Networks
When analyzing nonstationary physiologic data such as that
associated with the electroencephalogram, it is necessary to
account for the finite-size effect, which is a fundamental
problem of signal processing.33 With a finite dataset the lin-
ear cross-correlation measure can have a correlation value,
even though the observed data are random. In particular,
such spurious correlation becomes more exaggerated when
the frequency spectra contained are lower.20 In our data, the
spurious correlation strength significantly increased after
LOC and moved in the direction opposite that of the change
of genuine correlation strength. This finding suggests that
during reconstruction of brain networks with electroenceph-
alograms of the anesthetized patient, the genuine correlation
strength must be calculated rather than conventional cross-
correlation, which is conceptually the same as the total cor-
relation strength and which is prone to artifact from spurious
correlations.

Distinct Network Properties and Emergence Patterns
By deconstructing global efficiency into the components of
network structure (topology) and connection strength, we

Fig. 5. Simulated concentrations of propofol in the plasma
(Cp, A and B) and effect-site (Ce, C and D) after an intrave-
nous bolus of propofol 2 mg/kg in volunteers showing type 1
(A and C) and 2 (B and D) emergence, respectively. No values
of Cp and Ce at loss of consciousness (LOC) and recovery of
consciousness (ROC) demonstrated statistically significant
differences between the two types of emergence. Numeric
data on the plots are stated as mean � SD (t test) or median
(25%, 75%) (Mann–Whitney rank sum test). Median values
(solid lines) with 90% CI (dotted lines) of simulated Cp and Ce
in 2,000 stochastic simulations are shown. Shaded areas
within 90% CI represent the periods during which LOC and
ROC were observed. A black dot represents Cp or Ce in an
individual, which corresponds to the event of LOC or ROC.
These values were obtained by deterministic simulations.
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were able to observe that there can be both continuous and
discrete changes. In particular, the connection strength
spiked precipitously just before ROC in one group of sub-
jects, while demonstrating a sudden decay and gradual return
to baseline in another. Thus, there may not be a single the-
oretic framework that explains all features of anesthetic state

transitions. Type 1 responses were characterized by different
network properties behaving independently at induction and
emergence, with network structure continuously returning
to baseline well before ROC, followed by a discrete increase
in connection strength that appeared to be a “cognitive igni-
tion” for emergence. This interpretation is supported by the
fact that there was less variability in emergence time for the
type 1 responses, which was not accounted for by pharma-
cokinetic modeling. Given the redundant cortical arousal
systems found in the brainstem and diencephalon34—as well
as clinical experience of heterogeneous recovery from anes-
thesia—it is not surprising that there may be distinct path-
ways to emergence. However, significantly more study is
required before making a direct link between the underlying
neurobiology of sleep-wake states and our findings at the
network level.

Evidence for an Important Role of Parietal Processing
The inhibition of information processing in the frontopari-
etal system is thought to be a mechanism of general anesthe-
sia, which is not surprising given the multiple roles of this
system in consciousness, attention, and memory.35 We and
others have found that there is a selective inhibition of feed-
back activity from frontal to parietal regions in association
with anesthetic-induced unconsciousness.9,12 It is unclear,
however, whether the frontal lobe plays a critical role in
anesthetic hypnosis induced by different agents.36 Hudetz23

has suggested that an agent-invariant “final common path-
way” to unconsciousness may be the disruption of informa-

Table 2. Volunteer Responses in the Type 1 and Type 2 Groups

Type of
Emergence

Time to
LOC (min)

Time to
ROC (min)

Duration of
Unconsciousness (min)

Behaviors during
Unconsciousness

1 0.47 4.65 4.20 Quiet
1 0.43 6.67 6.10 Quiet
1 0.53 8.00 7.50 Quiet
1 0.50 5.37 4.92 Quiet
1 0.45 7.35 6.85 Quiet
1 0.53 4.82 4.35 Head lift just before ROC
1 0.45 7.30 6.87 Body movement and writhing
1 0.57 5.12 4.58 Body movement, attempt to rise
2 0.53 6.30 5.80 Quiet
2 0.52 6.72 6.20 Quiet
2 0.52 5.28 4.73 Quiet
2 0.48 7.00 6.45 Quiet
2 0.48 10.05 9.57 Quiet
2 0.50 18.20 17.68 Delayed recovery
2 0.52 8.07 7.53 Snoring
2 0.50 8.17 7.62 Head lift during unconsciousness
2 0.55 4.90 4.38 Hand movement just after the

administration of propofol
2 0.55 5.22 4.73 Head movement at LOC
2 0.55 5.30 4.82 Phonating
2 0.48 4.17 4.12 Head movement

LOC � loss of consciousness; ROC � recovery of consciousness. Time to LOC: 0.49* (0.45, 0.53) and 0.52 (0.49, 0.54) min in type 1
and type 2 emergence, respectively. Time to ROC: 6.0* (5.0, 7.3) min and 6.5 (5.3, 8.1) min in type 1 and type 2 emergence, respectively.
Duration of unconsciousness: 5.6* (4.4, 6.9) min and 6.0 (4.7, 7.6) min, respectively. P � 0.05 vs. Type 2 emergence for all
(Mann–Whitney rank sum test), stated as median (25%, 75%).

Fig. 6. The comparison of two network element effects in the
frontal and parietal regions. The optimal topologic structure
of the frontal network was maintained after loss of conscious-
ness (in A1 state), while that of the parietal network was
significantly disrupted. The decrease of connection strength
was more pronounced for the parietal network compared to
the frontal network.
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tion integration in a network of the posterior parietal cortex.
It is possible that the critical change in cortical information
transfer within local circuits of the posterior parietal cortex
leads to a generalized failure of information synthesis. Our
data support Hudetz’s hypothesis. Further supporting data
for a critical role of the parietal region are derived from a
computational modeling study. Computational “lesioning”
based on anatomic connectivity data from the macaque
monkey demonstrated that lesions of parietal regions had the
greatest potential to disrupt the integrative aspects of neocor-
tical function.37 Our data regarding the differential effects of
frontal and parietal networks have clinical relevance, because
most cerebral function monitors developed for the detection
of anesthetic state transitions are based on electrophysiologic
recording from the frontal region.

Limitations
There are numerous limitations to our study. First, our sub-
jects were young, healthy males and an induction dose of
only one intravenous anesthetic was tested. Ongoing studies
are examining state transitions with graded delivery of
propofol and sevoflurane in a surgical population of both
sexes. Second, data used in the current study were originally
gathered for a study of anesthetic induction rather than both
induction and emergence. Thus, the fact that there was not a
steady-state change in anesthetic dosing implies that drug
concentration in the brain was changing far more rapidly at
induction than emergence, which limits interpretations of
the neurobiologic differences between the two due to asym-
metry. Third, 21-channel electroencephalography has sub-
optimal spatial resolution, so data regarding the role of fron-
tal and parietal regions in anesthetic-induced hypnosis must
be interpreted cautiously. Fourth, we are unable to explain
why propofol was associated with two distinct responses of
connection strengths (type 1 and type 2), but based on our
modeling data the finding does not appear to relate to phar-
macologic differences between the two response groups.
These data should be regarded as hypothesis-generating.

Conclusion
By dissociating the effects of network structure and connec-
tion strength, we have identified both continuous and dis-
crete elements of anesthetic state transitions using propofol.
Furthermore, we have identified variations in emergence pat-
terns that relate to network connection strength. Finally, our
data support a critical role of parietal networks as a target of
general anesthetics.

References
1. Alkire MT, Hudetz AG, Tononi G: Consciousness and anes-

thesia. Science 2008; 322:876 – 80

2. Kelz MB, Sun Y, Chen J, Cheng Meng Q, Moore JT, Veasey
SC, Dixon S, Thornton M, Funato H, Yanagisawa M: An
essential role for orexins in emergence from general anes-
thesia. Proc Natl Acad Sci USA 2008; 105:1309 –14

3. Walling PT, Hicks KN: Nonlinear changes in brain dynamics

during emergence from sevoflurane anesthesia: Preliminary
exploration using new software. ANESTHESIOLOGY 2006; 105:
927–35

4. Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Wilcocks LC: To-
ward a theory of the general-anesthetic-induced phase tran-
sition of the cerebral cortex. I. A thermodynamics analogy.
Phys Rev E 2001; 64:011917

5. Steyn-Ross DA, Steyn-Ross ML, Wilcocks LC, Sleigh JW: Toward a
theory of the general-anesthetic-induced phase transition of the
cerebral cortex. II. Numerical simulations, spectral entropy, and
correlation times. Phys Rev E 2001; 64:011918

6. Friedman EB, Sun Y, Moore JT, Hung HT, Meng QC, Perera P,
Joiner WJ, Thomas SA, Eckenhoff RG, Sehgal A, Kelz MB: A
Conserved behavioral state barrier impedes transitions be-
tween anesthetic-induced unconsciousness and wakefulness:
Evidence for neural inertia. PLoS ONE 2010; 5:e11903

7. White NS, Alkire MT: Impaired thalamocortical connectivity
in humans during general-anesthetic-induced unconscious-
ness. Neuroimage 2003; 19:402–11

8. Peltier SJ, Kerssens C, Hamann SB, Sebel PS, Byas-Smith M,
Hu X: Functional connectivity changes with concentration of
sevoflurane anesthesia. Neuroreport 2005; 16:285– 8

9. Imas OA, Ropella KM, Ward BD, Wood JD, Hudetz AG:
Volatile anesthetics disrupt frontal-posterior recurrent infor-
mation transfer at gamma frequencies in rat. Neurosci Lett
2005; 387:145–50

10. Imas OA, Ropella KM, Wood JD, Hudetz AG: Isoflurane disrupts
anterio-posterior phase synchronization of flash-induced field po-
tentials in the rat. Neurosci Lett 2006; 402:216–21

11. Lee U, Mashour GA, Kim S, Noh GJ, Choi BM: Propofol
induction reduces the capacity for neural information inte-
gration: Implications for the mechanism of consciousness
and general anesthesia. Conscious Cogn 2009; 18:56 – 64

12. Lee U, Kim S, Noh GJ, Choi BM, Hwang E, Mashour GA: The
directionality and functional organization of frontoparietal
connectivity during consciousness and anesthesia in hu-
mans. Conscious Cogn 2009; 18:1069 –78

13. Martuzzi R, Ramani R, Qiu M, Rajeevan N, Constable RT:
Functional connectivity and alterations in baseline brain
state in humans. Neuroimage 2010; 49:823–34

14. Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA,
Angelini G, Tononi G, Pearce RA: Breakdown in cortical
effective connectivity during midazolam-induced loss of con-
sciousness. Proc Natl Acad Sci USA 2010; 107:2681– 6

15. Mhuircheartaigh RN, Rosenorn-Lanng D, Wise R, Jbabdi S,
Rogers R, Tracey I: Cortical and subcortical connectivity
changes during decreasing levels of consciousness in hu-
mans: A functional magnetic resonance imaging study using
propofol. J Neurosci 2010; 30:9095–102

16. Boveroux P, Vanhaudenhuyse A, Bruno MA, Noirhomme Q,
Lauwick S, Luxen A, Degueldre C, Plenevaux A, Schnakers C,
Phillips C, Brichant JF, Bonhomme V, Maquet P, Greicius
MD, Laureys S, Boly M: Breakdown of within- and between-
network resting state functional magnetic resonance imaging
connectivity during propofol-induced loss of consciousness.
ANESTHESIOLOGY 2010; 113:1038 –53

17. Lee U, Oh G, Kim S, Noh G, Choi B, Mashour GA: Brain networks
maintain a scale-free organization across consciousness, anesthe-
sia, and recovery: Evidence for adaptive reconfiguration. ANESTHE-
SIOLOGY 2010; 113:1081–91

18. Bullmore E, Sporns O: Complex brain networks: Graph the-
oretical analysis of structural and functional systems. Nat Rev
Neurosci 2009; 10:186 –98

19. Rummel C, Müller M, Baier G, Amor F, Schindler K: Analyz-
ing spatio-temporal patterns of genuine cross-correlations.
J Neurosci Methods 2010; 191:94 –100

20. Müller M, Baier G, Rummel C, Schindler K: Estimating the
strength of genuine and random correlations in non-station-
ary multivariate time series. Eur Phys Lett 2008; 84:10009

Network Properties of State Transitions

Anesthesiology 2011; 114:872– 81 Lee et al.880

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/114/4/872/253633/0000542-201104000-00022.pdf by guest on 10 April 2024



21. Alkire MT: Loss of effective connectivity during general
anesthesia. Int Anesthesiol Clin 2008; 46:55–73

22. Hudetz AG: Suppressing consciousness: Mechanisms of gen-
eral anesthesia. Semin Anesth 2006; 25:196 –204

23. Hudetz AG: Cortical disintegration mechanism of anesthetic-
induced unconsciousness, in Suppressing the Mind, 1st edi-
tion. Edited by Hudetz AG, Pearce R, Humana Press, 2010,
pp 99 –126

24. John ER, Prichep LS: The anesthetic cascade: A theory of
how anesthesia suppresses consciousness. ANESTHESIOLOGY

2005; 102:447–71

25. Schreiber T, Schmitz A: Surrogate time series. Physica D
2000; 142:346 – 82

26. Sporns O, Tononi G, Kötter R: The human connectome: A
structural description of the human brain. PLoS Comput Biol
2005; 1:e42

27. Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P,
Vourkas M, Erimaki S, Zervakis M: Small-world networks and
disturbed functional connectivity in schizophrenia. Schizo-
phr Res 2006; 87:60 – 6

28. Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H,
Liu Z, Jiang T: Disrupted small-world networks in schizo-
phrenia. Brain 2008; 131:945– 61

29. Ponten SC, Bartolomei F, Stam CJ: Small-world networks and
epilepsy: Graph theoretical analysis of intracerebrally re-
corded mesial temporal lobe seizures. Clin Neurophysiol
2007; 118:918 –27

30. Kramer MA, Kolaczyk ED, Kirsch HE: Emergent network
topology at seizure onset in humans. Epilepsy Res 2008;
79:173– 86

31. Stam CJ, Hillebrand A, Wang H, Mieghem PV: Emergence of
modular structure in a large-scale brain network with inter-
actions between dynamics and connectivity. Front Comput
Neurosci 2010; 4:133

32. Kim KM, Choi BM, Park SW, Lee SH, Christensen LV, Zhou J,
Yoo BH, Shin HW, Bae KS, Kern SE, Kang SH, Noh GJ:
Pharmacokinetics and pharmacodynamics of propofol micro-
emulsion and lipid emulsion after an intravenous bolus and
variable rate infusion. ANESTHESIOLOGY 2007; 106:924 –34

33. Kantz H, Schreiber T: Nonlinear time series analysis, 2nd
Edition, Edited by Kantz H, Schreiber T, Cambridge Univer-
sity Press, 2004, pp 13–27

34. Franks NP: General anaesthesia: From molecular targets to
neuronal pathways of sleep and arousal. Nat Rev Neurosci
2008; 9:370 – 86

35. Naghavi HR, Nyberg L: Common fronto-parietal activity in
attention, memory, and consciousness: Shared demands on
integration? Conscious Cogn 2005; 14:390 – 425

36. Veselis RA, Feshchenko VA, Reinsel RA, Dnistrian AM, Beat-
tie B, Akhurst TJ: Thiopental and propofol affect different
regions of the brain at similar pharmacologic effects. Anesth
Analg 2004; 99:399 – 408

37. Honey CJ, Sporns O: Dynamical consequences of lesions in
cortical networks. Hum Brain Mapp 2008; 29:802–9

PERIOPERATIVE MEDICINE

Anesthesiology 2011; 114:872– 81 Lee et al.881

D
ow

nloaded from
 http://asa2.silverchair.com

/anesthesiology/article-pdf/114/4/872/253633/0000542-201104000-00022.pdf by guest on 10 April 2024


