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ABSTRACT
Background: Hospitals are increasingly required to pub-
licly report outcomes, yet performance is best interpreted
in the context of population and procedural risk. We
sought to develop a risk-adjustment method using admin-
istrative claims data to assess both national-level and hos-
pital-specific performance.

Methods: A total of 35,179,507 patient stay records from
2001–2006 Medicare Provider Analysis and Review
(MEDPAR) files were randomly divided into development and
validation sets. Risk stratification indices (RSIs) for length of
stay and mortality endpoints were derived from aggregate risk
associated with individual diagnostic and procedure codes. Per-
formance of RSIs were tested prospectively on the validation
database, as well as a single institution registry of 103,324 adult
surgical patients, and compared with the Charlson comorbidity
index, which was designed to predict 1-yr mortality. The pri-
mary outcome was the C statistic indicating the discriminatory
power of alternative risk-adjustment methods for prediction of
outcome measures.
Results: A single risk-stratification model predicted 30-day
and 1-yr postdischarge mortality; separate risk-stratification
models predicted length of stay and in-hospital mortality.
The RSIs performed well on the national dataset (C statistics
for median length of stay and 30-day mortality were 0.86 and
0.84). They performed significantly better than the Charlson
comorbidity index on the Cleveland Clinic registry for all
outcomes. The C statistics for the RSIs and Charlson comor-
bidity index were 0.89 versus 0.60 for median length of stay,
0.98 versus 0.65 for in-hospital mortality, 0.85 versus 0.76 for
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30-day mortality, and 0.83 versus 0.77 for 1-yr mortality.
Addition of demographic information only slightly im-
proved performance of the RSI.
Conclusion: RSI is a broadly applicable and robust system for
assessing hospital length of stay and mortality for groups of
surgical patients based solely on administrative data.

A CENTRAL tenet of national health care quality im-
provement, as described by the Hospital Quality Al-

liance,** is public reporting of hospital-level outcome sta-
tistics. A critical assumption behind public outcome
reporting is that patients (or their insurers) are rational
consumers who will choose hospitals reporting superior
results and that this, in turn, will serve as an economic
incentive for quality improvement in health care. It is thus
likely that reported results will have considerable financial
impact throughout the healthcare system.

The difficulty with unadjusted outcomes is that base-
line patient risk varies considerably. Even for a given pro-
cedure performed by the same surgeon in the same hospi-
tal, mortality may vary considerably because of preexisting
patient demographics, comorbidities, and disease stage.1,2

Furthermore, some medical and surgical procedures are
either substantially less effective or more dangerous than
others, resulting in unforeseen complications that have an
adverse impact on recovery and survival. Outcomes can
thus only be reasonably interpreted in light of baseline
population risk, the cumulative impact of procedures, and
complications associated with hospital care.

Risk stratification schemes have been developed for
selected procedures. In general, they use critical laboratory
test results and other disease-specific clinical findings that
correlate with outcome. An alternative approach is base
stratification on administrative claims databases contain-
ing diagnostic and procedure descriptors, with or without
readily available patient demographic characteristics.1,3

One shortcoming of existing risk-stratification methods is
inadequate validation across diverse populations, facili-

ties, geographical regions, and various medical proce-
dures. For example, the widely-used Charlson comorbid-
ity index (CCI) was developed in 1987 from fewer than
600 patients.4 Development of a broadly validated risk-
stratification method would permit relevant outcomes,
such as duration of hospitalization and mortality, to be
fairly compared across healthcare institutions. Availability
of an open-source, reproducible method would also foster
a more consistent and transparent outcome comparison
process. Our goal was to develop risk-adjustment models
from a national administrative database from the Centers
for Medicare and Medicaid Services (CMS), and to vali-
date performance of the resulting models in a large single-
center electronic registry of surgical patients.

Materials and Methods
A dataset was constructed from the 2001–2006 Medicare Pro-
vider Analysis and Review (MEDPAR) database (CMS dataset;
n � 79,741,480). The MEDPAR file is a national stay-based
dataset derived from claims made for payment to CMS under
the Medicare program. Each record in the file represents a single
patient stay. Data fields include demographic data (age, gender),
up to 10 diagnosis codes and 6 procedure codes (coded accord-
ing to the International Classification of Diseases, Ninth Revision,

** Hospital Quality Alliance: Quality measures. Available at http://www.
hospitalqualityalliance.org/hospitalqualityalliance/qualitymeasures/
qualitymeasures.html. Accessed May 11, 2010.

What We Already Know about This Topic

❖ Hospitals are increasingly required to publicly report out-
comes, yet performance is best interpreted in the context of
population and procedural risk.

❖ Good predictive systems that are based on readily accessible
data are not currently available.

What This Article Tells Us That Is New

❖ The authors developed broadly applicable and robust risk-
stratification systems for assessing hospital length of stay
and mortality for surgical patients based solely on admin-
istrative data.

MEDPAR Hospital DB
2001-2006

(n=79,741,480)

Age < 65 years
(n=13,884,486)

Non- & Low-Volume
Procedure Stays
(n=23,512,473)

Observation Period < 1 Year
(n=7,165,014)

CMS Dataset
(n=35,179,507)

CMS Development
Dataset

(n=17,589,824)

CMS Validation
Dataset

(n=17,589,683)

Cleveland Clinic Foundation PHDS DB
Non-Cardiac Surgical Cases

(n=103,324)

Missing Data (n=375)

Age < 18 (n=1,747)

PHDS Validation Dataset 
(n=101,202)

Fig. 1. (Top) Trial diagram for MEDPAR dataset analysis (post-
discharge mortality and length of stay). (Bottom) Trial diagram
for validation on the Cleveland Clinic PHDS registry dataset.
CMS � Centers for Medicare and Medicaid Services; DB �
Database; MEDPAR � Medicare Provider Analysis and Review;
PHDS � Perioperative Health Documentation System.
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Clinical Modification [ICD-9-CM]), length of stay (LOS), and
days from admission to death.

We excluded patients younger than 65 yr, those having no
procedure or procedures with an annual average occurrence
of less than 5,000, or a patient stay with less than 1 yr of
follow-up. The final dataset was randomly divided into de-
velopment (n � 17,589,824) and validation (n �
17,589,683) datasets (fig. 1). CCI was computed for each
patient stay.4,5

Our approach was to derive a measure of the risk posed
by each patient’s comorbidities, jointly with the risk asso-
ciated with each procedure. Diagnosis and procedure

codes (ICD-9-CM) were used to generate the optimum
covariate set for modeling each endpoint (LOS, in-patient
mortality, and 30-day and 1-yr postdischarge mortality).
The ICD-9-CM codes are hierarchical; therefore, it was possible
to truncate the codes to a higher level to ensure consistency of
the covariates across time to account for new codes and changes
in code use (fig. 2). In successive iterations, covariates were se-
lected in a step-wise manner based on the statistical significance
of the covariates in a multivariable model (Stepwise Hierarchical
Selection). Cox proportional hazards modeling was used to
model time to postdischarge death and time to discharge. Be-
cause the timing of the diagnostic and procedure codes during

Select cases having at least 1 procedure code with an AAI ≥ 5000.

Compute Average Annual Incidence (AAI) of all ICD-9-CM procedure 
codes in the dataset.

Is AAI 

Start with the first diagnostic code in the set of covariate candidates.

Add diagnostic code 
to potential 

Compute the AAI of the current diagnostic code.
Load next diagnostic code from set of 

potential covariate candidates.

Y> 0 for 
all 

years?

p
covariate set and 

remove from set of 
potential covariate 

candidates.

Is 
diagnostic 
code > 3

Remove 
diagnostic code 

from set of 

More 
potential 

diagnostic 
code 

covariate 
candidates?

No

Yes
Yes

No

code > 3 
characters

?

potential 
covariate 

candidates.

Reclassify diagnostic code to higher level by truncating last character.

Recalculate AAI across all years.

All diagnostic codes in potential covariate 
set are consistent across years.

Yes
No

Compute the AAI of all diagnostic codes in the set of potential covariate candidates.

T t th l t h t f ll i i 5 h t di ti d i th t ti l

Add all 5-character diagnostic codes with AAI ≥ 5000 to the initial covariate set and remove 
them from the potential covariate set.

All 5-
character 
diagnostic 
codes with 
AAI ≥ 5000 

Truncate the last character from all remaining 5-character diagnostic codes in the potential 
covariate set.

Recalculate AAI for all 4-character codes in the potential covariate set across all years.

Add all 4-character diagnostic codes with AAI ≥ 5000 to the initial covariate set and remove 
them from the potential covariate set.

All 4-
character 
diagnostic 
codes with 
AAI ≥ 5000

Truncate the last character from all remaining 4-character diagnostic codes in the potential 
covariate set.

Recalculate AAI for all 3-character codes in the potential covariate set across all years.

AAI ≥ 5000 

Exclude all remaining (3-character) diagnostic codes with AAI < 1000

Combine all 5- and 4-character diagnostic codes with AAI ≥ 5000 with all 3-character 
diagnostic codes with AAI ≥ 1000.

Diagnostic code portion (D-Codes) of the initial covariate set.

Fig. 2. Selection process for candidate diagnostic codes (D-code). Covariate candidates are made consistent across all years
in the dataset and then coded into covariates based on Average Annual Incidence (AAI) criteria. ICD-9-CM � International
Classification of Diseases, Ninth Revision, Clinical Modification.
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the hospitalization was unknown, logistic regression was used to
model in-hospital mortality.

During early iterations of the Stepwise Hierarchical Se-
lection algorithm (fig. 3), the development dataset was ran-
domly sampled to permit a reasonable execution time. The
initial models were developed from a 1% sample of the de-
velopment dataset (n � 175,898). The second and third
iterations, with smaller covariate sets, were based on a 10%
sample. The entire development dataset was used for the final
iteration. The criteria for including covariates in the first two
iterations (P � 0.2 and P � 0.05) of the algorithm were

selected to allow the largest number of likely variables to
be identified. The criteria for the third iteration of the
algorithm (P � 10�6) was selected after examining the
output and identifying a threshold below which the highly
significant variables were clustered. A Hierarchical Data-
set Coding algorithm was used to translate the diagnosis
and procedure codes from the development dataset into
the final covariate set. The Hierarchical Dataset Coding
algorithm selectively collapsed diagnosis and procedure
codes into binary covariates (0 or 1), as determined by the
covariate set.

Initialize iteration count (k=1).  Use initial covariate set as current covariate set.

Sample the data set (total N samples) to Nk samples: N1=0.01*N, N2=0.10*N, N3=0.10*N and N4=N.

Apply the Hierarchical Dataset Coding Algorithm to code the sampled dataset into the Mk D-
Codes and P-Codes (xi,j, i=1,2…Nk; j=1,2…Mk) of the current covariate set.

For each case in the dataset;
1 h 5 h t di ti d t h f th 5 h t D C d i th

Load dataset and initialize all covariates to “0”.

1. compare each 5-character diagnostic code to each of the 5-character D-Codes in the 
current covariate set.  D-Codes with matches are set to “1” and the matching diagnostic 
codes are removed from further consideration.

2. compare each 4-character procedure code to each of the 4-character P-Codes in the 
current covariate set.  P-Codes with matches are set to “1” and the matching procedure 
codes are removed from further consideration 

Truncate the last character from all remaining 5-character diagnostic and 4-character procedure codes.

For each case in the dataset;
1. compare each 4-character diagnostic codes to each of the 4-character D-Codes in the 
current covariate set.  D-Codes with matches are set to “1” and the matching diagnostic 
codes are removed from further consideration.

2. compare each 3-character procedure code to each of the 3-character P-Codes in the 

Hierarchical 
Dataset
Coding 

Algorithm

p p
current covariate set.  P-Codes with matches are set to “1” and the matching procedure codes 
are removed from further consideration z

Truncate the last character from all remaining 4-character diagnostic codes.

For each case in the dataset; compare each 3-character diagnostic codes to each of the 3-character D-
C d i th t i t t D C d ith t h t t “1”

Model the endpoint using the current covariate set.  Cox proportional hazards modeling is used to predict 
time to post-discharge mortality and LOS, while logistic regression is used to predict in-hospital mortality.
The set of resultant Mk covariate coefficients are βEnd Point, j with covariate means μEnd Point, j. The covariate 

means are zero for the logistic model.

Codes in the current covariate set.  D-Codes with matches are set to “1”.

Update the covariate set, retaining only those for which p < θk:
θ1=0.2, θ2=0.05 and θ3=10-6. All covariates are retained in the final iteration.

Increment 
the iteration 

count k.
k = 4?

Y

No

Yes

( )jij

M

j
j x EndPoint,

1
EndPoint,EndPoint

4

i
RSI µβ −=∑

=

Fig. 3. Stepwise hierarchical selection algorithm: iterative endpoint modeling, using the hierarchical dataset coding algorithm.
D-Codes � ICD-9 Diagnostic Codes; LOS � length of stay; P-Codes � ICD-9 Procedure Codes; RSI � risk stratification index.
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A Cox or logistic model was used to estimate the hazard
associated with each covariate. The initial covariate set
included 1,951 variables used for the initial model of each
endpoint. The limit of statistical significance applied to
the model covariates was P less than 0.2 in the first itera-
tion, P less than 0.05 after the second, and P less than
10�6 after the third. The fourth iteration was used to
recalculate the final hazard ratios. The final model for
each endpoint resulted in a different number of variables:
in-hospital mortality,184; 30-day mortality, 240; 1-yr
mortality, 503; and LOS, 1,096.

A risk stratification index (RSI) for each of the end-
points of interest was then developed, with RSI1YR,
RSI30days, RSIINHOSP, and RSILOS denoting predictors of
1-yr, 30-day, and in-hospital mortality, and time to discharge
within 30 days, respectively . The RSI value for each patient stay
was calculated by adding the covariate coefficients associated
with the patient’s procedure and diagnostic codes linked to the
patient stay. The coefficient (�j) of each covariate calculated by
the Cox modeling process was the natural log of the hazard
associated with that covariate (or the natural log of the odds ratio
change for the logistic model; �j � ln(hazard ratioj). The total
hazard arising from a particular patient’s diagnostic and proce-
dure codes can be calculated as the exponential sum of the co-
variate coefficients associated with those codes. Total hazard has
a non-Gaussian distribution; it is preferable, therefore, to use
RSI as a risk-adjustment factor rather than the total hazard itself.

Prospective validation was initially conducted using
the CMS validation dataset. The predictive power of the
RSIs were evaluated on both the development and valida-
tion datasets using the C statistic (area under the receiver
operating characteristic curve) for mortality and median
LOS (coded as a binary covariate with values correspond-
ing to either � or � the median) and Harrell’s C index (a
measure of relative predictive performance) for time to
discharge within 30 days.6 For each dataset, validation was
conducted using all hospital stays, and separately for stays
including principal procedures likely to require full anes-
thetic management (for details, see Supplemental Digital
Content 1, a table showing likely surgical procedures,
http://links.lww.com/ALN/A642). The effect of sample
size on the predictive accuracy of RSI was assessed by
repeatedly randomly sampling the CMS validation dataset
to obtain sets from 100 to 50,000 patient stays. Confi-
dence intervals for the C index were obtained by boot-
strapping techniques. Statistical significance was defined
as P less than 0.05 for comparisons of C statistics and C
indices.

A second prospective validation evaluated the perfor-
mance of the RSIs on surgical patients from one tertiary
medical center. With approval of the Cleveland Clinic Insti-
tutional Review Board (Cleveland, Ohio), this validation

used the Cleveland Clinic Perioperative Health Documenta-
tion System (PHDS), an electronic medical record–based
registry of noncardiac surgical patients from January 2005 to
December 2009 (n � 103,324). We constructed a dataset
from this registry that was structured in the same stay-based
format as the MEDPAR dataset, with ICD-9-CM procedure
and diagnosis codes. Patients younger than 18 yrs and those
with missing data were excluded (n � 2,122). The four RSIs
were computed using the Hierarchical Dataset Coding algo-
rithm, and performance was evaluated using the C statistic
and C index. The performances of the RSIs were compared
with the CCI. We also evaluated whether inclusion of demo-
graphic characteristics improved prediction accuracy.

Statistical programming was implemented in SPSS
(SPSS Inc., Chicago, IL) and Python (Python Software
Foundation, Hampton, NH). The CMS development
and validation datasets were evenly split by even or odd
record numbers provided by Medicare; random selection
for bootstrapping was performed using the SPSS uniform
distribution function.

Results

Characteristics of the CMS development and validation
datasets did not differ significantly. There were significant
differences between the CMS and PHDS validation data-
sets (table 1). Surgical patients in the PHDS dataset were
younger and had fewer comorbidities and lower CCI.
PHDS patients had shorter hospital stays and lower mor-
tality rates.

Performance statistics on the CMS development and
validation databases are presented in table 2. Performance
on the validation dataset was not statistically different
from that on the development database, indicating that
the degree to which the RSIs predict the endpoints is
highly consistent. Performance was significantly better in
the population that had surgical procedures that likely
required full anesthetic management, possibly because
ICD-9 codes are better characterized in the surgical pop-
ulation that usually gets a careful preoperative evaluation.
The predictors associated with the highest and lowest haz-
ard ratio for each of the three models are provided in tables
3–5. The complete set of covariates and coefficients are
provided in Supplemental Digital Content 2A–C, tables
showing predictors and coefficients for each model,
http://links.lww.com/ALN/A643.††

Prospective evaluation of the RSIs on the PHDS dataset is
presented in table 2. The performance of each RSI was sig-
nificantly better than CCI, a difference that persisted after
the addition of demographic characteristics to both models.
Adding demographic characteristics significantly improved
RSI performance only for the 1-yr mortality endpoint.
RSI1YR predicted mortality at 30 days as well as the inde-
pendent RSI30days model; the RSI1YR model can thus be
equally used for either 30-day or 1-yr postdischarge mor-
tality endpoints.

†† The coefficients for each RSI model are also available in for-
mats suitable for statistical programs at www.clevelandclinic.org/
RSI. Accessed September 23, 2010.
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Receiver operating characteristic curves for the four end-
points indicate significantly better performance for the RSIs
across the sensitivity-specificity range compared with CCI
and demographics alone.

Figure 4 shows that superior performance was most evi-
dent for in-hospital mortality and median LOS and less pro-
nounced for the remaining endpoints. The ability of CCI to
predict 30-day LOS was no better than chance. RSI1yr pre-
dictive accuracy appeared stable down to a sample size as
small as several thousand hospital stays (fig. 5).

Discussion
Hospital performance measures and public reporting are
key methods to drive quality improvement. The validity
of comparisons among hospitals depends critically on
accurate stratification of population and procedure risk.
Furthermore, accurate and universally applicable risk-
stratification methods would reduce incentives for
hospitals to “cherry pick” healthier patients or perform
simpler procedures that might improve their unadjusted
outcomes.

Table 1. Dataset Characterization

CMS Development Set
(N � 17,589,824)

CMS Validation Set
(N � 17,589,683)

PHDS Validation Set
(N � 101,202)

Age, yr 74.1 � 10.2 74.1 � 10.2 56.6 � 16.0
Female, % 54.4 54.4 51.2
White/black/other, % 82.5/12.2/5.4 82.5/12.2/5.4 82.4/12.7/4.9
Surgical, % 29.9 29.9 100
CCI 1.65 � 1.9 1.65 � 1.9 1.35 � 2.0
Number of diagnostic codes 7.1 � 2.3 7.1 � 2.3 6.8 � 2.9
Number of procedure codes 2.6 � 1.7 2.6 � 1.7 3.3 � 2.3
Length of stay, median days [IQR]

All 5 [3,8] 5 [3,8]
Surgical 5 [3,8] 5 [3,8] 3 [1,6]

In-hospital mortality, %
All 5.3 5.3
Surgical 3.1 3.2 1.3

30-Day mortality (postdischarge), %
All 5.0 5.0
Surgical 2.5 2.5 0.5

1-Yr mortality (postdischarge), %
All 19.2 19.3
Surgical 10.6 10.7 4.4

Data are presented as mean � SD unless noted otherwise.
CCI � Charlson comorbidity index; CMS � Centers for Medicare and Medicaid Services; IQR � interquartile range; PHDS �
Perioperative Health Documentation System.

Table 2. Retrospective and Prospective Validations

Mortality (C statistic, 95% CI)

Length of Stay

In-Hospital 30-day 1-yr
Median LOS

(C statistic, 95% CI)
30-day Discharge
(C index, 95% CI)

CMS development
dataset

All cases 0.930 [0.929 0.931] 0.838 [0.834 0.842]* 0.833 [0.832 0.834] 0.865 [0.865 0.865] 0.792 [0.776 0.808]
Surgical cases 0.946 [0.945 0.948] 0.859 [0.858 0.860]* 0.851 [0.850 0.851] 0.896 [0.896 0.897] 0.827 [0.814 0.840]

CMS validation dataset
All cases 0.930 [0.929 0.931] 0.842 [0.841 0.843]† 0.833 [0.833 0.834] 0.865 [0.865 0.865] 0.792 [0.776 0.808]
Surgical cases 0.946 [0.945 0.947] 0.862 [0.859 0.865]† 0.850 [0.848 0.852] 0.896 [0.896 0.897] 0.828 [0.816 0.841]

PHDS validation
dataset

Demographics 0.684 [0.670 0.698] 0.705 [0.681 0.730]† 0.684 [0.675 0.692] 0.568 [0.564 0.571] 0.571 [0.513 0.632]
CCI 0.654 [0.640 0.669]‡ 0.761 [0.738 0.784]†‡ 0.767 [0.759 0.775]‡ 0.596 [0.592 0.600]‡ 0.523 [0.463 0.588]
CCI � Demographics 0.711 [0.697 0.724] 0.803 [0.783 0.823]†‡ 0.798 [0.790 0.805]‡§ 0.610 [0.606 0.614]‡§ 0.575 [0.505 0.640]
RSI 0.977 [0.975 0.980]‡§� 0.854 [0.834 0.875]†‡§� 0.832 [0.825 0.839]‡§� 0.886 [0.883 0.888]‡§� 0.765 [0.668 0.846]‡§�
RSI � Demographics 0.979 [0.977 0.981]‡§� 0.880 [0.863 0.897]†‡§� 0.855 [0.849 0.861]‡§�# 0.887 [0.885 0.889]‡§� 0.774 [0.699 0.849]‡§�

Demographics are age, sex, and race.
* Predicted by the 30-day mortality model. † Predicted by the 1-yr mortality model. ‡ P � 0.05 compared with demographics alone.
§ P � 0.05 compared with CCI. � P � 0.05 compared with CCI � demographics. # P � 0.05 compared with RSI.
CCI � Charlson comorbidity index; CI � confidence interval; CMS � Centers for Medicare and Medicaid Services; LOS � length of
stay; PHDS � Perioperative Health Documentation System; RSI � risk stratification index.
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Risk-stratification systems developed for specific sub-
populations may generalize poorly and are thus unsuitable
for characterizing all outcomes within a single hospital,
much less for comparing among diverse hospitals. There
are also outcome prediction systems, such as the National
Surgical Quality Improvement Program stratification,7

that are broad-based but depend on clinical information
that is not readily available for all hospitalizations. The

National Surgical Quality Improvement Program, for ex-
ample, depends on highly trained nurse reviewers who
collect clinical data from a small fraction of patients at
participating centers. These clinical details presumably
augment prediction accuracy but are not easily available
for other patients, even in National Surgical Quality Im-
provement Program participating centers, much less
for patients in nonparticipating hospitals. Any system

Table 3. Covariates for In-hospital Mortality with the Largest and Smallest Odds Ratios

Diagnostic Codes Procedure Codes

Predictor Description
Odds Ratio

[95% CI] Predictor Description
Odds Ratio

[95% CI]

RSIINHOSP

D432 Other and unspecified
intracranial hemorrhage

9.262 [8.095 10.598]* P9960 Cardiopulmonary resuscitation,
not otherwise specified

57.821 [54.308 61.562]†

D78001 Coma 8.794 [8.066 9.587]† P3761 Implant of pulsation balloon 5.333 [5.069 5.610]†
D4410 Dissection of aorta 7.357 [6.692 8.087]† P9604 Insertion of endotracheal tube 3.468 [3.403 3.535]†
D42741 Ventricular fibrillation 7.197 [6.802 7.616]† P5411 Exploratory laparotomy 3.287 [3.053 3.540]*
D3481 Anoxic brain damage 6.817 [6.425 7.232]† P370 Pericardiocentesis 3.131 [2.772 3.538]‡
D20500 Acute myeloid leukemia,

without mention of having
achieved remission

5.806 [5.429 6.210]† P9390 Non-invasive mechanical
ventilation

2.540 [2.462 2.621]†

D853 Other and unspecified
intracranial hemorrhage
following injury

5.536 [4.887 6.271]§ P9605 Other intubation of respiratory
tract

2.530 [2.291 2.794]‡

D801 Fracture of base of skull 5.044 [4.439 5.731]§ P9905 Transfusion of platelets 2.015 [1.934 2.099]*
D5728 Other sequelae of chronic

liver disease
4.931 [4.375 5.558]§ P9671 Continuous invasive

mechanical ventilation for
less than 96 consecutive
hours

2.010 [1.968 2.052]†

D852 Subarachnoid, subdural, and
extradural hemorrhage,
following injury

4.838 [4.580 5.112]† P3893 Venous catheterization, not
elsewhere classified

1.918 [1.894 1.942]†

D4359 Unspecified transient
cerebral ischemia

0.574 [0.539 0.612]‡ P0066 Percutaneous transluminal
coronary angioplasty [PTCA]
or coronary atherectomy

0.453 [0.422 0.487]§

D2724 Other and unspecified
hyperlipidemia

0.566 [0.555 0.577]† P3812 Endarterectomy, other vessels
of head and neck

0.375 [0.349 0.402]§

D2720 Pure hypercholesterolemia 0.561 [0.547 0.575]† P9205 Cardiovascular and
hematopoietic scan and
radioisotope function study

0.359 [0.323 0.400]‡

D44021 Atherosclerosis of native
arteries of the extremities
with intermittent
claudication

0.555 [0.505 0.609]� P8192 Injection of therapeutic
substance into joint or
ligament

0.356 [0.317 0.400]‡

D7840 Headache 0.460 [0.418 0.507]‡ P0309 Other exploration and
decompression of spinal
canal

0.338 [0.311 0.369]§

DV5789 Care involving other
specified rehabilitation
procedure

0.429 [0.409 0.450]* P6029 Other transurethral
prostatectomy

0.300 [0.276 0.327]§

D7812 Abnormality of gait 0.419 [0.386 0.455]‡ P3726 Catheter based invasive
electrophysiologic testing

0.294 [0.270 0.320]§

D2113 Benign neoplasm of colon 0.414 [0.390 0.439]§ P0051 Implantation of cardiac
resynchronization
defibrillator, total system
[CRT-D]

0.189 [0.162 0.220]§

D4550 Internal hemorrhoids without
mention of complication

0.396 [0.359 0.437]‡ P3794 Implantation or replacement of
automatic
cardioverter/defibrillator,
total system [AICD]

0.161 [0.144 0.180]*

D71595 Osteoarthrosis, unspecified
whether generalized or
localized, pelvic region
and thigh

0.352 [0.317 0.392]‡ P8154 Total knee replacement 0.131 [0.121 0.142]†

† P � 10-300, *P � 10-200, § P � 10-100, ‡ P � 10-50, � P � 10-25.
CI � confidence interval; RSI INHOSP � risk stratification index, in-hospital mortality.
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with potential for broad applicability must therefore be
based exclusively on readily available administrative
claims data.

We developed broadly applicable empirical models for
stratifying postoperative risk that are based on ICD-9 di-
agnostic and procedure codes and demographic character-
istics, information that is standardized, objective, and
available for virtually every admitted patient requiring a
procedure. Unlike proprietary systems,8 ours is publicly
available and transparent and can thus be applied by any
stakeholder to objectively risk-adjust hospital outcomes.
Furthermore, this method can be easily updated to reflect
evolving coding conventions (i.e., conversion to ICD-10

or introduction of entirely new codes), and can be ex-
tended to include other populations and outcomes, such
as morbidity and cost of care.

It is noteworthy that demographic characteristics only
modestly improved some of our models’ predictive accu-
racy. Including age, weight, sex, and race, for example,
improves the C statistic based on ICD-9 codes alone by
only �0.02 for 1-yr mortality but has no significant im-
pact on the models for in-hospital mortality or LOS. It is
thus apparent that risk is better characterized by diagnosis
and procedure codes rather than by demographic charac-
teristics including age—a result that is consistent with
previous observations.9

Table 4. Covariates for One-year Post-discharge Mortality with the Largest and Smallest Hazard Ratio

Diagnostic Codes Procedure Codes

Predictor Description
Hazard Ratio

[95% CI] Predictor Description
Hazard Ratio

[95% CI]

RSI1YR

D191 Malignant neoplasm of brain 5.315 [5.217 5.414]† P5498 Peritoneal dialysis 1.800 [1.762 1.838]†
D20500 Acute myeloid leukemia,

without mention of having
achieved remission

4.256 [4.186 4.328]† P5491 Percutaneous abdominal
drainage

1.690 [1.674 1.708]†

D163 Malignant neoplasm of
pleura

3.521 [3.388 3.658]† P462 Ileostomy 1.518 [1.474 1.564]§

D155 Malignant neoplasm of liver
and intrahepatic bile ducts

3.231 [3.178 3.285]† P5198 Other percutaneous
procedures on biliary tract

1.436 [1.399 1.474]§

D1579 Malignant neoplasm of
pancreas, part unspecified

3.174 [3.124 3.224]† P4613 Permanent colostomy 1.427 [1.379 1.475]‡

DV66 Convalescence and palliative
care

2.970 [2.903 3.039]† P5011 Closed (percutaneous) [needle]
biopsy of liver

1.412 [1.395 1.430]†

D157 Malignant neoplasm of
pancreas

2.902 [2.843 2.961]† P3995 Hemodialysis 1.392 [1.384 1.400]†

D1570 Malignant neoplasm of head
of pancreas

2.794 [2.743 2.847]† P4610 Colostomy, not otherwise
specified

1.379 [1.346 1.414]§

D1628 Malignant neoplasm of other
parts of bronchus or lung

2.769 [2.730 2.808]† P9960 Cardiopulmonary resuscitation,
not otherwise specified

1.364 [1.332 1.396]§

D1629 Malignant neoplasm of
bronchus and lung,
unspecified

2.762 [2.742 2.782]† P3129 Other local excision or
destruction of lesion or
tissue of lung

1.357 [1.325 1.389]§

D7851 Palpitations 0.602 [0.574 0.631]‡ P656 Bilateral salpingo-
oophorectomy

0.265 [0.233 0.302]‡

D6256 Stress incontinence, female 0.584 [0.557 0.613]§ P062 Unilateral thyroid lobectomy 0.259 [0.234 0.287]§
D71535 Osteoarthrosis, localized, not

specified whether primary
or secondary, pelvic
region and thigh

0.577 [0.560 0.595]* P7051 Repair of cystocele 0.243 [0.214 0.276]§

D3861 Other and unspecified
peripheral vertigo

0.569 [0.536 0.604]‡ P4701 Laparoscopic appendectomy 0.226 [0.206 0.249]*

D34690 Migraine, unspecified,
without mention of
intractable migraine
without mention of status
migrainosus

0.556 [0.527 0.586]§ P8155 Revision of knee replacement,
not otherwise specified

0.212 [0.199 0.225]†

D5921 Calculus of ureter 0.545 [0.528 0.561]† P7050 Repair of cystocele and
rectocele

0.204 [0.186 0.223]*

D220 Benign neoplasm of ovary 0.527 [0.492 0.565]‡ P8363 Rotator cuff repair 0.198 [0.184 0.212]†
D2330 Carcinoma in situ of breast 0.505 [0.461 0.552]� P8180 Total shoulder replacement 0.169 [0.152 0.188]*
D71515 Osteoarthrosis, localized,

primary, pelvic region and
thigh

0.502 [0.466 0.540]‡ P8154 Total knee replacement 0.133 [0.129 0.136]†

D6180 Prolapse of vaginal walls
without mention of uterine
prolapse

0.412 [0.388 0.436]§ P605 Radical prostatectomy 0.068 [0.061 0.075]†

† P � 10-300, *P � 10-200, § P � 10-100, ‡ P � 10-50, � P � 10-25.
CI � confidence interval; RSI1YR � risk stratification index, 1-yr mortality.
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One of the most commonly-used stratification systems, the
CCI, was designed to predict 1-yr mortality. We found that our
long-term mortality RSI model comparably predicts both
30-day and 1-yr postdischarge mortality more accurately
than the CCI, although unsurprisingly, the difference for
1-yr mortality was less. In contrast to longer-term mortal-

ity, distinct models were required for the most accurate
prediction of LOS and in-hospital mortality. Our models
for these acute outcomes were considerably better than the
CCI. For example, the C statistic for in-hospital mortality
is 0.977 with our RSI versus 0.654 with the CCI. We thus
present three models that accurately predict four impor-

Table 5. Covariates for Hospital Length-of-stay with the Largest and Smallest Hazard Ratios

Diagnostic Codes Procedure Codes

Predictor Description
Hazard Ratio

[95% CI] Predictor Description
Hazard Ratio

[95% CI]

RSILOS*

D29534 Paranoid type schizophrenia,
chronic with acute
exacerbation

4.439 [4.233 4.654]† P9427 Other electroshock therapy 6.663 [6.551 6.777]†

D2964 Bipolar I disorder, most
recent episode (or current)
manic

3.727 [3.610 3.849]† P9463 Alcohol rehabilitation and
detoxification

3.492 [3.379 3.609]†

D2966 Bipolar I disorder, most
recent episode (or current)
mixed

2.953 [2.836 3.074]† P9425 Other psychiatric drug therapy 3.229 [3.174 3.286]†

DV63 Unavailability of other
medical facilities for care

2.876 [2.766 2.990]† P5651 Formation of cutaneous
uretero-ileostomy

3.113 [3.056 3.171]†

DV5789 Care involving other
specified rehabilitation
procedure

2.835 [2.822 2.848]† P9444 Other group therapy 2.727 [2.682 2.771]†

D2957 Schizoaffective disorder 2.800 [2.692 2.913]† P311 Temporary tracheostomy 2.487 [2.462 2.513]†
D29634 Major depressive affective

disorder, recurrent
episode, severe, specified
as with psychotic behavior

2.768 [2.710 2.828]† P485 Abdominoperineal resection of
rectum

2.438 [2.390 2.487]†

D29633 Major depressive affective
disorder, recurrent
episode, severe, without
mention of psychotic
behavior

2.362 [2.322 2.403]† P3129 Other local excision or
destruction of lesion or
tissue of lung

2.401 [2.348 2.455]†

DV571 Care involving other physical
therapy

2.310 [2.285 2.335]† P3844 Resection of vessel with
replacement, aorta,
abdominal

2.330 [2.305 2.356]†

D011 Pulmonary tuberculosis 2.256 [2.191 2.323]† P8669 Other skin graft to other sites 2.264 [2.238 2.291]†

D6185 Prolapse of vaginal vault
after hysterectomy

0.823 [0.814 0.832]* P0040 Procedure on single vessel 0.807 [0.802 0.811]†

D2729 Unspecified disorder of
lipoid metabolism

0.820 [0.811 0.829]* P9227 Implantation or insertion of
radioactive elements

0.801 [0.792 0.811]†

DV72 Special investigations and
examinations

0.818 [0.806 0.830]§ P8183 Other repair of shoulder 0.796 [0.783 0.810]§

D7274 Ganglion and cyst of
synovium, tendon, and
bursa

0.808 [0.795 0.822]§ P5979 Other repair of urinary stress
incontinence

0.763 [0.756 0.770]†

D44021 Atherosclerosis of native
arteries of the extremities
with intermittent
claudication

0.764 [0.759 0.769]† P4023 Excision of axillary lymph node 0.748 [0.737 0.759]†

D794 Nonspecific abnormal results
of function studies

0.757 [0.746 0.768]* P3607 Insertion of drug-eluting
coronary artery stent(s)

0.744 [0.741 0.747]†

D2330 Carcinoma in situ of breast 0.743 [0.731 0.755]* P8166 Percutaneous vertebral
augmentation

0.731 [0.722 0.741]†

D1744 Malignant neoplasm of
upper-outer quadrant of
female breast

0.740 [0.729 0.751]† P0689 Other parathyroidectomy 0.668 [0.655 0.682]†

D79439 Other nonspecific abnormal
results of function study
of cardiovascular system

0.665 [0.659 0.671]† P062 Unilateral thyroid lobectomy 0.652 [0.641 0.663]†

DV5331 Fitting and adjustment of
cardiac pacemaker

0.613 [0.604 0.622]† P8363 Rotator cuff repair 0.637 [0.630 0.644]†

† P � 10-300, *P � 10-200, § P � 10-100. Hazard is inverted to present risk of not being discharged within 30 days.
CI � confidence interval; RSILOS � risk stratification index, length of stay.
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tant outcomes: LOS and in-hospital, 30-day, and 1-yr
mortality.

The RSI models were developed from �17 million
MEDPAR records and validated on an additional �17
million MEDPAR records. It is reassuring that the results
were not statistically different, with C statistics typically
differing by less than 0.001. However, the more impor-
tant validation was to apply the RSI model developed
from MEDPAR data to the Cleveland Clinic’s PHDS
database. This was a considerably stricter test because the

populations differ in several important ways. For example,
the MEDPAR dataset includes all stay-based procedures
whether surgical or not, whereas PHDS is surgical. Thus,
only approximately 30% of the MEDPAR cases were
likely to have been surgical, whereas all the PHDS cases
were. Furthermore, the average age of the MEDPAR pa-
tients was 18 yr older than in the PHDS population, and
only 32% of the PHDS patients were older than 65 yr and
thus eligible for Medicare. Finally, the baseline comorbid-
ity, as measured by the CCI and the number of diagnostic
codes, was lower in the PHDS patients. Nonetheless, the
predictive accuracy of RSI was not statistically different
between the MEDPAR and Cleveland Clinic patients,
indicating that the RSI system is broadly applicable.

RSI performance appears to remain accurate in samples as
small as several thousand hospital stays. This suggests that
risk stratification can be used in smaller hospitals or at fre-
quent intervals in larger hospitals.

There are more than 16,000 ICD-9 diagnostic codes
and more than 4,500 procedure codes, of which �10,000
and �3,000, respectively, are in common use. All were
considered in development of our risk-stratification mod-
els. ICD-9 codes are hierarchical, enabling the “collaps-
ing” of codes to higher (more general) levels. Our method
takes advantage of the possibility that marginally predic-
tive codes may increase in predictive power when com-
bined with other related codes because doing so increases
the occurrence rate. By first retaining strongly predictive
(small P value) individual codes as covariates and then
collapsing the remaining codes to create composite covari-
ates with higher occurrence rates, we have derived a highly
predictive set of covariates without relying on a priori
assumptions to create covariates. The result is a set of
models that, unlike various proprietary systems, is repro-
ducible and transparent.

Our models include between 184 and 1,096 codes.
Although this might appear overly complicated, CMS
billing conventions supply up to 16 ICD-9 codes for each
patient record. Individual risk for each outcome can thus
be determined from a look-up table and simple calcula-
tions; however, our results suggest that at least several
thousand patients need to be aggregated to produce reli-
able predictions.

That various baseline characteristics are associated with
poor outcome is consistent with clinical intuition. Among
the strongest predictors of mortality, for example, were diag-
nostic codes associated with preexisting malignancy; intrace-
rebral hemorrhage, organic brain syndrome, and heart failure
were also strong predictors of 30-day and 1-yr mortality—all
with P values less than 10�300.

Less intuitive is that certain baseline characteristics
were protective. For example, a diagnosis of hypercholes-
terolemia reduced the risk of mortality at all time points.
In the MEDPAR dataset, 90.8% of patients with a diag-
nosis of hypercholesterolemia also have a diagnosis of car-
diovascular or cerebrovascular disease, which is a strong

Fig. 4. Receiver operating characteristic curves for length of
stay (LOS), and in-hospital, 30-day, and 1-yr mortality. De-
mographics � age, weight, sex, and race; CCI � Charlson
comorbidity index; RSI � risk stratification index.

1.0

0.9

-S
ta

tis
tic

nc
e 

in
te

rv
al

)  
   

 

0 7

0.8

C
-

(9
5%

 c
on

fid
en

0.7
10 100 1000 10000 100000

Sample Size

Fig. 5. Bootstrap analysis of the effect of sample size on the
estimation of the C statistic for risk stratification index, 1-yr
mortality, in the Centers for Medicare and Medicaid Services
validation dataset. The analysis was performed by selecting,
without replacement, 100 repeated random samples at each
sample size. The C statistic estimate and C index was stable
down to a sample size of 2,000 admissions.
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predictor of poor outcome. Statin therapy, the primary
treatment for hypercholesterolemia, is associated with a
reduction in coronary and all-cause mortality as well as
major vascular events.10 It is likely that patients with car-
diovascular disease who carried an ICD-9 code for hyper-
cholesterolemia were treated with statins and thus pro-
tected relative to patients with cardiovascular or
cerebrovascular disease who did not take statins.

Certain surgical procedures were also found to be protec-
tive, especially radical prostatectomy. In the MEDPAR data-
set, 99.4% of patients undergoing radical prostatectomy had
cancer. Malignant neoplasms are among the highest risk fac-
tors in our model. Prostatectomy was thus apparently pro-
tective compared with patients with cancer who did not have
a radical prostatectomy.

These examples show that individual codes cannot be con-
sidered in isolation because each patient’s risk is determined by
the totality of the codes they carry. In other words, our models
are predicated on a relative relationship between covariates as-
sociated with an underlying risk and diagnoses or procedures
associated with treatment that reduces that risk. Furthermore,
this relative relationship is based on a MEDPAR record, which
consistently includes up to 6 procedure codes and 10 diagnostic
codes for each admission. Covariates, therefore, should not be
used in isolation or in databases that are not consistent with the
MEDPAR stay-based ICD-9-CM format. The general method
we present can easily be extended to other administrative record
formats and, although similar predictive performance may be
achieved, the relative risk associated with specific procedures
and diagnoses is likely to vary based on the coding method used.

Use of administrative claims information, including our
RSIs, can suffer from regional variations in coding validity or
reimbursement gaming.11,12 But given the penalties for
fraudulent coding, it seems unlikely that many hospitals con-
sistently game the system. The contribution of miscoding to
our nationally derived models should thus be minimal.

A more serious limitation of our system is that it does not
distinguish between a priori codes related to baseline health sta-
tus and planned procedures from actual procedure codes and
complications accumulated during hospitalization. The reason
is the MEDPAR and most of the PHDS data are derived from
claims reports that do not indicate the diagnostic codes present
on admission, which reflect baseline patient characteristics, or
the principal planned or required procedures as opposed to di-
agnosis and procedure codes arising from complications during
hospitalization. Our system thus assigns risk stratification based
on all reported ICD-9 codes, including those that resulted from
care-induced complications.

Fortunately, the Agency for Healthcare Research and
Quality has published a set of codes usually associated with
complications.13 In a study of two state-wide databases, 92–

94% of secondary diagnoses were present on admission, so
the contribution of additional in-hospital complication
codes might be expected to be limited .14 It is thus possible to
perform risk stratification with and without these “compli-
cation codes,” which will provide a reasonable distinction
between baseline and procedure-related risk versus complica-
tions associated with hospital care. The RSI covariates asso-
ciated with the Agency for Healthcare Research and Quality
Clinical Classification Software complications‡‡ are denoted
in SDC table 2A–C. To further evaluate the effect of in-
hospital complications, we backed the risk associated with
the Clinical Classification Software complication codes out
of the RSI models; the predictive performance of the residual
models on the PHDS validation database was not statistically
different from RSI, including complications. This lack of
significant impact may in part result from the low complica-
tion rates encountered at the Cleveland Clinic and theoreti-
cally may be greater at other institutions.

In summary, hospitals are increasingly required to publicly
report outcomes. However, outcomes can only be reasonably
interpreted in the context of baseline-related and procedure-
related risk. We thus present three validated RSIs that predict
four major outcomes for hospitalization with procedures: LOS
and in-hospital, 30-day postdischarge, and 1-yr postdischarge
mortality. Our system, RSI, uses only readily available admin-
istrative claim codes. It can thus be used to perform risk-ad-
justed hospital outcomes wherever these claim codes are used to
describe patient stays.

The authors gratefully acknowledge the contributions of Eric K. Chris-
tiansen, M.B.A. (Senior Operations Analyst, Anesthesia Operations Group,
Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio), who led ex-
traction of data from the Perioperative Health Documentation System.
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ANESTHESIOLOGY REFLECTIONS

The 2-cent Crawford Long Postage Stamp

In Jefferson, Georgia, on what we now celebrate as “Doctors’ Day,” on March 30 of 1842, pharma-
cist-physician Crawford Williamson Long (1815–1878) etherized James Venable for removal of a
neck tumor. This anesthetic occurred more than 4 yr before (but was publicized 3 yr after) Morton’s
public ether demonstration in Boston. The U.S. Postal Service used an 1873 photograph of Long as
inspiration for engraving its postage stamp honoring the Georgian in 1942. Ironically, since national
postal rates that year were 3 cents for a typical enveloped letter, one Crawford Long stamp could
only fund local delivery within the town limits of Jefferson. Those seeking postal delivery beyond
Jefferson were forced to stick two or more Long stamps on each of their envelopes. (Copyright © the
American Society of Anesthesiologists, Inc. This image appears in color in the Anesthesiology
Reflections online collection available at www.anesthesiology.org.)
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