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ABSTRACT
Fluid resuscitation after massive hemorrhage in major sur-
gery and trauma may result in extensive hemodilution and
coagulopathy, which is of a multifactorial nature. Although
coagulopathy is often perceived as hemorrhagic, extensive
hemodilution affects procoagulants as well as anticoagulant,
profibrinolytic, and antifibrinolytic elements, leading to a
complex coagulation disorder. Reduced thrombin activation
is partially compensated by lower inhibitory activities of an-
tithrombin and other protease inhibitors, whereas plasma
fibrinogen is rapidly decreased proportional to the extent of
hemodilution. Adequate fibrinogen levels are essential in
managing dilutional coagulopathy. After extensive hemodi-
lution, fibrin clots are more prone to fibrinolysis because
major antifibrinolytic proteins are decreased.

Fresh frozen plasma, platelet concentrate, and cryopre-
cipitate are considered the mainstay hemostatic therapies.
Purified factor concentrates of plasma origin and from re-
combinant synthesis are increasingly used for a rapid resto-
ration of targeted factors. Future clinical studies are necessary
to establish the specific indication, dosing, and safety of
novel hemostatic interventions.

IN patients with trauma and those who undergo major
surgery, multiple breaches of vascular integrity result in

bleeding, and in some cases, exsanguination. Fluid (volume)
replacement with crystalloids or colloids is usually the initial

measure to stabilize systemic circulation by compensating for
hypovolemia. When the blood loss is considered major (he-
moglobin concentration below 6–10 g/dl),1 erythrocyte
(RBC) concentrates are transfused to sustain hemoglobin
levels (i.e., oxygen-carrying capacity). The transfusion of ten
or more erythrocyte units (i.e., replacement of one blood
volume) within 24 h is generally considered as massive trans-
fusion in adults.2 Other arbitrary definitions include six or
more erythrocyte units within 12 h and over 50 units of
blood product use within 24 h, including erythrocytes, plate-
let concentrates, and fresh frozen plasma (FFP).3,4 There are
differences in the initial pathophysiology of coagulopathy
between trauma and major surgery, which can be attributed
in part to the mechanism of vascular injury, extent of hem-
orrhage, type of fluid resuscitation, and prophylactic use of
antifibrinolytic therapy.5–8 However, hemostatic defects
based on conventional laboratory data are often indistin-
guishable between trauma and major surgery after massive
transfusion. Unlike congenital bleeding disorders that are
due mostly to a single factor deficiency (e.g., hemophilia,
afibrinogenemia), coagulopathy encountered in trauma and
major surgery is of a multifactorial nature. All elements in
coagulation, including procoagulant, anticoagulant, fibrino-
lytic, and antifibrinolytic proteins, exhibit various degrees of
deficiency. Although this topic has been reviewed recently by
others,5,8,9 the mechanism of coagulopathy related to mas-
sive transfusion and hemodilution is not fully understood. In
this review, we focus on the effects of hemodilution on
thrombin generation, fibrin polymerization, and fibrinolysis,
using experimental results as well as existing clinical data to
shed light on the mechanisms of dilutional coagulopathy. In
addition, we discuss various therapeutic approaches and their
clinical implications.
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Effects of Hemodilution on Coagulation
Factors and Blood Components

Volume resuscitation with crystalloids, colloids, or erythrocytes
can lead to dilutional coagulopathy with reduced levels of most
hemostatic elements, whereas FFP transfusion dilutes corpuscu-
lar elements in blood, but sustains soluble clotting factors at
nearly normal levels.10 According to in vitro experiments, the
extent of dilution is proportional to the infused volume.10,11

However, it is less clear whether this is true for in vivo situations;
for example, plasma FVIII and von Willebrand factor can be
acutely increased because of the release from endothelium by
stress hormones, including epinephrine and vasopressin.12–14

Further, platelet count is often higher than predicted by the
extent of dilution, presumably because of the release of seques-
tered platelets from the spleen and lungs and from the bone
marrow in premature forms.15 In addition to the reserve of some
hemostatic elements in vivo, it is also important to point out that
the critical level of a hemostatic element occurs at a different
time point during hemodilution. The threshold level of fibrin-
ogen at 1 g/l is observed after a loss of about 150% of circulating
blood volume, whereas critical concentrations of enzymatic co-
agulation factors and platelet count are reached after a loss of
more than 200% of blood volume.16 Besides changes in plasma
and cellular elements, hypothermia and acidosis, commonly as-
sociated with trauma and massive transfusion, reduce thrombin
generation by affecting enzyme kinetics.17–19

Although hemostatic defects are primarily attributed to de-
creased procoagulant factor levels, anticoagulant factor levels are
decreased proportional to the extent of hemodilution. For ex-
ample, antithrombin (formerly antithrombin III) activity de-
creases to below 30% after 1:6 dilution of whole blood with
normal saline in vitro.11 Decreased antithrombin activity pro-
longs the half-lives of thrombin and activated FX,20 and thus it
potentially contributes to improved hemostasis in the hypoco-
agulable state after hemodilution.10,11,21,22 On the other hand,
excess activity of thrombin and activated FX in circulation may
contribute to the pathogenesis of trauma-induced coagulopathy
and disseminated intravascular coagulation.23

Fibrinolytic and antifibrinolytic activities are also affected
in massive hemorrhage. The plasma concentration of �2-
antiplasmin is normally high (70 �g/ml, 1 �M), and it rap-
idly neutralizes plasma free plasmin.24 In addition, �2-anti-
plasmin is rapidly cross-linked to fibrin �-chains by activated
FXIII, conferring fibrin more resistant to fibrinolysis.25,26

Progressive hemodilution of �2-antiplasmin and FXIII re-
duces fibrin cross-linking and prolongs the plasma half-life of
plasmin.10,27 Plasma levels of other antifibrinolytic proteins
are also progressively lowered by hemodilution.10,11 Throm-
bin-activatable fibrinolysis inhibitor circulates in plasma (5
�g/ml, 75 nM), which, after being activated by high levels of
thrombin, cleaves C-terminal lysine residues from fibrin,
preventing plasminogen binding.28–30 Plasma plasminogen
activator inhibitor-1 (0.01 �g/ml, 200 pM) as well as platelet
(�-granule)-derived plasminogen activator inhibitor-1 are
decreased because of hemodilution and thrombocytope-

nia31,32; thus plasma tissue plasminogen activator (tPA) ac-
tivity is prolonged. Plasma levels of tPA can be increased in
acute stress because of release from Weibel–Palade bodies of
endothelium. Thrombin, epinephrine, vasopressin, desmo-
pressin, bradykinin, and other substances are known to trig-
ger tPA release.33 Taken together, in conjunction with high
baseline levels of plasminogen (200 �g/ml, 2 �M), the fi-
brinolytic pathway is relatively well preserved during major
hemodilution. On the contrary, fibrin clot becomes more
susceptible to plasmin digestion after hemodilution, and
even systemic fibrinolytic states may be observed in about
20% of trauma patients when plasmin activity is no longer
controlled by endogenous antifibrinolytic proteins.34,35

Regulation of Thrombin Generation

Thrombin generation is a critical event in achieving hemo-
stasis in a timely manner after vascular injury. Thrombin is a
potent serine protease, and its activation involves a series of
reactions among proteases and cellular components (fig. 1).
Three key components of coagulation (substrate, enzyme,
and cofactor) are concentrated on the activated platelet sur-
face to support thrombin generation locally.36–38 Notably,
the initial hemostatic response is triggered by an “extrinsic
pathway”; tissue factor expressed on subendothelial pericytes
and fibroblasts forms a complex with trace amounts of cir-
culating activated FVII during the initiation phase (fig. 1A).
Rapidly generated small quantities of activated FX proceed
to generate trace amounts of thrombin. In the amplification
phase, thrombin generation distant from the vascular wall
needs to be sustained without major contributions of tissue
factor. Thrombin is capable of activating FXI, FVIII, and FV
to maintain its own generation via the “intrinsic path-
way.”36–38 In particular, thrombin-activated FVIII and FV
play key roles during the subsequent propagation phase be-
cause activated FVIII-FIX complex (tenase) and activated
FV-FX complex (prothrombinase) exponentially increase
the activation rate of FX and prothrombin, resulting in the
generation of large amounts of thrombin on the platelet sur-
face (fig. 1D).37,39 Indeed, the minimal hemostatic level for
FVII can be much less than for prothrombin and fibrinogen
because the latter two are more rapidly consumed toward the
end of cascade reactions (fig. 1D and table 1). During the
propagation phase of coagulation, local thrombin concentra-
tion rapidly increases from less than 1 nM to as high as 500
nM.10,11,40 One may simply speculate that thrombin gener-
ation would be reduced as the prothrombin level falls because
of hemodilution, but the peak level of thrombin generation is
less affected relative to the prothrombin level after hemodi-
lution. Peak thrombin levels were reduced to 58% and 32%
of baseline, respectively, when prothrombin levels were de-
creased to 43% and 17% of baseline by in vitro hemodilution
with saline (fig. 2).10 The discordance between prothrombin
and thrombin generation can be partly explained by reduced
antithrombin activity. Antithrombin is a major serine pro-
tease inhibitor that circulates at a high concentration (2.7
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�M, 150 �g/ml) in plasma. Subthreshold levels of thrombin
and activated FX that circulate downstream from the injury
are rapidly neutralized by antithrombin bound to endothelial
heparan sulfate (fig. 3).41 Although thrombin is an essential
enzyme for hemostasis and survival, uncontrolled thrombin
activity can be harmful to the host. Multiple mechanisms are
available to limit excessive thrombin generation and to scav-
enge free proteases (e.g., thrombin, activated FX) in circula-
tion. Tissue factor pathway inhibitor is a key regulator of
activated FX when it is in a complex with tissue factor-acti-

vated FVII.42 In addition, it was recently shown that protein
S facilitates the inhibitory interaction between tissue factor
pathway inhibitor and activated FXa.43

Analogously, end-stage liver disease is associated with
concomitant decreases in procoagulant factors (FII, FVII,
FIX, and FX) and anticoagulant elements including anti-
thrombin, protein C, and protein S. Endogenous thrombin
generation may still be near normal despite abnormal clot-
ting times in liver cirrhosis,44,45 and similar data exist for
dilutional coagulopathy.10,11,46 When endogenous antico-

Fig. 1. Clot formation at injury site. (A) At the site of injured endothelial cells (EC), platelets adhere to subendothelial collagen
via interactions between von Willebrand factor (vWF) and platelet-surface glycoprotein receptor (GP), GPIb/IX. The platelet
integrin receptor (�2�1) reinforces the binding to collagen. Trace amounts of thrombin are generated during the initiation phase
of coagulation by FXa via interactions between circulating FVIIa and tissue factor (TF) expressed on subendothelial pericytes
and fibroblasts. (B) Platelets activated by collagen and thrombin release adenosine-diphosphate (ADP) and thromboxane
(TXA2), which activate platelets in the vicinity. (C) Activated platelets express GPIIb/IIIa and capture fibrinogen (F). On the
activated platelet surface, thrombin-mediated feedback activations of FXI, FVIII, and FV result in the propagation phase of
thrombin generation. Sustained activation of prothrombin is feasible via formation of tenase (activated FIX-FVIII) and prothrom-
binase (activated FX-FV). (D) Polymerization of fibrin is achieved by thrombin-activated FXIII during the propagation phase.
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agulants are deficient, thrombin activity is sustained at the
injury site as well as in circulation. In severe hemodilution,
thrombin and activated FX are more likely to be released into
circulation because polymerized fibrin, which normally ad-
sorbs and contains serine proteases, is reduced.47,48 Further,
systemic thrombin activity is associated with a release of tPA
and thrombomodulin-mediated activation of protein C (fig.
3). In trauma patients with hemodilution, these pathologic
responses are called early trauma-induced coagulopathy,6,49

and they are mechanistically similar to disseminated intravas-
cular coagulation with the hemorrhagic phenotype.23

In addition to hemodilution, thrombin generation can be
directly affected by hypothermia and acidosis, which are
commonly observed during resuscitation. Using the porcine
model, Martini et al. demonstrated that hypothermia (32°C)
and acidosis (pH 7.1) distinctly affect hemostasis.18,50 Hy-
pothermia mostly influences the initiation of clot formation,
whereas acidosis disturbs the propagation of coagulation. In
cases of hypothermia, thrombin generation reaches levels
similar to those of normothermia, but the process is slower.
In contrast, acidosis significantly impairs thrombin genera-
tion, resulting in a decreased hemostatic capacity.

Fibrin Polymerization and Fibrinolysis
The cleavage of fibrinogen bound to platelet glycoprotein
IIb/IIIa receptors and subsequent polymerization of fibrin

are achieved by amplified generation of thrombin and
thrombin-activated FXIII (fig. 1D). Plasma fibrinogen con-
centration is the highest (7.6 �M, 2.5 g/l) among coagulation
factors, and it is increased as an acute-phase reactant during
inflammation and pregnancy.51,52 Large amounts of fibrin-
ogen are captured by activated platelets via abundant glyco-
protein IIb/IIIa receptors (more than 12,000 copies per
platelet) (fig. 1B).53,54 Fibrinogen molecules are converted to
fibrin monomers after thrombin removes N-terminal pep-
tides (fibrinopeptides) from the fibrinogen A� and B�
chains.55 Activated platelets release FXIII A subunits that are
activated by thrombin, and activated FXIII polymerizes fi-
brin monomers into fibrin. Activated FXIII also cross-links
�2-antiplasmin to fibrin, making fibrin more resistant to
degradation.26,56 Thus, local thrombin levels affect both the
thickness and the fibrinolytic resistance of fibrin fibers.30,57

In normal plasma, a high peak thrombin level (200–500 nM)
can be achieved,10,11,40 and a dense network of thin fibrin
strands (firm clot) is produced to establish hemostasis.57,58

Conversely, a lower thrombin level in bleeding disorders
(e.g., hemophilia) is associated with coarsely gathered thick
fibrin strands (loose clot).58,59 It can be easily speculated that
the extent of thrombin generation is nonhomogeneous in-
side the clot (fig. 4). The maximal thrombin generation is
expected to be near the vessel wall, where platelets release
procoagulant microparticles60 after being maximally acti-
vated by collagen and tissue factor-pathway derived throm-
bin. The pivotal role of thrombin in conferring antifibrino-
lytic activity is related to cross-linking of �2-antiplasmin to
fibrin by activated FXIII and activation of thrombin-activat-

Table 1. Plasma Levels, Half-lives and Availability of
Concentrates for Coagulation Factors and Inhibitors

Factor
Level
(�m)

Half-life
(h)

Available
Concentrate(s)152

Fibrinogen 7.6 72–120 pd-Fibrinogen,
Cryoprecipitate

Prothrombin 1.4 72 PCC, FEIBA
Factor V 0.03 36 None
Factor VII 0.01 3–6 pd-FVII, r-FVIIa,

PCC*, FEIBA
Factor VIII 0.00003 12 pd-FVIII, r-FVIII
Factor IX 0.09 24 pd-FIX, r-FIX,

FEIBA
FX 0.17 40 pd-FX, PCC,

FEIBA
Factor XI 0.03 80 pd-FXI
Factor XIII 0.03 120–200 pd-FXIII, r-FXIII,

Cryoprecipitate
vWF 0.03 10–24 pd-vWF,

Cryoprecipitate
Protein C 0.08 10 pd-Protein C,

PCC*
Protein S 0.14 42.5 PCC*
Antithrombin 2.6 48–72 pd-Antithrombin,

r-Antithrombin

Fresh frozen plasma contains all the above coagulation factors at
near-normal concentrations.
FEIBA � Factor eight inhibitor bypassing activity; PCC � pro-
thrombin complex concentrate (*certain PCC products contain
minimal levels of FVII, protein C, and protein S); pd � plasma-
derived; r � recombinant; vWF � von Willebrand factor.

Fig. 2. Thrombin generation after dilution. Thrombin genera-
tion patterns in platelet-poor plasma are shown before and
after dilution to about 40% of baseline. The patterns are
similar between baseline and dilution with fresh frozen
plasma (FFP). The peak thrombin level decreases (downward
arrow) after dilution with normal saline (NS) because of a
reduced concentration of procoagulant clotting factor. A con-
comitant reduction in antithrombin activity results in sus-
tained thrombin activity (upward arrow). Data are adapted
from Bolliger D, Szlam F, Levy JH, Molinaro RJ, Tanaka KA:
Haemodilution-induced profibrinolytic state is mitigated by
fresh-frozen plasma: Implications for early haemostatic inter-
vention in massive haemorrhage. Br J Anaesth 2010; 104:
318–25, used by permission of Oxford University Press.
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able fibrinolysis inhibitor.25,26,29 Densely packed thin fibrin
strands serve as a local container for activated proteases,
thrombin and activated FX.48 Indeed, high-affinity nonsub-
strate binding site of fibrin for thrombin is known as antithrom-
bin I.47 Deficiency of both fibrinogen and antithrombin in se-
vere hemodilution can be detrimental to the control of
procoagulant activity. Without adequate fibrin polymerization,
thrombin and activated FX generated at the injury site are re-

leased into systemic circulation (fig. 3).48,61 These activated pro-
teases exacerbate disseminated intravascular coagulation in con-
junction with low levels of anticoagulant factors.10,62

It is not known what minimal levels of fibrinogen and
FXIII should be kept to minimize perioperative bleeding.
The international guidelines before 2009 recommended
minimal fibrinogen levels between 0.8 and 1.0 g/l,1,63,64 a
level similar to the management of congenital afibrinogene-
mia (table 2).65 However, more recent European guidelines
recommend higher fibrinogen cutoffs (1.5–2.0 g/l) for peri-
operative coagulopathy.66,67 These changes are in closer
agreement with recent clinical data in postpartum hemor-
rhage,51 replacement of the aorta,68 coronary bypass grafting
surgery,69–71 cystectomy,72 and in vitro hemodilution,11

which indicated even higher fibrinogen levels of 2–3 g/l for
adequate hemostasis (table 3). The overestimation of fibrin-
ogen concentrations by the Clauss method after volume re-
placement with colloids is also an important consideration.73

For the minimal FXIII level, recent clinical data suggest the
maintenance of above 50–60% to reduce bleeding tendency
after major surgery, particularly in the presence of low fibrin-
ogen levels (less than 1.5 g/l).27,74

Fibrinolytic activation is an important process in preventing
excess fibrin formation that occludes injured blood vessels. Plas-
min activation is catalyzed by locally concentrated tPA and
plasminogen, which bind to positively charged lysine residues
expressed on fibrin (fig. 4).75 Normally, endogenous antifi-
brinolytics, plasminogen activator inhibitor-1, �2-antiplasmin,
and activated thrombin-activatable fibrinolysis inhibitor, are
highly concentrated at the focal point of blood coagulation ac-
cording to the gradient of activated platelets, thrombin, and
activated FXIII.76,77 Thus, fibrin near the vessel wall is highly
resistant to fibrinolysis, whereas intraluminal fibrin is more ac-
cessible by fibrinolytic enzymes for recanalization of the injured
blood vessel (fig. 4).78 Reduced thrombin generation,30,79 low

Fig. 3. Mechanism of intravascular clot formation and thrombin regulation. Thrombin is an essential enzyme for hemostasis and
survival, but uncontrolled thrombin activity can be harmful to the host. Subthreshold levels of thrombin (FIIa) and activated
factor X (FXa) that circulate downstream from the injury are rapidly neutralized by antithrombin (AT) bound to endothelial
heparan sulfate. Thrombomodulin-mediated activation of protein C (PC) to activated protein C (APC) inhibits activities of FV and
FVIII, thereby limiting thrombin generation. Systemic thrombin activity is also associated with binding to a protease-activated
receptor (PAR) and with consecutive release of tissue plasminogen activator (tPA), leading to conversion of plasminogen (Plgn)
to plasmin and finally fibrinolysis.

Fig. 4. Regulation of fibrin polymerization and fibrinolysis
within the clot. The maximal thrombin generation is expected
to be near the vessel wall where thrombin (IIa) generation is
maximal over the highly catalytic phospholipids surface on
platelets activated by collagen and tissue factor-pathway
derived thrombin. Endogenous antifibrinolytics, �2-antiplas-
min (�2-AP) and active thrombin-activatable fibrinolysis inhib-
itor (TAFIa), are also cross-linked to fibrin by thrombin-acti-
vated factor XIII (XIIIa) according to the extent of thrombin
generation. Thus, fibrin near the vessel wall is highly resistant
to fibrinolysis, whereas intraluminal fibrin is more accessible
by tissue plasminogen activator (tPA) activation of plasmin-
ogen (Plgn) for recanalization of the injured blood vessel.
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�2-antiplasmin levels,24 or low levels of thrombin-activatable
fibrinolysis inhibitor80 may be associated with a fibrin structure
that is prone to fibrinolysis. Premature fibrinolysis associated
with rebleeding may easily occur after extensive hemodilution
with crystalloids, colloids, or erythrocytes because endogenous
antifibrinolytic proteins are decreased and their interaction is
diminished.26 Prophylactic uses of antifibrinolytics have been
shown effective in reducing fibrinolytic tendency after a progres-
sive hemodilution in cardiac surgery.7 It is possible that antifi-
brinolytic activity can be maintained by supplementing FFP10

or FXIII.56

The effects of hypothermia and acidosis on fibrinogen
synthesis, fibrin polymerization, and fibrinolysis have been
experimentally evaluated in the porcine model and in vitro.
In the porcine model, it was shown that hypothermia de-
creases fibrinogen synthesis, whereas acidosis increases fibrin
degradation without affecting fibrinogen.81 The rate of fi-
brin polymerization is reduced synergistically by hypother-
mia (� 33°C) and acidosis (pH � 7.1).17 The rate of fibri-
nolysis seems to remain constant in hypothermia (32°C), but
acidosis increases fibrin degradation.81,82

Hemostasis Monitoring for Massive
Hemorrhage
Prothrombin time (PT) and activated partial thromboplastin
time (aPTT) represent the most common screening tests for

coagulation abnormalities in massive transfusion.83 The pro-
longation in PT is presumably proportional to the extent of
coagulation factor loss and hemodilution.84 Using the cut-
off value of international normalized ratio of more than 1.5
times normal, PT demonstrates a sensitivity of 88% and a
specificity of 88% in detecting at least one nonhemostatic
coagulation factor level after trauma.84 On the other hand,
aPTT (more than 1.5 times normal) demonstrates a sensitiv-
ity of only 50% and a specificity of 100%. This is because
FVIII is often increased as an acute phase reactant in trauma
and surgical patients.12 Several important limitations should
be considered when PT/aPTT are used to evaluate bleeding.
First, perioperative bleeding is typically associated with
multiple coagulation defects resulting from hemodilu-
tion, consumptive loss, fibrinolysis, anticoagulant use,
hypothermia, and other mechanical and metabolic de-
rangements. Second, PT and aPTT do not provide any
information on in vivo interaction of platelets with coag-
ulation factors. Third, PT and aPTT remain prolonged
even if thrombin generation is improved because of anti-
thrombin or protein C deficiency.22,45 Further, it is not
possible to estimate the overall stability of a hemostatic
thrombus using PT/aPTT because both tests are termi-
nated at very low thrombin levels of about 10 nM

85 and
before fibrin is polymerized by activated FXIII. Finally,
PT/aPTT remain normal when bleeding is caused by in-

Table 2. Minimal Fibrinogen Levels in Different Studies

Study Year
Fibrinogen
Level (g/l) Surgery/Conditions (Time Point)

Gerlach et al.74 2002 � 1.5 Neurosurgery (after surgery)
Charbit et al.51 2007 � 2.0 Postpartum hemorrhage
Bolliger et al.69 2009 � 2.0 CABG on-pump and off-pump (after surgery)
Bolliger et al.11 2009 2–3 In vitro hemodilution
Fenger-Eriksen et al.72 2010 2.4 Cystectomy (after surgery)
Blome et al.70 2005 2.7 CABG on-pump (after surgery)
Karlsson et al.71 2009 3.1 CABG on-pump (after surgery)
Rahe-Meyer et al.68 2009 3.6 Replacement of ascending aorta (after surgery)

Fibrinogen levels are the cutoff levels in retrospective studies,51,69–70,74 the optimal level in the in vitro study,11 and the levels in the
interventional groups of placebo-controlled studies.68,71–72

CABG � coronary artery bypass grafting.

Table 3. Minimal Fibrinogen Levels in Different International Guidelines

Study Year
Fibrinogen
Level (g/l) Source

ASA1 2006 � 0.8–1 American Guideline
O’Shaughnessy et al.63 2004 1 British Guideline
American Red Cross 2007 1 American Guideline
Spahn et al. 64 2007 1 European Guideline
Bundesärztekammer66 2009 1.5 German Guideline
ÖGARI 2010 1.5–2 Austrian recommendations
Rossaint et al. 67 2010 1.5–2 European Guideline

The Red Cross guideline (Practice Guidelines for Blood Transfusion; via http://www.redcross.org/www-files/Documents/
WorkingWiththeRedCross/practiceguidelinesforbloodtrans.pdf; accessed July 14, 2010 and ÖGARI guideline (Coagulation Man-
agement 2010; via http://www.oegari.at/arbeitsgruppe.asp?id � 116; accessed July 14, 2010) are on-line publications.
ASA � American Society of Anesthesiologists; ÖGARI � Austrian Society of Anesthesiology, Reanimation and Intensive Care Medicine.
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creased fibrin breakdown (i.e., hyperfibrinolytic state)
such as occurs in congenital deficiency of �2-antiplasmin.24

There are some point-of-care devices available for deter-
mination of PT/aPTT, but the majority of PT/aPTT testing
is still performed in the laboratory, which requires a substan-
tial time delay. In this regard, thromboelastography (TEG�;
Hemonetics Corporation, Braintree, MA) or thromboelas-
tometry (ROTEM�; TEM International, Munich, Ger-
many) are advantageous because they can be performed as
point-of-care hemostasis monitoring when appropriately
trained personnel are available.34,84 Both TEG� and
ROTEM� technologies are based on the original invention
of H. Hartert (reported in 1948),86 which predates the in-
troduction of aPTT. The main endpoint of ROTEM�/
TEG� is the polymerization of fibrin in the presence of ac-
tivated platelets. Given some differences, both assays are
particularly useful for the evaluation of fibrinogen defi-
ciency, factor XIII deficiency, hemophilia, and fibrinolytic
state.11,30,87–89 In patients with major trauma, early diagno-
sis and treatment of coagulopathy may be feasible using
ROTEM�-guided (goal-directed) hemostatic therapy (fig.
5).90 The commonly used thromboelastometric variables in-
clude (fig. 5A): coagulation time (in seconds), clot formation
time (in seconds), angle (�; in degrees), maximum clot firm-
ness (in millimeters), and lysis time (in seconds). Coagula-
tion time represents the onset of clotting, while clot forma-
tion time and angle both represent the initial rate of fibrin
polymerization. Maximal clot firmness is a measure of the
maximal viscoelastic strength of clot (fig. 5B–D). Lysis time
is used for the diagnosis of premature lysis or hyperfibrinoly-
sis (fig. 5E).34,35

It is of interest to know whether coagulation time values
correspond to conventional screening tests (PT/aPTT). In a
recent clinical study of trauma-induced coagulopathy, the cor-
relations between coagulation time values and PT/aPTT were
rather poor (r � 0.47–0.53).84 Nevertheless, other ROTEM�
parameters related to fibrin polymerization (e.g., amplitude after
15 min, clot formation time) seem to be useful for an early
detection of coagulopathy represented by abnormal PT/aPTT
(more than 1.5 times normal).83 Maximal clot firmness is highly
influenced by fibrinogen levels and platelet count (fig. 5C–
D),11,91 and maximal clot firmness in the presence of cytocha-
lasin D (FIBTEM) correlates well with fibrinogen levels.84,92 In
trauma-induced coagulopathy, a FIBTEM amplitude after 10
min of less than 5 mm was reported to be a good predictor of low
plasma fibrinogen (less than 1.0 g/l), with a sensitivity of 91%
and a specificity of 85%.84 In a recent retrospective analysis of
131 patients, FIBTEM- maximal clot firmness below 10 mm
and EXTEM-clotting time more than 1.5 times normal were
shown to be effective targets of administering fibrinogen con-
centrate and prothrombin complex concentrate, respectively.90

Other hemostatic monitoring, such as PT/aPTT and ac-
tivated clotting time, can also be used at bedside. The mea-
surement of thrombin generation and individual coagulation
factor levels are used mostly for research purposes unless
there is a high clinical suspicion because of preexisting con-

ditions (e.g., hemophilia, antithrombin deficiency). The pre-
dictive value of novel impedance platelet aggregometry in
trauma and surgical bleeding still needs to be determined.93

Interventions for Coagulopathy

Initial Resuscitation
In patients with traumatic hemorrhage, time between injury
and admission to hospital should be minimized.67 Permissive
hypotension may be considered in patients who present with
moderate bleeding, but massive volume resuscitation cannot
be deferred if patients are in severe hypovolemic shock.94

Major resuscitation efforts using blood products and other
hemostatic interventions are initiated when patients are ad-
mitted to a tertiary care center.

Fig. 5. Thromboelastometry after dilution. Thromboelastom-
etry assesses the kinetics of clot formation and stability or
lysis of the formed clot. (A) Thromboelastometric parameters
are defined as follows: Initiation of coagulation measured as
coagulation time (CT) shows initial thrombin and fibrin forma-
tion. Propagation of clot formation is a function of the inter-
actions of fibrin(ogen) with platelets. It is measured as � angle
or clot formation time (CFT), which is defined as the time
needed to achieve a clot firmness of 20 mm. Maximal clot
firmness (MCF) represents the final clot strength and results
from firm aggregation of platelets and formation of a stable
fibrin network. A10 represents the amplitude 10 min after the
onset of clot formation. Clinically relevant fibrinolysis can be
diagnosed by shortened lysis time (LT), which is defined by
the time to diminish the clot firmness to 10% of maximal clot
firmness. (B–E) Thromboelastometric patterns in normal
whole blood (B), after severe dilution (C), after severe dilution
and supplementation with 1.5 g/l fibrinogen (D), and in
hyperfibrinolysis (E). Data are adapted from Bolliger D, Szlam
F, Molinaro RJ, Rahe-Meyer N, Levy JH, Tanaka KA: Finding
the optimal concentration range for fibrinogen replacement
after severe haemodilution: An in vitro model. Br J Anaesth
2009; 102:793–9, used by permission of Oxford University
Press.
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Initial Volume Resuscitation
Resuscitation of the hypovolemic patient after major blood
loss usually involves an initial infusion of crystalloids and
colloids to stabilize systemic circulation.1 Both crystalloids
and colloids dilute the coagulation factors, platelets, and he-
moglobin. Although with clear advantages in sustaining in-
travascular volume and therefore normovolemia, colloids
may have some disadvantages regarding hemostasis. Colloids
such as hydroyethyl starch solutions, gelatins, and dextrans
impair platelet function, inhibit fibrin polymerization, and
may induce an acquired von Willebrand syndrome.95–97 The
degree of such derangement depends on the amount and the
physicochemical characteristics of the colloid solution.98

They may also increase fibrinolytic tendency, probably be-
cause of interaction with fibrin polymerization and �2-anti-
plasmin–plasmin interactions.96,99 Crystalloid solutions pri-
marily induce dilution of the coagulation factors and
platelets.10,11 Interestingly, mild dilution has been associated
with hypercoagulability on thromboelastography.100 How-
ever, this finding has been questioned101 and may reflect in
vitro effects of decreased hematocrit.89,102,103

Transfusion of erythrocytes is performed to improve ox-
ygen carrying capacity, but increased hematocrit may also be
beneficial for hemostasis. In the arterial vessel, platelets are
preferentially distributed near the vessel wall (margination)
because of the red cell mass.102,103 The platelet count mea-
sured in a static blood sample may therefore not correctly
reflect the in vivo platelet concentration next to the injured
vessel wall, and this may explain a relatively low incidence of
spontaneous bleeds until platelet count is below 10,000 per
�l.104 Erythrocytes also facilitate platelet aggregation by re-
leasing adenosine diphosphate under shear flows,105 and
they may function as a reactive surface for the coagulation
cascade.106 In summary, low red cell mass (anemia) seems to
worsen bleeding tendencies.103 In contrast, thromboelasto-
metric measurement in anemic patients (mean hematocrit
28%) showed that angle and maximal clot firmness values
were increased by 5° and 10 mm, respectively, compared
with normal subjects (hematocrit 41%).89 However, throm-
boelastometric measurements are conducted under low shear
rates (0.1/s), and the red cell mass is “in the way” of spreading
fibrin strands and their interaction with platelets glycopro-
tein IIb/IIIa.107

Fresh Frozen Plasma
FFP contains all the components in donor plasma, including
procoagulant, anticoagulant, and antifibrinolytic factors, al-
bumin, and immunoglobulins. In thawed FFP kept at
1–6°C, residual levels of labile FV remain adequate for 5
days.108 Such plasma may be useful when FFP is acutely
needed for massive transfusion. Several retrospective analyses
demonstrated the potential clinical benefit of aggressive he-
mostatic resuscitation using the empirical transfusion ratio of
FFP:RBC over 1:1 in military and civilian trauma
cases.2,109–111 The survival rate was significantly worse with
a low FFP:RBC ratio (i.e., less than 1:2) relative to a high

ratio (more than 1:1).111,112 On the contrary, two other
retrospective studies found no benefit of a high FFP:RBC
ratio.113,114 Differences in patient demographics, inclusion
criteria, and transfusion protocols may have contributed to
these conflicting findings. Nevertheless, the introduction of
massive transfusion protocols resulting in more aggressive
resuscitation may further improve survival in severe trau-
ma.115 Therefore, recently updated guidelines of the Amer-
ican Association of Blood Banks and the European task force
recommend early intervention with FFP but without a preset
FFP:RBC ratio.67,116

From a mechanistic point of view, FFP increases the pro-
coagulant, anticoagulant, and antifibrinolytic potential10

when given in adequate amounts117 at an early stage of dilu-
tion.109 However, there are safety concerns about the routine
use of FFP that limit its therapeutic benefits.118,119 First,
there is a potential, although low, risk of viral transmission
with FFP. Such risks may be further reduced in the future as
more virus inactivated plasma products become available.120

The incidence of transfusion-related acute lung injury has
recently decreased after the adoption of male-only donor
policies for FFP.121 However, large volumes of FFP are re-
quired to raise factor levels, and the administration of FFP
may increase the incidence of volume overload, nosocomial
infections, multiple organ failures, and possible mortal-
ity.119,122,123 Therefore, FFP should not be considered as a
fluid replacement therapy,1,64,67,124 but if it is clinically
proven effective, the use of FFP in massive hemorrhage may
be a notable exception because of acute hypovolemia.109,110

Cryoprecipitate, Fibrinogen Concentrate, and FXIII
Concentrate
Cryoprecipitate is the plasma component that is prepared
after partially thawing FFP. Because cryoprecipitate is rich in
fibrinogen, FXIII, von Willebrand factor, and FVIII, it has
been used for the treatment of bleeding in acquired fibrino-
gen or FXIII deficiency. In European countries, the use of
cryoprecipitate has largely ceased, and specific plasma-de-
rived factor concentrates are administered instead for fibrin-
ogen or FXIII deficiency. Because FFP transfusion is insuf-
ficient to raise plasma fibrinogen in the United States and
United Kingdom, cryoprecipitate is an alternative for the
replacement of low plasma fibrinogen. One unit (15 ml) of
cryoprecipitate per 10 kg of body weight is estimated to
increase plasma fibrinogen by 0.5 g/l in the absence of con-
tinuing bleeding. The plasma fibrinogen level can be in-
creased proportionally to the transfused amount of cryopre-
cipitate or fibrinogen concentrate,125 whereas 30 ml/kg FFP
is required to raise the plasma fibrinogen level by 1 g/l.117

Although there is a paucity of data on the safety and efficacy
of cryoprecipitate in the massive transfusion setting, roles for
fibrinogen in hemostasis have been previously suggested (table
2). A high ratio of fibrinogen to transfused erythrocyte units has
been associated with a reduction in mortality in combat trauma
patients.126 High plasma fibrinogen levels (more than 3 g/l)
may even compensate for low platelet counts.11,91 There are
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increasing clinical data that support the use of fibrinogen con-
centrate to reduce blood loss and transfusion of erythrocytes and
platelets after major surgery without increasing thrombotic
complications.68,71,72,127

Decreased levels of FXIII have been associated with an
increased bleeding tendency after major cancer surgery and
neurosurgery, and FXIII supplementation has been proven
to decrease blood loss after major cancer surgery.27,56,74 In
vitro studies suggest that FXIII can improve clot stabil-
ity,88,128 but FXIII may be less efficacious in cases of low
fibrinogen levels. However, cryoprecipitate with high con-
centrations of fibrinogen, FXIII, and FVIII may be a valuable
alternative for a single coagulation factor transfusion. To
conclude, restoring fibrinogen and FXIII levels seems to be
advantageous in bleeding management after major surgery or
trauma, but the choice between FFP, cryoprecipitate, and
fibrinogen in massive hemorrhage remains controversial, and
further investigations are required.

Prothrombin Complex Concentrate
Prothrombin complex concentrate (PCC) contains FII,
FVII, FIX, and FX, as well as proteins C and S, and trace
amounts of heparin and antithrombin, depending on the
product. PCC has been used conventionally for the treat-
ment of hereditary deficiency of FII, FVII, FIX, and FX, but
individual (plasma-derived or recombinant) factor concen-
trates may be available for this indication. In most European
countries and Canada, PCC is approved for a rapid reversal
of vitamin K antagonists (coumarin derivatives).129 In con-
trast to FFP (1 unit, 250 ml) which contains 0.5–1.0 IU/ml
of all plasma factors, the factors contained in PCC (about
500 IU, 20 ml) are highly concentrated, at up to 25 times the
levels found in FFP.129 Without the need for cross-match-
ing/thawing, it is possible to replace vitamin K-dependent
factors rapidly without the risk of volume overload, exposure
to immunoglobulins, and additional hemodilution (particu-
larly for erythrocytes and platelets).130,131

However, there is a paucity of data on the use of PCC in
coagulopathy due to hemodilution, trauma, or hepatic dys-
function. In a porcine hemodilution model, PCC (35 units/
kg) improved PT and showed a trend of decreasing blood loss
after splenic injury.132 In several small retrospective studies,
PCC was shown to be hemostatic in postcardiac surgical
patients who developed coagulopathy refractory to platelets,
FFP, and cryoprecipitate.133–135 In an in vivo study in 16
critically ill patients with acquired deficiency of coagulation
factors caused by various conditions, PCC was shown to
reverse PT and restore factor levels.136 In trauma patients,
the use of PCC after the initial treatment with fibrinogen
concentrate was shown to reduce the need for FFP without
affecting survival rate.90 In summary, several lines of evi-
dence suggest that PCC is beneficial in treating bleeding after
hemodilution by increasing thrombin generation, which op-
timizes fibrin generation and possibly antifibrinolytic prop-
erties. Although the use of PCC is presumably safe for acute
reversal of coumarins, there is a paucity of data on its safety in

the setting of massive hemorrhage and hemodilution. The
prothrombotic risk of PCC may be increased in the presence
of antithrombin deficiency caused by hemodilution.21,137

Additional clinical studies are necessary to establish optimal
indications and dosages for PCC in perioperative settings.

Recombinant Activated Factor VII
Two prospective randomized trials of recombinant activated
FVII in massive transfusion (more than 8 units of erythro-
cytes) from blunt or penetrating injury demonstrated no dif-
ferences in erythrocyte transfusion within 48 h (primary end-
point) between patients who received recombinant activated
FVII (400 �g/kg in three divided doses) and those who had
the placebo.138 However, in the subgroup analysis of blunt
trauma patients who survived beyond 48 h, less erythrocyte
transfusion (reduction of 2.6 units; P � 0.02) and reduced
incidence of massive transfusion (14% vs. 33%; P � 0.03)
were observed with recombinant activated FVII treatment
relative to placebo. A trend favoring recombinant activated
FVII for reducing massive transfusion was also observed in
penetrating trauma cases (7% vs. 19%; P � 0.08). In addi-
tion, positive effects of recombinant activated FVII in obstet-
ric hemorrhage patients without relevant numbers of throm-
boembolic complications were recently reported.139

Recombinant activated FVII after hemodilution may only be
efficacious when fibrinogen levels are supplemented
first.67,140 Because of accelerated thrombin generation to-
gether with low antithrombin levels after hemodilution, the
administration of recombinant activated FVII may poten-
tially increase the risk of thromboembolic complications.141

However, a small randomized study in 30 blunt trauma pa-
tients with traumatic brain injury did not show an increased
rate of thromboembolic complications after administration
of recombinant activated FVII (400 �g/kg in three divided
doses).142

Platelet Concentrates
In hemorrhage after trauma or major surgery, the adminis-
tration of platelet concentrates has to be considered if platelet
count falls below 50 � 103/�l.1,64,67 However, because of
margination of platelets under in vivo flow conditions102 and
possible release from sequestered platelets in the spleen,
lungs, and bone marrow,15 the threshold for administration
of platelets, especially in cases of dilutional coagulopathy,
remains unclear. Additional prospective studies are war-
ranted to evaluate the efficacy of administering RBC:FFP:
platelets at a 1:1:1 ratio in severely injured patients with
massive bleeding.143,144

Platelet dysfunction induced by drug therapy (acetylsali-
cylic acid, glycoprotein IIb/IIIa inhibitors, and others) can
cause excessive bleeding with normal platelet counts. When
platelet dysfunction is identified or strongly suggested, trans-
fusion of platelet concentrates is strongly advised, even when
platelet counts are normal.8 Potential limitations of platelet
transfusion include serious adverse events, such as transfu-
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sion-associated viral or bacterial infections, transfusion-asso-
ciated lung injury, stroke, or even death.8,145

Desmopressin acetate, an analog of endogenous vasopres-
sin, has been shown in vitro to antagonize platelet dysfunc-
tion induced by glycoprotein IIb/IIIa inhibitors and aspi-
rin.146 Desmopressin acetate has also been reported to be
effective in reducing blood loss after cardiac surgery147; how-
ever, subsequent studies failed to show marked benefits in
improving perioperative hemostasis.148 A systematic review
showed that desmopressin acetate was able to reduce periop-
erative blood loss but did not minimize perioperative alloge-
neic erythrocyte transfusion.149 Data on the use of desmo-
pressin acetate in hemorrhage and dilution are lacking, but it
may be speculated that there is a tachyphylaxis caused by
high stress and endogenous exhaustion of procoagulant fac-
tors. A potential beneficial effect of factor VIII/von Wille-
brand factor concentrate on platelet function has yet to be
proven.

Antifibrinolytics
Fibrinolysis is frequent in severe trauma6,9,34,35,62 and hemodi-
lution,10 but it is rarely diagnosed. Lysine analogues, �-amin-
ocaproic acid and tranexamic acid, are currently available anti-
fibrinolytics. It is not known whether antifibrinolytic therapy
could actually lower the threshold levels of fibrin(ogen) in cases
of severe hemodilution, but antifibrinolytics are presumably ef-
fective in preserving a weak fibrin clot that is otherwise suscep-
tible to plasmin. Tranexamic acid has been shown to improve
clot stability in hemophilic patients.87 The overall reductions in
blood loss and the need for allogeneic red cell transfusion by
lysine analogues have been reported in cardiac, orthopedic, and
hepatic surgery.150 A prospective randomized placebo-con-
trolled trial was recently conducted to investigate the effective-
ness of tranexamic acid (1 g loading followed by 1 g over 8 h) in
20,211 trauma patients.151 This study demonstrated significant
reductions in all-cause mortality (14.5% vs. 16.0%; relative risk
0.91; P � 0.0035), and in deaths due to bleeding (4.9% vs.
5.7%; relative risk 0.85; P � 0.0077), without increasing vas-
cular occlusive events, in the tranexamic acid group compared to
the placebo group.151

Conclusion

Hemodilution caused by trauma and major surgery induces
complex hemostatic changes involving procoagulant factors
as well as anticoagulant, fibrinolytic, and antifibrinolytic fac-
tors. The endothelial responses to shear stress, active pro-
teases, and various inflammatory cells and cytokines add
further complexity to the pathophysiology of massive he-
modilution. In addition to the conventional transfusion
products, which are often difficult to administer in a timely
manner, purified factor concentrates of plasma origin and
from recombinant synthesis are highly concentrated (i.e.,
small volume) for a rapid restoration of targeted factor(s).
The use of point-of-care testing is desirable to optimize the

dose and timing of such intervention. Additional clinical
trials of different factor concentrate therapies are required to
validate their efficacy and safety in patients after trauma or
major surgery.152 Further understanding of the time course
of pathophysiological changes in massive hemodilution is
necessary to optimally balance hemostatic and anticoagulant
therapies.
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